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In preparation for extending the JOREK nonlinear magnetohydrodynamics (MHD) code
to stellarators, a hierarchy of stellarator-capable reduced and full MHD models has
been derived and tested. The derivation was presented at the EFTC 2019 conference.
Continuing this line of work, we have implemented the reduced MHD model (Nikulsin
et al., Phys. Plasmas, vol. 26, 2019, 102109) as well as an alternative model which
was newly derived using a different set of projection operators for obtaining the scalar
momentum equations from the full MHD vector momentum equation. With the new
operators, the reduced model matches the standard JOREK reduced models for tokamaks
in the tokamak limit and conserves energy exactly, while momentum conservation is less
accurate than in the original model whenever field-aligned flow is present.
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1. Introduction

Reduced magnetohydrodynamics (MHD), a system of approximations introduced in its
original form in the 1960s (Greene & Johnson 1961), continues to be used by modern
MHD codes, such as JOREK (Franck et al. 2015) and M3D-C1 (Breslau, Ferraro & Jardin
2009). While many versions of reduced MHD consisting of different equations and using
different methods to derive them have been published, the main idea is the same: the
removal of fast magnetosonic waves while retaining relevant physics (Strauss 1997; Jardin
et al. 2012). The removal of these waves eliminates the shortest time scale and allows one
to use larger time steps due to the Courant condition. Even when implicit time integration
methods are used, and the Courant condition is no longer a hard limit, using time steps that
are large compared to the shortest time scale can lead to poor accuracy (Kruger, Hegna
& Callen 1998; Jardin et al. 2012). An increased time step is especially advantageous
in nonlinear simulations, which otherwise tend to be computationally demanding. In
particular, stellarator simulations, which are even more computationally expensive than
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tokamak simulations due to the complex geometry, can benefit from an increased step
size.

Originally, reduced MHD was derived via an ordering in a small parameter, often taken
to be the inverse aspect ratio. The ordering itself is a system of several approximations and
assumptions involving the ordering parameter that allows one to determine the relative
order (in terms of the ordering parameter) of any quantity with respect to any other
quantity of the same dimension. In this context, terms corresponding to fast magnetosonic
waves have a higher order than the terms that one wants to keep, allowing them to be
dropped. Different versions of reduced MHD can be derived using different orderings that
keep different physical effects (e.g. low-β versus high-β orderings) (Kruger et al. 1998;
Strauss 1976, 1977, 1980, 1997). An alternative ansatz-based approach was introduced by
Park et al. (1980), where an ansatz form that eliminates fast magnetosonic waves is used
for the velocity and terms of all orders are kept. Later papers also adopt an ansatz for
the magnetic field that eliminates field compression (Huysmans & Czarny 2007; Breslau
et al. 2009; Franck et al. 2015). The ansatz-based approach makes fewer assumptions
and keeps more physical effects, while generally resulting in more complicated
equations.

An ordering-based reduced MHD model for stellarators was recently derived in
Zocco, Helander & Weitzner (2021) with β ∼ ε � 1, where ε is the inverse aspect
ratio. Here, as in our previous paper (Nikulsin et al. 2019), we adopt an ansatz-based
approach. Previously, we derived a hierarchy of models, which we intended to use for
stellarator simulations. We started by introducing ansatzes for the magnetic field and
velocity and proving that any arbitrary magnetic field and velocity can be represented
by those ansatzes. We also showed that if the background vacuum field is strong
enough, then the three terms of velocity ansatz approximately separate the three MHD
waves. Dropping the fast magnetosonic wave term from the velocity ansatz and the field
compression term from the magnetic field ansatz, we obtain reduced MHD (Nikulsin
et al. 2019). However, we later found that the projection operators used had good
momentum conservation properties, but not as good energy conservation properties. We
thus adopt a different set of projection operators, which makes our new stellarator models
a direct generalization of the currently used JOREK tokamak models to three-dimensional
geometries; the stellarator models reduce back to the tokamak models in the tokamak
limit.

