infection control practices and extensive colonization screening to identify asymptomatic case-patients. Multiple species with NDM-5 were identified, highlighting the potential role of genotype-based surveillance.

Funding: None

Disclosures: Muhammad Salman Ashraf reports that he is the principal investigator for a study funded by an investigator-initiated research grant.

Doi: 10.1017/ice.2020.1132

Presentation Type:
Poster Presentation

Antibiotic Overuse at Discharge in Hospitalized Patients with Bacteriuria or Treated for Pneumonia: A Multihospital Study
Valerie M Vaughn, University of Michigan Medical School; Lindsay A. Petty, University of Michigan Medical School; Tejal N. Gandhi, University of Michigan Medical School; Keith S. Kaye, University of Michigan Medical School; Anurag Malani, St. Joseph Mercy Health System; Steven J. Bernstein, University
Background: Nearly half of hospitalized patients with bacteriuria or treated for pneumonia receive unnecessary antibiotics (noninfectious or nonbacterial syndrome such as asymptomatic bacteriuria), excess duration (antibiotics prescribed for longer than necessary), or avoidable fluoroquinolones (safer alternative available) at hospital discharge. However, whether antibiotic overuse at discharge varies between hospitals or is associated with patient outcomes remains unknown. Methods: From July 2017 to
December 2018, trained abstractors at 46 Michigan hospitals collected detailed data on a sample of adult, non-intensive care, hospitalized patients with bacteriuria (positive urine culture with or without symptoms) or treated for community-acquired pneumonia (CAP; includes those with the disease formerly known as healthcare-associated pneumonia [HCAP]). Antibiotic prescriptions at discharge were assessed for antibiotic overuse using a previously described, guideline-based hierarchical algorithm. Here, we report the proportion of patients discharged with antibiotic overuse by the hospital. We also assessed hospital-level correlation (using Pearson's correlation coefficient) between antibiotic overuse at discharge for patients with bacteriuria and patients treated for CAP. Finally, we assessed the association of antibiotic overuse at discharge with patient outcomes (mortality, readmission, emergency department visit, and antibiotic-associated adverse events) at 30 days using logistic generalized estimating equations adjusted for patient characteristics and probability of treatment. Results: Of 17,081 patients (7,207 with bacteriuria; 9,874 treated for pneumonia), nearly half (42.2%) had antibiotic overuse at discharge (36.3% bacteriuria and 51.1% pneumonia). The percentage of patients discharged with antibiotic overuse varied 5-fold among hospitals from 14.7% (95% CI, 8.0%–25.3%) to 74.3% (95% CI, 64.2%–83.8%). Hospital rates of antibiotic overuse at discharge were strongly correlated between bacteriuria and CAP (Pearson's correlation coefficient, 0.76; P < .001) (Fig. 1). In adjusted analyses, antibiotic overuse at discharge was not associated with death, readmission, emergency department visit, or Clostridioides difficile infection. However, each day of overuse was associated with a 5% increase in the odds of patient-reported antibiotic-associated adverse events after discharge (Fig. 2). Conclusions: Antibiotic overuse at discharge was common, varied widely between hospitals, and was associated with patient harm. Furthermore, antibiotic overuse at discharge was strongly correlated between 2 disparate diseases, suggesting that prescribing culture or discharge statistics and probability of treatment. As multidrug-resistant organisms (MDROs) increasingly move from healthcare-associated to community settings, childcare can provide a venue for further transmission of these pathogens. Our objective was to evaluate the bioburden of pathogens present on fomites in childcare centers and how surface contamination changes over time. Methods: The study was conducted in the single-room play area of an Ypsilanti, Michigan, childcare center caring for children aged 3–5 years. Polyester swabs were used to collect surface samples from 16 locations in the room, including (1) laminate, wood and plastic tabletops and furniture; (2) a stainless-steel sink and adjacent plastic trash bin; and (3) wood, metal and plastic toys. A water sample was also collected at a 17th site. Samples were collected twice weekly for 5 of 6 weeks, followed by 1 additional collection (September–October 2019). Tryptic soy agar was used for standard plate counts and selective media were used to identify methicillin-resistant Staphylococcus aureus (MRSA), Vancomycin-resistant Enterococcus (VRE), and extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae. Singleplex RT-PCR was used to detect norovirus and adenovirus. Results: Among 175 samples collected on 11 days, MRSA and ESBL-producing Enterobacteriaceae were detected from 10.3% (18 of 175) and 8.0% (14 of 175), respectively, of environmental specimens. No specimens were positive for VRE or norovirus. Adenovirus was detected in 20 of 175 specimens (11.4%). Median bioburden by site ranged from 85 CFU/mL to 2,510 CFU/mL. The highest median bioburden was observed at the sink (2,510 CFU/mL), followed by the plastic building block table (1,620 CFU/mL), the small wood blocks (1,565 CFU/mL) and water from a water play area and an adjacent tabletop (1,260 and 1,100 CFU/mL respectively). The highest single day bioburden was 273,000 CFU/mL at the sink. Conclusion: The presence of MDROs on childcare center fomites raised concern for exposure to these pathogens among vulnerable populations. More study is needed to determine the degree to which these contaminated fomites drive transmission between children. We found the highest bioburdens on sites where children played or washed with water, identifying potential targets for more frequent cleaning.

Funding: None

Disclosures: Emily T. Martin reports a consulting from Pfizer.

Doi:10.1017/ice.2020.1134

Presentation Type: Poster Presentation

Are Patients Preferentially Receiving Oral Vancomycin for Clostridioides difficile Infection in 2018? A Population Perspective

Dana Goodenough, Georgia Emerging Infections Program/Foundation for Atlanta Veterans’ Education and Research/Atlanta VA Medical Center; Carolyn Mackey, Georgia Emerging Infections Program/Foundation for Atlanta Veterans’ Education and Research/Atlanta VA Medical Center; Michael Woodworth, Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA; Max Adelman, Emory University; Scott Fridkin, Emory Healthcare and Emory University

Background: Historically, metronidazole was first-line therapy for Clostridioides difficile infection (CDI). In February 2018, the Infectious Diseases Society of America (IDSA) and Society for