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Recurrence Relations for Strongly
q-Log-Convex Polynomials

William Y. C. Chen, Larry X. W. Wang, and Arthur L. B. Yang

Abstract. We consider a class of strongly q-log-convex polynomials based on a triangular recurrence

relation with linear coefficients, and we show that the Bell polynomials, the Bessel polynomials, the

Ramanujan polynomials and the Dowling polynomials are strongly q-log-convex. We also prove that

the Bessel transformation preserves log-convexity.

1 Introduction

The main objective of this paper is to study the q-log-convexity of a class of poly-

nomials whose coefficients satisfy a triangular recurrence relation with linear co-

efficients. The notion of log-convexity is closely related to log-concavity. Stanley

introduced the concept of q-log-concavity, which naturally leads to the notion of

q-log-convexity. Compared with q-log-concave polynomials, q-log-convex polyno-

mials have not drawn much attention. Only recently have Liu and Wang [18] shown

that some classical polynomials, such as the Bell polynomials and the Eulerian poly-

nomials, are q-log-convex.

In this paper, we will show that a sequence of polynomials

(1.1) Pn(q) =

n
∑

k=0

T(n, k)qk

is q-log-convex if the coefficients T(n, k) satisfy a certain recurrence relation with lin-

ear coefficients in n and k. The concept of strong q-log-concavity is due to Sagan [21].

In this framework, we will show that the Bell polynomials, the Bessel polynomials, the

Ramanujan polynomials, and the Dowling polynomials are strongly q-log-convex.

Let us give a brief review of the background and terminology. Unimodal and

log-concave sequences and polynomials often arise in combinatorics, algebra, and

geometry; see the surveys of Brenti [4, 5] and Stanley [23]. A sequence {zk}k≥0 of

nonnegative real numbers is said to be unimodal if there exists an integer r ≥ 0 such

that

z0 ≤ z1 ≤ · · · ≤ zr ≥ zr+1 ≥ zr+2 ≥ · · · .
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It is said to be log-concave if z2
m ≥ zm+1zm−1 for m ≥ 1, and it is said to be strongly

log-concave if zmzn ≥ zm−1zn+1 for n ≥ m ≥ 1. For a sequence of positive real num-

bers, log-concavity is equivalent to strong log-concavity and implies unimodality.

Analogously, a sequence {zk}k≥0 of nonnegative real numbers is said to be log-

convex if z2
m ≤ zm+1zm−1 for m ≥ 1, and it is said to be strongly log-convex if

zmzn ≤ zm−1zn+1 for n ≥ m ≥ 1. It is also easily seen that, for a sequence of positive

real numbers, log-concavity is equivalent to the log-convexity of the sequence of the

reciprocals; see [18].

However, the equivalence of log-concavity and strong log-concavity does not hold

for polynomial sequences. The q-log concavity of polynomials has been extensively

studied; see, for example, Butler [7], Krattenthaler [16], Leroux [19], and Sagan

[20, 21]. Adopting the notation of Sagan [21], we write f (q) ≥q g(q) if the dif-

ference f (q) − g(q) has nonnegative coefficients as a polynomial of q. A sequence of

polynomials { fk(q)}k≥0 over the field of real numbers is called q-log-concave if

fm(q)2 ≥q fm+1(q) fm−1(q), m ≥ 1,

and it is strongly q-log-concave if

fm(q) fn(q) ≥q fm−1(q) fn+1(q), n ≥ m ≥ 1.

Based on q-log-concavity, it is natural to define q-log-convexity and strong q-log-

convexity. We say that a polynomial sequence { fn(q)}n≥0 is q-log-convex if

fm+1(q) fm−1(q) ≥q fm(q)2, m ≥ 1,

and it is strongly q-log-convex if

fm−1(q) fn+1(q) ≥q fm(q) fn(q), n ≥ m ≥ 1.

For a sequence of polynomials, q-log-convexity is not equivalent to strong q-log-

convexity. Note that Butler and Flanigan [8] defined a different q-analogue of log-

convexity.

For a q-log-convex sequence of polynomials Pn(q) as given in (1.1), we will be

concerned with the linear transformation associated with Pn(q) that transforms a

sequence {zn}n≥0 into a sequence {wn}n≥0 given by

wn =

n
∑

k=0

T(n, k)zk.