The rest of this paper is structured as follows. In § 2, we briefly review the original
set of models, introduce the changes that we made and derive the new set of models. In
§ 3, we show how the deficiencies of our original model are fixed in the new model. In
§ 4, we provide some test runs, which show how the deficiencies of the original model
manifest themselves in practice by comparing it with the new stellarator model/standard
tokamak model (both are the same in this situation) in the case of a tearing mode in a
tokamak. In § 5, we consider analytically the local momentum conservation properties of
both the original and new models, and then compare the global momentum conservation
of the new stellarator model with and without field-aligned flow in the case of a ballooning
mode. Finally, in Appendix A, a technicality in the implementation of the original model
is discussed.
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2. Changes made to the model

The original hierarchy of models, as presented in Nikulsin et al. (2019), was derived
from the viscoresistive MHD equations:

∂ρ

∂t
+∇ · (ρv) = P,

ρ
∂v

∂t
+ ρ(v · ∇)v + vP = j × B−∇p+ μ�v,

∂B
∂t
= −∇ × E,

∂E
∂t
+∇ ·

[(
ρv2

2
+ γ p
γ − 1

)
v + p

γ − 1
D⊥
ρ

∇⊥ρ + E × B
μ0
− κ⊥∇⊥T − κ‖∇‖T

]
= Se − v

2P
2
,

E = ρv2

2
+ p
γ − 1

+ B2

2μ0
,

∇ × B = μ0j, ∇ · B = 0, E = −v × B+ ηj, P = ∇ · (D⊥∇⊥ρ)+ Sρ.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.1)

The gradient operators parallel and perpendicular to the total magnetic field B are defined
as ∇‖ = (B/B2)B · ∇ and ∇⊥ = ∇ −∇‖. The usual MHD notation is followed with ρ, p,
v and B being density, pressure, velocity and magnetic field, respectively. In addition to
that, η is the resistivity, μ is the dynamic viscosity, D⊥ is the mass diffusion coefficient
perpendicular to field lines, κ⊥ and κ‖ are the thermal conductivity across and along field
lines, respectively, and Sρ and Se are source terms in the continuity and energy equations,
respectively. The ideal gas law p = ρRT is assumed to hold.

We also introduced the following ansatzes for the magnetic field and velocity:

B = ∇χ +∇Ψ ×∇χ +∇Ω ×∇ψv,
v = ∇Φ ×∇χ

B2
v

+ v‖B+∇⊥ζ,

⎫⎪⎬⎪⎭ (2.2)

and proved that any magnetic field and any velocity can be represented in such a way.
Here, ∇χ is the curl-free vacuum component of the magnetic field, which is generated by
the coils, Bv = |∇χ | and ∇⊥ = ∇ − B−2

v ∇χ(∇χ · ∇). Note that, since the ansatzes do
not restrict the magnetic and velocity fields, they can still be used within the context of
full MHD. The transition to reduced MHD is done by setting Ω = ζ = 0 and dropping
the evolution equations for Ω and ζ (derived below). Further, in the tokamak limit, i.e.
when χ = F0φ, where φ is the toroidal angle,1 the ansatzes reduce to those of the standard
JOREK reduced MHD tokamak models, B = F0∇φ +∇ψ ×∇φ and v = R2∇u×∇φ +
v‖B, where ψ = F0Ψ and u = Φ/F0 (Hoelzl et al. 2021).

The scalar ψv is one of the Clebsch potentials for the vacuum field, which can locally
be written as

∇χ = ∇ψv ×∇βv. (2.3)

As we discussed in Nikulsin et al. (2019), one can construct a Clebsch-type coordinate
system with the coordinates (ψv, βv, χ). Note that the variables ψv and βv are not unique,

1In many tokamaks, the vacuum field also includes a contribution from the poloidal field coils; however, the toroidal
field is by far the dominant component of the vacuum field, and it makes sense to include only the toroidal field in ∇χ .
Throughout this paper, we refer to χ = F0φ as the tokamak limit.
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as can be seen by replacing ψv with ψ ′v = ψv + f (βv), where f is an arbitrary function,
which leaves (2.3) unchanged. In general, given some vacuum magnetic field ∇χ , the
scalars ψv and βv are completely determined by fixing some parameterization (ψv, β̃v)
of a surface intersected by the vacuum field lines, with the values of ψv and β̃v in
the rest of space being determined by following the field lines off of the surface while
keeping ψv and β̃v constant. In a toroidal system, the surface is usually chosen to be a
poloidal plane, and, in many cases, a cut needs to be introduced at that poloidal plane to
prevent multivaluedness of ψv and β̃v when the field lines travel once around the torus and
encounter previously labelled points. Finally, βv is determined by integrating ∂βv/∂β̃v =
Bv/|∇ψv ×∇β̃v| (Stern 1970; D’haeseleer et al. 2012). Usually, it is advantageous to find
aψv such that the component of ∇Ω ×∇ψv perpendicular to ∇χ , F2

