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The present paper contains solutions of the tensor generalisation
of Laplace's Equation. The results obtained are summarised in the
two theorems enunciated in §1. They apply only to the case when
the Riemannian space forming the background of the theory is flat.
In the concluding paragraph a special case is considered, and it is
shown that the present theory is closely connected with Whittaker's
well known general solution of the ordinary Laplace's Equation.1

§1. INTRODUCTION.
Let

ds2 = g^ dx» dx" (1.1)

define the metric of an n-dimensional Euclidean space; that is, one
for which the Riemann-Christoffel tensor is everywhere zero. Let
Q. be one half of the square of the geodesic distance between the two
points (x{) and (»') of this space,2 so that Q is a scalar function of the
two sets of variables (a;*), (x'). Let further the coordinates (xl) be
each functions of a variable T. Then Q is a function of x1, a;2, . . , xn,
and T, and we shall later define T as a function of the xl by means of
the equation

Q = 0. (1.2)

Greek suffixes will be used to denote covariant differentiations
with respect to the x\ with T kept constant, the only exception to
this rule being that the suffix T will denote ordinary partial differenti-
ations with respect to r. Thus, for example,

(1.3)

1 Whittaker and Watson, "Modern Analysis" (1920), §18.3.
2 Some properties of this function have been investigated in earlier papers, particu-

larly (i) Proc. London Math. Soc, 31 (1930), 225 ; (ii) ibid., 32 (1931), 87. These will
be referred to as papers 1 and 2 respectively.
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and so on. It must be emphasised that in these definitions the
partial differentiations with respect to the x{ are strict, that is, they
treat r as a constant as well as the other x's. The summation
convention does not of course hold for the suffix r.

For convenience the Christofiel symbol {A/x, v) will be denoted by
F ^ . Further, the evaluation at {&) of any function of the x{ will be

indicated by the superposing of a bar on the functional symbol.

The partial differential equation of which solutions are sought is

The following are the theorems proved.

THEOREM I. / / the functions x* (T) are chosen to satisfy the differential
equations

dx" A ,, 4

then, for all values of n, a solution of the partial differential equation
V^ — 0 is given by

where, after differentiating * r is expressed as a function of x1, x2, .., xn by
means of the equation £1 = 0, and where f(£lT) is an arbitrary function
of QT.

That the equations (1.5) and (1.6) are compatible is well known.2

THEOEEM II. A solution of the equation F* = 0 is given by

2), (1.8)

where (f> (r) is an arbitrary function of r, and r is expressed as a function
of the x's by means of the equation Q = 0. / / the number n of the

1 3$2/3T is in general a function of T as well as of the x's, so T must be eliminated in
order that the solution should be expressed as a function of the x's only.

2 See, for example, Veblen, "Invariants of Quadratic Differential Forms " Camb.y
Math. Tract. No. 24) (1927), 95.
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variables is equal to 2 or 4 there is no limitation on the choice of the
functions x* (T) ; but if n has any other value, these functions must satisfy
the conditions (1.5) and (1.6).

§2. PRELIMINARY FORMULAE.

I t is well known that Q. satisfies1 the partial differential equation

Q x f l A =2Q, (2.1)
where £2X = grXa Qa.

Moreover, it is shown elsewhere2 that, the space being flat,

flM» = fa- (2.2)

Furthermore, since we have put

Q = 0 (2.3)

it follows, by differentiating partially with respect to xx, that

Qx + QT TX = 0,

where TX = dr/dxx. Hence

TX == - QX/QT. (2.4)

Differentiating (2.1) twice in succession with respect to T, we get

QTX Qx = QT, (2.5)

QTTXQx + QTXDx = a T . (2.6)

From (2.2), raising the suffix v and contracting,.

&» = n, (2.7)

and the differentiation of this equation with respect to T gives

Q^ = 0. (2.8)

By (2.1), (2.3), (2.4), it follows that

T*TX = 0. (2.9)

By(2.4), ^ = ̂ = -^K| ) .+ (|)T-]
= Q ; 2 (Q^QX - QT fij - QTQTX r> + Qrr Qx TX),

whence, by (2.4), (2.5), (2.7) and (2.9),

T J = _ ( 7 l _ 2 ) Q ; 1 . (2.10)

1 This in fact follows at once from equations (1) and (10) of paper 2.
2 Paper 1, § 2, where ft denotes twice the function here represented by ft.
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Lastly, it follows from (2.2), by interchanging the x's and the-
x's, that

r-*-r;,:-^=^. (2.ii>

But

d&dx"

8O _8O 8yf
8 T 8xa

 8T

8 0. d?l? 82Q dx« dx*and
8rl 8x" dr 8x* 8xP dr dr

and therefore, by (2.11),

Q _ - dxf dx" 8O.(d?x°- =a da? dx"\ , „,

§3. PROOF OF THEOREM I.

We now show, by direct substitution, that any function of

a> say
U=f(OT), (3.1)

is a solution of the equation

F£ = 0 (3.2).

provided that the conditions (1.5) and (1.6) are satisfied.
For

UK = / ' (Qr) (Q.Tk + OTT TX), (3.3)
and

U\ = / " (^T) (O-x + Or T\) (^T + &TTTX)

+ / ' (f2T) (QT£ + 2 QTTA T^ + OTTT TA T'1 + a r ''i)

= /* (DT) (QTx flJ+2 Or QJ TX) + / ' (f2T) (QT̂  + 2 QTTX T^ + OTT ,*),

using equation (2.9).