We say that the linear transformation preserves log-convexity, if, for any given log-

convex sequence {zn}n≥0 of positive real numbers, the sequence {wn}n≥0 defined

by the above transformation is also log-convex. For the Bell polynomials, the cor-

responding linear transformation is defined by the Stirling numbers of the second

kind. It has been proved that the Bell transformation preserves log-convexity [18].

In this paper, we will show that the Bessel transformation preserves log-convexity.

https://doi.org/10.4153/CMB-2011-008-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2011-008-5


Recurrence Relations for Strongly q-Log-Convex Polynomials 219

2 Strong q-Log-Convexity

In this section, we consider polynomials

Pn(q) =

n
∑

k=0

T(n, k)qk, n ≥ 0,

where the coefficients T(n, k) are nonnegative real numbers and satisfy the following

recurrence relation

T(n, k) = (a1n + a2k + a3)T(n − 1, k)(2.1)

+ (b1n + b2k + b3)T(n − 1, k − 1), for n ≥ k ≥ 1,

and the boundary conditions

T(n,−1) = T(n, n + 1) = 0, for n ≥ 1,

a1 ≥ 0, a1 + a2 ≥ 0, a1 + a2 + a3 > 0,

and

b1 ≥ 0, b1 + b2 ≥ 0, b1 + b2 + b3 > 0.

For the triangular array {T(n, k)}n≥k≥0, we always assume that T(0, 0) > 0. Thus we

have T(n, k) > 0 for 0 ≤ k ≤ n.

The following lemma is a special case of a result of Kurtz [17, Theorem 2].

Lemma 2.1 Suppose that the positive array {T(n, k)}n≥k≥0 satisfies the recurrence

relation (2.1). Then for any n, the sequence {T(n, k)}0≤k≤n is log-concave, namely, for

0 ≤ k ≤ n,

(2.2) T(n, k)2 ≥ T(n, k − 1)T(n, k + 1).

Using the log-concavity (2.2) for the triangular array {T(n, k)}n≥k≥0, Liu and

Wang obtained a sufficient condition for a polynomial sequence {Pn(q)}n≥0 to be

q-log-convex [18, Theorem 4.1].

Theorem 2.2 Suppose that the array {T(n, k)}n≥k≥0 of positive numbers satisfies the

recurrence relation (2.1) and the additional condition

(a2b1 − a1b2)n + a2b2k + (a2b3 − a3b2) ≥ 0, for 0 < k ≤ n.

Then the polynomials Pn(q) form a q-log-convex sequence.

This theorem can be used to show that the Bell polynomials and the Eulerian

polynomials are q-log-convex. We will give alternative conditions for the recurrence

relation (2.1) and will show that these conditions are satisfied by the Bell polynomials,

the Bessel polynomials, the Ramanujan polynomials and the Dowling polynomials.

An important property of the triangular array satisfying these conditions is de-

scribed by the following lemma.
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Lemma 2.3 Suppose that the array {T(n, k)}n≥k≥0 of positive numbers satisfies (2.1)

with a2, b2 ≥ 0. Then for any l ′ ≥ l ≥ 0 and m ′ ≥ m ≥ 0, we have

(2.3) T(m, l)T(m ′, l ′) − T(m, l ′)T(m ′, l) ≥ 0.

Proof Restate (2.3) as

T(m, l ′)

T(m, l)
≤

T(m ′, l ′)

T(m ′, l)
.

It suffices to show that for any s ≥ m

T(s, l ′)

T(s, l)
≤

T(s + 1, l ′)

T(s + 1, l)
.

Let

f (l, l ′, s) = T(s, l)T(s + 1, l ′) − T(s, l ′)T(s + 1, l).

From the recurrence relation (2.1), we see that

f (l, l ′, s) =

(

a1(s + 1) + a2l ′ + a3

)

T(s, l ′)T(s, l)

+
(

b1(s + 1) + b2l ′ + b3

)

T(s, l ′ − 1)T(s, l)

− (a1(s + 1) + a2l + a3) T(s, l)T(s, l ′)

− (b1(s + 1) + b2l + b3) T(s, l − 1)T(s, l ′)

=

(

b1(s + 1) + b2l ′ + b3

)

T(s, l ′ − 1)T(s, l)

− (b1(s + 1) + b2l + b3) T(s, l − 1)T(s, l ′)

+ a2(l ′ − l)T(s, l)T(s, l ′)

≥
(

b1(s + 1) + b2l ′ + b3

)

T(s, l − 1)T(s, l ′)

− (b1(s + 1) + b2l + b3) T(s, l − 1)T(s, l ′)

+ a2(l ′ − l)T(s, l)T(s, l ′) (by Lemma 2.1)

= b2(l ′ − l)T(s, l − 1)T(s, l ′) + a2(l ′ − l)T(s, l)T(s, l ′),

which is nonnegative in view of the condition a2, b2 ≥ 0. This completes the proof.