v |∂‖Ω|2, is minimized
at t = 0, so that most of field line bending is captured by the ∇Ψ ×∇χ term.

The variables Ψ ,Ω ,Φ, v‖ and ζ are the unknown magnetic field and velocity variables,
which are solved for. In order to obtain evolution equations for these variables, we
projected Faraday’s law onto ∇ψv and ∇χ , and applied the following projection operators
to the vector momentum equation, which was first divided by ρ:

∇χ · ∇ × [∇χ × (eχ×
∇χ·

∇ · [B2
v∇χ × (eχ×

⎫⎪⎬⎪⎭ (2.4)

Here, eχ = B/Bχ is the covariant basis vector in the Clebsch-type coordinate system
(α, β, χ) associated with the full magnetic field, B = ∇α ×∇β. These projection
operators have the property that each one of them is orthogonal to all but one term in
the velocity ansatz (2.2), i.e.

∇χ · ∇ × [∇χ × (eχ × v)] = Δ⊥Φ,
∇χ · v = Bχv‖,

∇ · [B2
v∇χ × (eχ × v)] = −∇ · (B2

v∇⊥ζ ),

⎫⎪⎬⎪⎭ (2.5)

where Δ⊥ = ∇ · ∇⊥. However, for the sake of energy conservation, a better set of
projection operators would be

∇χ · ∇ × (B−2
v

B ·
∇χ · ∇ × (B−2

v ∇χ×

⎫⎪⎬⎪⎭ (2.6)

as we show in the next section.
To obtain the new evolution equations for the velocity variables, we insert the ansatzes

(2.2) into the momentum equation and apply the projection operators (2.6), this time
without dividing first by ρ. The momentum equation can be written as

ρ∇ ∂Φ
∂t
× ∇χ

B2
v

+ ρ ∂
∂t
(v‖B)+ ρ∇⊥ ∂ζ

∂t
+ ρ

2
∇v2 + ρω × v + vP = j × B−∇p, (2.7)
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where we used the identity (v · ∇)v = 1
2∇v2 + ω × v and ω is the vorticity:

ω = ∇ × v = −∇χ∇ ·
(∇Φ

B2
v

)
+ Bv∂‖

∇Φ
B2
v

− ∇Φ · ∇
B2
v

∇χ +∇v‖ × B+ μ0v‖ j

+∇χ ×∇ ∂
‖ζ

Bv
. (2.8)

Just as in Nikulsin et al. (2019), we do not carry the viscosity term through this derivation,
instead adding a generic viscosity term afterwards. To obtain the evolution equation forΦ,
we apply to (2.7) the first projection operator in (2.6), or its equivalent, −∇ · (B−2

v ∇χ×,
when appropriate:

∇ ·
[
ρ

B2
v

∇⊥ ∂Φ
∂t
+ ρ ∂

∂t
(v‖∇⊥Ψ )− ρ

Bv

∂

∂t
(v‖∂‖Ω)∇ψv

]
− Bv

[
ρ

B2
v

,
∂ζ

∂t

]
= Bv

2

[
ρ

B2
v

, v2

]
+ Bv

[
ρωχ

B4
v

, Φ

]
−∇ · (ρv‖ω⊥)+ Bv

[
ρv‖ωχ

B2
v

, Ψ

]
+ Bv

[
ρv‖ωψv

B2
v

,Ω

]
− Bv

[
ρv‖ω · ∇Ω

B2
v

, ψv

]
+∇ ·

(
ρωχ

B2
v

∇⊥ζ − P
B2
v

∇⊥Φ − Pv‖∇⊥Ψ + Pv‖∂‖Ω
Bv

∇ψv
)