By (2.4), (2.5), (2.6), (2.8) and (2.10), it quickly follows that

u* = —r (a) (Orx & + Or)-a;Y (a){2 a,xfix + (n-2) QTT}. (3.4).

By (2.12), if the functions ^ ( T ) satisfy the relations

then QTT = 0. (3.7)

https://doi.org/10.1017/S0013091500007756 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500007756


GENERALISED SOLUTIONS OF LAPLACE'S EQUATION 185

Differentiating with respect to x^,

O r X + G ^ T ^ O ,
and therefore

Q ^ Q ^ O , (3.8)

since Qx rK = 0 by (2.4) and (2.9).

By (3.4), (3.7), (3.8) it follows that

provided that the conditions (3.5) and (3.6) are satisfied. This
concludes the proof of Theorem I.

§4. PROOF OF THEOREM II.

The next problem is to show that, if

V =<£(T)/n*<"-2>, (4.1>

where if> (T) is an arbitrary function of T, then V satisfies the equation
I7J = 0. I t will be shown that the restrictions (3.5) and (3.6) must
still be imposed except when n = 2 or n = 4.

Consider first the function W defined by

W = Q;*<"-2>. (4.2)

Putting /(QT) = QT-*<-» in (3.3) and (3.4),

WK = - } (7i - 2) ft;*" (QTX + QTT Tx), (4.3)

W* = 1 (n - 2) (n - 4) Q;««+2> (QTT - QrrX Q*). (4.4)

Hence, if n = 2 or w = 4, we have

TT* = 0 (4.5)

without any restrictions being placed on the choice of the functions
X{(T). But, if n has neither of these values, it follows as in the
previous paragraph that we shall still have

W$ = 0 (4.5)*

provided that the xl (T) satisfy the relations

dx" n ,. ax

dT = °> (4'6)

^ f 5,^^.0. (4.7)
drz p dr dr
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Now consider the function F defined by

F = W<f> (r), (4.8)

where <f> (T) is any function of r. Covariant differentiation gives

= W* <f> (T) + 2TFX TX <f>' (T) + Wn TX f (r) + Wr\ f (r)

by (4.5), (4.5)* and (2.9).

Equation (4.8) therefore gives a solution of F* = 0 provided that

But by (4.3), (4.2) and (2.10), the left-hand side of this equation is

equal to
- (n - 2) Q;*n (QrX T* + QTT T* TX) - (n - 2) Q;*»,

which is zero in virtue of equations (2.4), (2.5) and (2.9), for all values
of n. We deduce finally, therefore, that

is a solution of F£ = 0 provided that, when n has a value other than

2 or 4, the choice of the functions x' (T) is restricted by the equations

(4.6) and (4.7).

When n = 2 this theorem is the tensor generalisation of the
well-known fact that any function of x ± iy is a solution of the

82 V 82 V
equation —5—h —— = 0. When » = 4 it gives a generalisation of

a solution, due to Conway, of the classical wave-equation of mathe-
matical physics.1

§ 5. CONNECTION WITH WHITTAKEE'S SOLUTION OF

LAPLACE'S EQUATION.

Apply Theorem I to the case when n = 3 and the metric is

:given by

ds2 = dx2 + dy2 + dz2; (x1 = x, x" = y, z3 = z).

1 See Bateman, "Electrical and Optical Wave Motion" (1915), 115.
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The equation to be solved is then the ordinary Laplace's Equation

* F VV + ! 1 F = O (5.1)
8a;2 + By* + dz2 V '

Also, of course,

2Cl = (x-x)2 + (y-y)2+(z-z)\ (5.2)

The restrictions (4.6) and (4.7) placed on the choice of x, y, z as
functions of r reduce in this case to

£ —3-£-
The most general solutions of (5.3) and (5.4) are

x = a + Air cos u
y = 6 + Air sin it
z = c + AT

(5.5)

where i = V — 1 a n d a> >̂ c> >̂ u a r e arbitrary constants. Take
a = 6 = c — 0 and A = — 1. Substituting from (5.5) in (5.2), we have

2 Q = r2 + 2T (ix cos u + it/ sin w + z),

where r2 = x2 + y2 + z2,

and hence O.T = ix cos u + iy sin u + z.

A solution of equation (5.1) is therefore, by Theorem I,

F = f(ix cos u-\- iy sin w + 2, u), (5.6)

where / is an arbitrary function and u an arbitrary constant.1

It follows therefore that

\f(ix COSM + iy sinu + z, w) du (5.7)

is also a solution of (5.1), provided that the limits of integration
are such that differentiation under the integral sign is permissible.

i Since u is an arbitrary constant, the function / of the two arguments
ix cos u + ly sin u + z and u, is (regarded as a function of x, y, z), an arbitrary function
of the former argument only ; that is, of CQ/CT only.

https://doi.org/10.1017/S0013091500007756 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500007756


188 H. S. RUSE

Whittaker has shown1 that the most general solution of Laplace's
Equation is of this form.

An application of Theorem II to the same special case leads
ultimately to the conclusion that the integral

f 1 , fix cos u + iv s i n u + z \

J v * V ^ r > V
gives a solution of (5.1), ifi being an arbitrary function of its
arguments. It is however a well known fact that if a function

X (%, y, z) satisfies Laplace's Equation, so also does— W ~r > -K- > —»)•
T \T~ T" T '

The solution (5.8) is therefore deducible from (5.7).

1 Whittaker and Watson, loc. cit.
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