The main result of this paper is given below.

Theorem 2.4 Suppose that the array {T(n, k)}n≥k≥0 of positive numbers satisfies

(2.1) with a2, b2 ≥ 0. Then the polynomial sequence {Pn(q)}n≥0 is strongly q-log-

convex, namely, for any n ≥ m ≥ 1,

(2.4) Pm−1(q)Pn+1(q) − Pm(q)Pn(q) ≥q 0.
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Proof Throughout the proof, we simply write Pn for Pn(q). Let

P ′
nPm−1 − PnP ′

m−1 =

m+n−1
∑

i=0

Aiq
i ,

where P ′
n is the derivative of Pn with respect to q. We claim that Ai ≥ 0 for any i.

Invoking the recurrence relation (2.1), the coefficient of qi in P ′
nPm−1 equals

i
∑

k=0

(i − k + 1)T(n, i − k + 1)T(m − 1, k)

=

i
∑

k=0

(i − k + 1)(a1n + a2(i − k + 1) + a3)T(n − 1, i − k + 1)T(m − 1, k)

+

i
∑

k=0

(i − k + 1)(b1n + b2(i − k + 1) + b3)T(n − 1, i − k)T(m − 1, k).

Again, based on (2.1), the coefficient of qi in PnP ′
m−1 equals

i+1
∑

k=1

kT(n, i − k + 1)T(m − 1, k)

=

i+1
∑

k=1

k(a1n + a2(i − k + 1) + a3)T(n − 1, i − k + 1)T(m − 1, k)

+

i
∑

k=0

k(b1n + b2(i − k + 1) + b3)T(n − 1, i − k)T(m − 1, k).

Let

ck = (i − 2k + 1)(a1n + a2(i − k + 1) + a3),

dk = (i − 2k + 1)(b1n + b2(i − k + 1) + b3).

For 0 ≤ k ≤ ⌊i/2⌋, we find that

ck + ci−k+1 = (i − 2k + 1)(a1n + a2(i − k + 1) + a3) + (2k − i − 1)(a1n + a2k + a3)

= a2(i − 2k + 1)2,

which is nonnegative. Moreover,

dk + di−k = (i − 2k + 1)(b1n + b2(i − k + 1) + b3)

+ (2k − i + 1)(b1n + b2(k + 1) + b3)

= b2(i − 2k + 1)(i − 2k) + 2(b1n + b2(k + 1) + b3),
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which is also nonnegative.

By Lemma 2.3, for 0 ≤ k ≤ ⌊i/2⌋, we obtain

T(m − 1, 0)T(n − 1, i + 1) ≥ T(m − 1, i + 1)T(n − 1, 0),(2.5)

T(m − 1, k)T(n − 1, i − k + 1) ≥ T(m − 1, i − k + 1)T(n − 1, k),(2.6)

T(m − 1, k)T(n − 1, i − k) ≥ T(m − 1, i − k)T(n − 1, k).(2.7)

We now need to consider the parity of i. First, consider the case when i is odd.

Suppose that i = 2 j + 1 for some j. Clearly, we have c j+1 = 0. Since all T(n, k) are

nonnegative, we get

Ai = (i + 1)(a1n + a2(i + 1) + a3)T(m − 1, 0)T(n − 1, i + 1)

− (i + 1)(a1n + a3)T(m − 1, i + 1)T(n − 1, 0)

+

i
∑

k=1

ckT(m − 1, k)T(n − 1, i − k + 1)

+

i
∑

k=0

dkT(m − 1, k)T(n − 1, i − k)

≥

i
∑

k=1

ckT(m − 1, k)T(n − 1, i − k + 1) (by (2.5))

+

i
∑

k=0

dkT(m − 1, k)T(n − 1, i − k)

≥

j
∑

k=1

(ck + ci−k+1)T(m − 1, k)T(n − 1, i − k + 1) (by (2.6))

+

j
∑

k=0

(dk + di−k)T(m − 1, k)T(n − 1, i − k) (by (2.7)),

which is nonnegative, since ck + ci−k+1 ≥ 0 and dk + di−k ≥ 0.