+ Bv

[
P
B2
v

, ζ

]
+∇ ·

(
Bχ

B2
v

j − jχ

B2
v

B
)
+ Bv

[
1

B2
v

, p
]
+∇ · (μ⊥∇⊥Δ⊥Φ), (2.9)

where [ f , g] = B−1
v ∇χ · (∇f ×∇g) is a Poisson bracket, ∂‖ = B−1

v ∇χ · ∇, superscripts
indicate contravariant vector components and, for any vector U , U⊥ = U − Uχ∇χ/B2

v.
We have added the generic viscosity term ∇ · (μ⊥∇⊥Δ⊥Φ), which we have chosen to
match the viscosity term in Franck et al. (2015) in the tokamak limit. As discussed in
previous papers (Franck et al. 2015; Nikulsin et al. 2019), the viscosity term μ�v in the
momentum equation (2.1) is only a rough approximation for the divergence of the viscous
stress tensor in a plasma, and one does not lose much by using a generic viscosity term
in the final equations. Note, however, that the μ⊥ in the above equation is not the physical
viscosity μ in (2.1). Indeed, from dimensional analysis it follows that μ⊥ has units of
T2 Pa s. Applying scaling analysis to the term μ�v after inserting just the first term of the
ansatz (2.2) for v and applying the first projection operator in (2.6), we see that ∇χ · ∇ ×
[B−2

v μΔ(∇Φ ×∇χ/B2
v)] ∼ μB−2

v Φ/L
4
⊥, where L⊥ is the length scale perpendicular to the

magnetic field, and L⊥ � L‖ for most magnetic fusion configurations. Applying the same
analysis to the generic viscosity term, we get ∇ · (μ⊥∇⊥Δ⊥Φ) ∼ μ⊥Φ/L4

⊥. Comparing
the two scalings, we see that μ⊥ scales as μB−2

v ; for the purposes of the scaling, one can
take the value of Bv at the axis as a typical value and write μ⊥ ∼ μB−2

v,axis.
To get the evolution equation for v‖, we apply the second operator in (2.6), projecting

equation (2.7) on B:

ρ

(
∂Φ

∂t
, Ψ

)
−ρFv

Bv
∂‖Ω∂ψv

∂Φ

∂t
+ρB2 ∂v‖

∂t
+ ρv‖

2
∂B2

∂t
+ ρBv

[
∂ζ

∂t
, Ψ

]
+ ρFv

[
∂ζ

∂t
,Ω

]
ψv

= −ρBv
2
∂‖v2 − ρBv

2

[
v2, Ψ

]− ρFv
2

[
v2,Ω

]
ψv
− ρω

χ

Bv
∂‖Φ − ρω

χ

Bv
[Φ,Ψ ]
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− ρω
χFv

B2
v

[Φ,Ω]ψv +
ρBχ

B2
v

ω · ∇Φ − ρω · (∇ζ ×∇χ)+ ρωχ(Ψ, ζ )

− ρω · ∇ΩFv∂ψvζ + ρωψv(Ω, ζ )− v · B P

− Bv∂‖p− Bv
[
p, Ψ

]− Fv
[
p,Ω

]
ψv
+∇ · (μ‖∇⊥v‖), (2.10)

where we have again added a generic viscosity term with a form analogous to the viscosity
term in the previous equation. Here, ( f , g) = ∇⊥f · ∇⊥g is an inner product, Fv = |∇ψv|,
∂ψv = F−1

v ∇ψv · ∇ and [ f , g]ψv = F−1
v ∇ψv · (∇f ×∇g) is a Poisson bracket with respect

to ∇ψv. Finally, to obtain the evolution equation for ζ , we apply the last projection operator
in (2.6) (or its equivalent, −∇ · [B−2

v ∇χ × (∇χ×, to some terms) to equation (2.7):