The case when i is even can be dealt with via a similar argument. Suppose that

i = 2 j for some j. In this case, we have d j ≥ 0. Therefore

Ai ≥

i
∑

k=1

ckT(m − 1, k)T(n − 1, i − k + 1) (by (2.5))

+

i
∑

k=0

dkT(m − 1, k)T(n − 1, i − k)

≥

j
∑

k=1

(ck + ci−k+1)T(m − 1, k)T(n − 1, i − k + 1) (by (2.6))
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+

j−1
∑

k=0

(dk + di−k)T(m − 1, k)T(n − 1, i − k) (by (2.7))

+ d jT(m − 1, j)T(n − 1, j),

which is nonnegative, since ck + ci−k+1 ≥ 0, dk + di−k ≥ 0, and d j ≥ 0.

Combining both cases, we are led to the assertion that Ai ≥ 0, namely, for any

n ≥ m ≥ 1,

(2.8) P ′
nPm−1 − PnP ′

m−1 ≥q 0.

In view of the recurrence relation (2.1), we obtain

Pm =

m
∑

k=0

T(m, k)qk
=

m
∑

k=0

(a1m + a2k + a3)T(m − 1, k)qk

+

m
∑

k=0

(b1m + b2k + b3)T(m − 1, k − 1)qk

=

m−1
∑

k=0

(a1m + a2k + a3)T(m − 1, k)qk (by T(m − 1, m) = 0)

+

m
∑

k=1

(b1m + b2k + b3)T(m − 1, k − 1)qk (by T(m − 1,−1) = 0)

=

m−1
∑

k=0

(a1m + a2k + a3)T(m − 1, k)qk

+

m−1
∑

k=0

(b1m + b2(k + 1) + b3)qT(m − 1, k)qk

=

m−1
∑

k=0

(a1m + a3)T(m − 1, k)qk +

m−1
∑

k=0

(b1m + b2 + b3)qT(m − 1, k)qk

+

m−1
∑

k=0

(a2 + b2q)kT(m − 1, k)qk

= (a1m + a3 + b1mq + b2q + b3q)Pm−1 +

m−1
∑

k=0

(a2q + b2q2)kT(m − 1, k)qk−1

= (a1m + a3 + b1mq + b2q + b3q)Pm−1 + (a2 + b2q)qP ′
m−1,

and hence

Pn+1 = (a1(n + 1) + a3 + b1(n + 1)q + b2q + b3q)Pn + (a2 + b2q)qP ′
n.
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Substituting Pm and Pn+1 into (2.4) yields

Pm−1Pn+1 − PmPn = (a1 + b1q)(n − m + 1)Pm−1Pn

+ q(a2 + b2q)(P ′
nPm−1 − PnP ′

m−1).

Since a1, a2, b1, b2 ≥ 0, the strong q-log-convexity of {Pn(q)}n≥0 immediately follows

from (2.8).

3 Applications

In this section, we use Theorem 2.4 to show that the Bell polynomials, Bessel polyno-

mials, Ramanujan polynomials, and Dowling polynomials are strongly q-log-convex.

3.1 The Bell Polynomials

The Bell polynomials [1] are defined by

Bn(q) =

n
∑

k=0

S(n, k)qk,

where S(n, k) is the Stirling number of the second kind satisfying the following recur-

rence relation:

S(n, k) = kS(n − 1, k) + S(n − 1, k − 1), n ≥ k ≥ 1

with S(0, 0) = 1.

Corollary 3.1 The Bell polynomials are strongly q-log-convex.

Moreover, one can check that the following polynomials introduced by Tanny [24]

are also strongly q-log-convex:

Fn(q) =

n
∑

k=0

k!S(n, k)qk.

3.2 The Bessel Polynomials

The Bessel polynomials are defined by

yn(x) =

n
∑

k=0

(n + k)!

(n − k)!k!

( x

2

) k

,

and they have been extensively studied; see, for example, Burchnall [6], Carlitz [9],

Choi and Smith [10], Grosswald [13], and Han and Seo [14]. The Bessel polynomials

satisfy the following recurrence relation [15]:

(3.1) yn = (nx + 1)yn−1 + x2 y ′
n−1.
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Let

T(n, k) =

(n + k)!

(n − k)!k!
.

From the recurrence (3.1), we deduce that

T(n, k) = T(n − 1, k) + (2n + 2k − 2)T(n − 1, k − 1), n ≥ k ≥ 1.

Corollary 3.2 The Bessel polynomials are strongly q-log-convex.

3.3 The Ramanujan Polynomials

The Ramanujan polynomials Rn(x) are defined by the recurrence relation

(3.2) R1(x) = 1, Rn+1(x) = n(1 + x)Rn(x) + x2R ′
n(x),

where R ′
n(x) is the derivative of Rn(x) with respect to x; see Berndt [3]. These polyno-

mials are related to a refinement of Cayley’s theorem due to Shor [22]. The connec-

tion between the Ramanujan polynomials and Shor’s refinement of Cayley’s formula

was observed by Zeng [25]. Let r(n, k) be the number of rooted labeled trees on n

vertices with k improper edges. Shor [22] proved that r(n, k) satisfies the recurrence

relation

(3.3) r(n, k) = (n − 1)r(n − 1, k) + (n + k − 2)r(n − 1, k − 1),

where r(1, 0) = 1, n ≥ 1, k ≤ n − 1, and r(n, k) = 0 otherwise. It can be seen from

(3.2) and (3.3) that Rn(x) is indeed the generating function of r(n, k), namely,

Rn(x) =

n
∑

k=0

r(n, k)xk.

Dumont and Ramamonjisoa [12] independently found the same combinatorial in-

terpretation for the coefficients of the Ramanujan polynomial Rn(x).

Let r ′(n, k) = r(n+1, k). Then the triangle {r ′(n, k)}n≥k≥0 satisfies the recurrence

relation

r ′(n, k) = nr ′(n − 1, k) + (n + k − 1)r ′(n − 1, k − 1).

Corollary 3.3 The Ramanujan polynomials Rn(q) are strongly q-log-convex.

3.4 The Dowling Polynomials

The Dowling polynomials are defined as the generating functions of Whitney num-

bers of the second kind of Dowling lattices; see Benoumhani [2]. As a generalization

of the partition lattice, Dowling [11] introduced a class of geometric lattices based

on finite groups, called the Dowling lattice. Given a finite group G of order m ≥ 1,

let Qn(G) be the Dowling lattice of rank n associated with G, and, for 0 ≤ k ≤ n,
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let Wm(n, k) be the Whitney numbers of the second kind of Qn(G). The Dowling

polynomial Dm(n; q) is defined by

Dm(n; q) =

n
∑

k=0

Wm(n, k)qk.

Benoumhani [2] also introduced the following polynomials:

Fm,1(n; q) =

n
∑

k=0

k! Wm(n, k)mkqk, Fm,2(n; q) =

n
∑

k=0

k! Wm(n, k)qk.

Dowling [11] proved that the Whitney numbers Wm(n, k) satisfy the following

recurrence relation

(3.4) Wm(n, k) = (1 + mk)Wm(n − 1, k) + Wm(n − 1, k − 1), n ≥ k ≥ 1,

with the boundary conditions:

Wm(n, n) = Wm(n, 0) = 1, for n ≥ 0,

Wm(n, k) = 0, if k > n.

Note that, for m = 1, the Whitney numbers Wm(n, k) of the second kind are the

Stirling numbers S(n + 1, k + 1) of the second kind; see [2, 11].

From (3.4), Benoumhani [2] derived that

(3.5) Fm,2(n; q) = (q + 1)Fm,2(n − 1; q) + q(q + m)F ′
m,2(n − 1; q),

where F ′ is the derivative of F with respect to q. Let T(n, k) = k! Wm(n, k). Then

(3.5) implies that T(n, k) satisfies the following recurrence relation

T(n, k) = (1 + mk)T(n − 1, k) + kT(n − 1, k − 1), n ≥ k ≥ 1.

Corollary 3.4 The Dowling polynomials Dm(n; q), Fm,1(n; q), and Fm,2(n; q) are

strongly q-log-convex.

4 The Bessel Transformation

The objective of this section is to show that the Bessel transformation preserves log-

convexity. The Bessel transformation is a linear transformation associated with the

Bessel polynomials, which transforms a sequence {zn}n≥0 of nonnegative real num-

bers into a sequence {wn}n≥0 given by

wn =

n
∑

k=0

(n + k)!

(n − k)!k!
zk.
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For a triangular array {T(n, k)}n≥k≥0, let Pn(q) be the row generating function

of T(n, k). For any n ≥ 1, Liu and Wang [18] defined the function αk(n, i) for

0 ≤ i ≤ 2n and 0 ≤ k ≤ ⌊ i
2
⌋. If 0 ≤ k < i

2
, we have

αk(n, i) = T(n−1, k)T(n + 1, i−k) + T(n + 1, k)T(n−1, i−k)−2T(n, k)T(n, i−k).