Bv

[
ρ

B2
v

,
∂Φ

∂t

]
+ Bv

[
ρ
∂v‖
∂t
, Ψ

]
+ Bv

[
ρv‖,

∂Ψ

∂t

]
− Bv

[
ρ

Bv

∂

∂t
(v‖∂‖Ω),ψv

]
+∇ ·

(
ρ∇⊥ ∂ζ

∂t

)
= −∇ ·

(
ρ

2
∇⊥v2 + ρω

χ

B2
v

∇⊥Φ − ρv‖B
χ

B2
v

∇χ × ω

+ρv‖ω
χ

B2
v

∇χ × B
)
+ Bv

[
ρωχ

B2
v

, ζ

]
− Bv

[
P
B2
v

, Φ

]
− Bv

[
Pv‖, Ψ

]
+ Bv

[
Pv‖∂‖Ω

Bv
, ψv

]
−∇ ·

(
P∇⊥ζ + Bχ

B2
v

∇χ × j − jχ

B2
v

∇χ × B
)

−Δ⊥p+∇ · (μζ∇⊥Δ⊥ζ ). (2.11)

This concludes the derivation of the scalar momentum equations.
The evolution equations for the magnetic field variables of Nikulsin et al. (2019) are

valid; therefore we keep them as they are:

[
ψv,

∂Ψ

∂t

]
=
[

[Ψ,Φ]−∂‖Φ
Bv

, ψv

]
−Fv

Bv

[
Ω,

[ψv,Φ]
Bv

]
ψv

+ ∂‖(Fv∂ψvζ )+ [(ζ, Ψ ), ψv]

−Fv
Bv

[Ω, (ζ, ψv)]ψv +
1

Bv
∇ · (η∇ψv × j),[

∂Ω

∂t
, ψv

]
= −

[
Ω,

[ψv,Φ]
Bv

]
+
[
ψv,

[Ω,Φ]
Bv

]
− 2(Bv, ζ )− BvΔ⊥ζ − [Ω, (ζ, ψv)]

+ [ψv, (ζ,Ω)]+ 1
Bv

∇ · (η∇χ × j).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.12)

The continuity equation remains unchanged (Nikulsin et al. 2019):

∂ρ

∂t
= −Bv

[
ρ

B2
v

, Φ

]
− Bv∂‖(ρv‖)− Bv[ρv‖, Ψ ]− Fv[ρv‖,Ω]ψv −∇ · (ρ∇⊥ζ )+ P,

(2.13)
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while for the pressure, we use the standard internal energy evolution equation, instead of
the full energy conservation equation from the system (2.1):

∂p
∂t
+ v · ∇p+ γ p∇ · v

= (γ − 1)
[
∇ ·

(
κ⊥∇⊥T + κ‖∇‖T + p

γ − 1
D⊥
ρ

∇⊥ρ
)
+ Se + ηj2

]
, (2.14)

which now, after using (2.2), reads

∂p
∂t
= − 1

Bv

[
p, Φ

]− v‖Bv∂‖p− v‖Bv [p, Ψ ]− v‖Fv [p,Ω]ψv − (ζ, p)− γ pBv

[
1

B2
v

, Φ

]
− γ pBv∂‖v‖ − γ pBv

[
v‖, Ψ

]− γ pFv
[
v‖,Ω

]
ψv
− γ pΔ⊥ζ

+∇ ·
[
(γ − 1)

κ⊥
R

∇
(

p
ρ

)

+ (γ − 1)
κ‖−κ⊥

RB2
B

(
Bv∂‖

(
p
ρ

)
+ Bv

[
p
ρ
,Ψ

]
+ Fv

[
p
ρ
,Ω

]
ψv

)

+pD⊥
ρ

(
∇ρ − B

B2
(Bv∂‖ρ + Bv[ρ,Ψ ]+ Fv[ρ,Ω]ψv )

)]
+ (γ − 1)(Se + ηj2).

(2.15)

We note that since any arbitrary magnetic field and velocity can be represented in
the ansatz form (2.2), the equations derived above still correspond to full MHD, albeit
in a unconventional form. We also showed that if the background vacuum field is the
dominant part of the magnetic field, then the MHD waves are approximately separated by
the terms of the velocity ansatz, with the first term containing Alfvén waves, the second
term containing slow magnetosonic waves and the last term containing fast magnetosonic
waves (Nikulsin et al. 2019). Thus, to get the reduced MHD system, we set ζ = Ω = 0,
eliminating fast magnetosonic waves and field compression, and drop the corresponding
evolution equations, namely (2.11) and the second equation in (2.12), to avoid having
an overconstrained system. We also approximate the electric field in Ohm’s law as
E = −v × B+ η j‖, which corresponds to neglecting the components of j perpendicular
to ∇χ in the last term of the first equation in (2.12). Alternatively, if we introduce a tensor
resistivity, η, this approximation corresponds to neglecting the perpendicular resistivity,
η⊥ ≈ 0, although parallel and perpendicular resistivities are usually of the same order,
so it makes more sense to speak about neglecting the perpendicular current (only in the
resistive term). This seems to be a fairly good approximation, at least for tokamaks (Pfirsch
1978), and likely also for any configuration with significant bootstrap current. Indeed,
we can write η · j = η⊥j⊥ + η‖ j‖, where subscripts refer to parallel and perpendicular
components relative to the total field B, not just ∇χ . When the bootstrap current is high
enough, the η‖j‖ term is dominant, and, since ∇χ is the dominant component of B, we
have j‖ ≈ j‖ in the lowest order. As we show in the next section, the approximation is
necessary in order to have energy conservation in reduced MHD. Accordingly, we also
have to replace the last term of equation (2.15) with η( j‖)2 to avoid creating extra internal
energy, as now only the parallel component of current contributes to the dissipation of
magnetic energy. A further reduction would be to also eliminate slow magnetosonic waves
by setting v‖ = 0 and dropping equation (2.10).
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Finally, we point out that in the tokamak limit, when χ = F0φ, the new reduced models
derived in this section match the currently implemented JOREK tokamak models (Hoelzl
et al. 2021). TheΨ evolution equation, once we set ζ = Ω = 0 and drop the perpendicular
components of the current, becomes[

ψv,
∂Ψ

∂t

]
=
[

[Ψ,Φ]− ∂‖Φ
Bv

, ψv

]
+ 1

Bv
∇ · (η∇ψv × j‖), (2.16)

which can be rewritten as

∇ψv · ∇ ×
(
∂Ψ

∂t
∇χ

)
= ∇ψv · ∇ ×

(
∂‖Φ − [Ψ,Φ]

Bv
∇χ − η jχ

B2
v

∇χ
)
. (2.17)

The above equation will be satisfied as long as

Bv
∂Ψ

∂t
= ∂‖Φ − [Ψ,Φ]− η jχ

Bv
(2.18)

is satisfied, which exactly matches the currently implemented form of the magnetic field
equation in JOREK when χ = F0φ (Hoelzl et al. 2021). For all other equations, the fact
that they match the corresponding JOREK reduced MHD equations in the tokamak limit
is obvious and can be verified by simple substitution of χ = F0φ.

3. Energy conservation

We begin by showing that the new models conserve energy. If we apply the first
projection operator in (2.6) to some vector field Q, multiply the result by a test function
Φ∗ and integrate over the plasma volume, we can get the following expression using the
identity ∇f · ∇ ×U = −∇ · (∇f ×U) and integration by parts:∫

V
Φ∗∇χ · ∇ ×

(
Q
B2
v

)
dV =

∫
V

∇Φ∗ ×∇χ
B2
v

· Q dV, (3.1)

where we let Φ∗ = 0 on ∂V , so the surface integral term is zero. Doing the same with the
third projection operator and test function ζ ∗, we have∫

V
ζ ∗∇χ · ∇ ×

(∇χ ×Q
B2
v

)
dV = −

∫
V

∇ζ ∗
B2
v

· [∇χ × (Q×∇χ)] dV

= −
∫

V
∇⊥ζ ∗ · Q dV. (3.2)

We can also apply the second projection operator (2.6) to Q, multiply by a test function v∗‖
and integrate over the plasma volume:∫

V
v∗‖B · Q dV =

∫
V
v∗‖B · Q dV. (3.3)

Now, if we let Q be the vector momentum equation, Q ≡ ρ∂v/∂t + ρ(v · ∇)v + vP−
j × B+∇p = 0, as well as Φ∗ = Φ, v∗‖ = v‖ and ζ ∗ = −ζ , and sum up the above three
equations, we get