If i is even and k =
i
2
, then we have

αk(n, i) = T(n − 1, k)T(n + 1, k) − T(n, k)2.

Liu and Wang [18] found the following connection between the q-log-convexity of

Pn(q) and the log-convexity preserving property of T(n, k).

Theorem 4.1 ([18]) Suppose that the triangle {T(n, k)}n≥k≥0 of positive real num-

bers satisfies the following two conditions:

(i) The sequence of polynomials {Pn(q)}n≥0 is q-log-convex.

(ii) There exists an integer k ′ depending on n and i such that αk(n, i) ≥ 0 for k ≤ k ′

and ak(n, i) < 0 for k > k ′.

Then the linear transformation wn =

∑n
k=0 T(n, k)zk preserves log-convexity.

We will use the above theorem to prove that the Bessel transformation preserves

log-convexity. For any n ≥ 1 and 0 ≤ i ≤ 2n, we introduce the following polynomi-

als in x:

f1(x) = (n + x + 1)(n − i + x)(n + x)(n − i + x + 1),

f2(x) = (n − x)(n + i − x + 1)(n − x + 1)(n + i − x),

f3(x) = (n − x + 1)(n + i − x)(n + x)(n − i + x + 1).

Let

(4.1) f (x) = f1(x) + f2(x) − 2 f3(x).

Lemma 4.2 For any n ≥ 1, 0 ≤ i ≤ 2n and 0 ≤ k ≤ ⌊ i
2
⌋, let

βk(n, i) = T(n + 1, k)T(n − 1, i − k) + T(n + 1, i − k)T(n − 1, k)

− 2T(n, i − k)T(n, k),

where

(4.2) T(n, k) =

(n + k)!

(n − k)!k!
.

Then for given n and i, there exists an integer k ′ depending on n and i such that

βk(n, i) ≥ 0 for k ≤ k ′ and βk(n, i) ≤ 0 for k > k ′.
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Proof Suppose that n and i are given. Clearly, if k < i − n − 1, then n < (i − k) − 1

and βk(n, i) = 0. If k = i − n − 1, then

βk(n, i) = T(n + 1, n + 1)T(n − 1, i − n − 1) ≥ 0.

Therefore, it suffices to determine the sign of βk(n, i) for i − n − 1 < k ≤ ⌊ i
2
⌋.

By (4.2), we have

βk(n, i) =

(n + 1 + k)!

(n + 1 − k)! k!
×

(n − 1 + i − k)!

(n − 1 − i + k)! (i − k)!

+
(n + 1 + i − k)!

(n + 1 − i + k)! (i − k)!
×

(n − 1 + k)!

(n − 1 − k)! k!

−
2(n + i − k)!

(n − i + k)! (i − k)!
×

(n + k)!

(n − k)! k!

=

(

(n + k + 1)(n − i + k)

(n − k + 1)(n + i − k)
+

(n − k)(n + i − k + 1)

(n + k)(n − i + k + 1)
− 2

)

×
(n + i − k)!

(n − i + k)! (i − k)!
×

(n + k)!

(n − k)! k!

=

f (k)T(n, i − k)T(n, k)

f3(k)
.

Note that for n ≥ 1, 0 ≤ i ≤ 2n and i − n − 1 < k ≤ ⌊ i
2
⌋, we have

f3(k) > 0, T(n, i − k)T(n, k) ≥ 0.

By the definition (4.1) of f (x), we find f ′(x) = 2(2x − i)g(x), where g(x) =

2(2 + 8n2 − i + 8n). Thus, for i ≤ 2n and x ≤ i
2
, we have

g(x) ≥ 2(2 + 8n2 + 6n) > 0, f ′(x) ≤ 0.

Therefore, f (x) is decreasing in x on the interval (−∞, i
2
]. This implies that there

exists an integer k ′ such that βk(n, i) ≥ 0 for k ≤ k ′ and βk(n, i) ≤ 0 for k > k ′.

Combining Corollary 3.2, Lemma 4.2, and Theorem 4.1, we deduce the following

theorem.

Theorem 4.3 If {zk}k≥0 is a log-convex sequence of positive real numbers, then the

sequence {wn}n≥0 defined by

wn =

n
∑

k=0

(n + k)!

(n − k)!k!
zk

is also log-convex.
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