0 =
∫

V
v ·
[
ρ
∂v

∂t
+ ρ(v · ∇)v + vP− j × B+∇p

]
dV, (3.4)

where the left-hand side is zero due to equations (2.9), (2.10) and (2.11). More importantly,
if we set ζ = 0 and drop equation (2.11), (3.4) still holds, since with ζ ∗ = −ζ = 0 equation
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(3.2) becomes 0 = 0, and (2.11) no longer has to be satisfied in order for the left-hand side
of (3.4) to remain zero. Similarly, if we set v‖ = 0 and drop equation (2.10), (3.4) continues
to hold due to equation (3.3) becoming 0 = 0 and no longer requiring equation (2.10) to
be satisfied. This property of equation (3.4) being satisfied even when some terms in the
velocity ansatz are missing was not present in the original models, leading to problems
which we describe in detail further in this section.

We now proceed to the magnetic field evolution equations. In the full MHD case, both
of the equations (2.12) are satisfied. These two equations are simply the vector components
of Faraday’s law in the ∇ψv and ∇χ directions, and as such are equivalent to the original
Faraday’s law in vector form. Only two equations are needed to evolve the full magnetic
field, as one degree of freedom is eliminated by the ∇ · B = 0 constraint. In the reduced
MHD case, Faraday’s law is also satisfied, as one can easily see from multiplying equation
(2.18) by ∇χ/Bv and taking the curl. Thus, we can take the dot product of Faraday’s law
with B and follow the usual procedure to obtain the magnetic energy equation:

1
2μ0

∂B2

∂t
+ 1
μ0

∇ · (E × B) = −v · ( j × B)− η( j∗)2, (3.5)

where we have j∗ = j in the full MHD case and j∗ = j‖ in the reduced MHD case. To
complete the derivation of the energy conservation law, we rewrite (3.4) as∫

V

[
∂

∂t

(
ρv2

2

)
+∇ ·

(
ρv2

2
v

)]
dV =

∫
V

[
v · ( j × B)− v · ∇p− v

2

2
P
]

dV, (3.6)

where we used the continuity equation. We then divide (2.14) by γ − 1 and integrate it,
together with (3.5) over the plasma volume. Adding both of the resulting equations to
equation (3.6), we obtain∫

V

[
∂

∂t

(
ρv2

2
+ p
γ − 1

+ B2

2μ0

)
+∇ ·

(
ρv2

2
v + γ p

γ − 1
v + E × B

μ0

−κ⊥∇⊥T − κ‖∇‖T − p
γ − 1

D⊥
ρ

∇⊥ρ
)]

dV =
∫

V

(
Se − v

2

2
P
)

dV, (3.7)

which can be rewritten as

dE
dt
=
∮
∂V

(
κ⊥∇⊥T + RT

γ − 1
D⊥∇⊥ρ

)
· dS +

∫
V

(
Se − v

2

2
P
)

dV. (3.8)

Here, we have assumed that the plasma is surrounded by a perfectly conducting wall,
which implies the boundary conditions v · n = 0 and B · n = 0, where n is a unit normal
vector to the boundary. These conditions, along with Φ = ζ = 0 on ∂V , which we had
assumed before to make the boundary integral terms in (3.1) and (3.2) zero, are consistent
with the boundary conditions that were used in the simulations presented in the following
sections.

It is important to point out that, if we replace P by ∂ρ/∂t +∇ · (ρv), exact
energy conservation continues to hold even when the exact solutions are replaced by
Bubnov–Galerkin finite-element approximations. Indeed, a Bubnov–Galerkin solution
will ensure that the expressions (3.1), (3.2) and (3.3) equal zero whenever the test functions
Φ∗, ζ ∗ and v∗‖ are finite-element basis functions. Since the finite-element solutions Φ,
ζ and v‖ are linear combinations of the basis functions, (3.6) will continue to hold.
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Similarly, since the Ψ and Ω solutions will be linear combinations of the basis functions
and the Bubnov–Galerkin method ensures that the weak form of (2.12) is satisfied
whenever the test function is a basis function, the integral of (3.5) over volume will
continue to hold. Finally, since the constant 1 can be represented as a linear combination
of basis functions, the integral of (2.14) over volume will continue to hold, and so energy
will be exactly conserved. Note, however, that this argument does not take into account
temporal discretization and Fourier expansion in the toroidal direction, both of which
contribute to energy conservation error in practice. However, these errors can be made
small, as we discuss in § 4. The practical accuracy of energy conservation in the standard
JOREK tokamak model, which is what the new model presented in § 2 reduces to in the
tokamak limit, is also considered in Hoelzl et al. (2021).

The necessity of neglecting perpendicular current in the resistive term of the first
equation (2.12) when using the reduced MHD model can be clarified by deriving a
magnetic field equation for the case when it is not neglected. Let Ψ1 and Ψ2 satisfy the
equations [

ψv,
∂Ψ1

∂t

]
=
[

[Ψ,Φ]− ∂‖Φ
Bv

, ψv

]
+ 1

Bv
∇ · (η∇ψv × j‖),[

ψv,
∂Ψ2

∂t

]
= 1

Bv
∇ · (η∇ψv × j⊥),

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (3.9)

then Ψ = Ψ1 + Ψ2 satisfies the original first equation in (2.12), without the neglect
of perpendicular current. The first of the two equations above is equivalent to
∂B1/∂t = −∇ × E1, where B1 = ∇χ +∇Ψ1 ×∇χ and E1 = −v × B+ ηj‖. Dotting
with B = B1 + B2 and adding B · ∂B2/∂t +∇ · (E2 × B) to both sides, where B2 =
∇Ψ2 ×∇χ and E2 = ηj⊥, we get

1
2
∂B2

∂t
+∇ · (E × B) = μ0[(v × B) · j − ηj2]+ B · ∂B2

∂t
+ B · ∇ × E2. (3.10)

The evolution equation for Ψ2 can be written as (∂B2/∂t)ψv = −(∇ × E2)
ψv , and so the

last two terms on the right-hand side of the above equation will only cancel partially,
leaving behind the non-conservative terms Bβv∂Bβv2 /∂t + Bβv (∇ × E2)

βv + (∇ × E2)
χ .

Finally, we show why the projection operators used in our original model allowed for
non-physical generation of kinetic energy. To begin with, the velocity field can be written
in a covariant form:

v = B2
v∇⊥Φ̃ × eχ + ṽ‖∇χ + B2

veχ × (∇ζ̃ ×∇χ), (3.11)

as opposed to the contravariant form (2.2). The fact that any vector field can be written
in this way is easy to show using the same arguments as in Nikulsin et al. (2019), except
using the projection operators (2.6) instead of the operators (2.4). Note that the projection
operators (2.6) are orthogonal to all but one term in the covariant velocity ansatz (3.11):

∇χ · ∇ ×
(

1
B2
v

v

)
= −∇ · (∇⊥Φ̃),

B · v = Bχ ṽ‖,

∇χ · ∇ ×
(

1
B2
v

∇χ × v

)
= ∇ · (B2

v∇⊥ζ̃ ).

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(3.12)
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Now, applying the first projection operator in (2.4) to a vector field Q and then
multiplying by a test function Φ∗ and integrating, we get∫

V
Φ∗∇χ · ∇ × [∇χ × (eχ ×Q)] dV = −

∫
V

B2
v(∇⊥Φ∗ × eχ) · Q dV, (3.13)

where we again used integration by parts to get the right-hand side. Similarly, for the third
projection operator in (2.4), we can write∫

V
ζ ∗∇ · [B2

v∇χ × (eχ ×Q)] dV =
∫

V
B2
v[eχ × (∇ζ ∗ ×∇χ)] · Q dV, (3.14)

and for the second projection operator, we simply multiply by v∗‖ and integrate, without
doing any transformations:∫

V
v∗‖∇χ · Q dV =

∫
V
v∗‖∇χ · Q dV. (3.15)

In order to get
∫

V ρv · Q dV = 0 when we set Q ≡ ∂v/∂t + (v · ∇)v + vP/ρ − j ×
B/ρ +∇p/ρ = 0, we need Φ∗ = −Φ̃, v∗‖ = ṽ‖, ζ ∗ = ζ̃ and ρ = const. The first three
conditions pose no problem in the full MHD case, but if we try to set ζ = 0, it does not
imply ζ̃ = 0, and thus when we drop the evolution equation for ζ , (3.14) is no longer
satisfied, and so the kinetic energy equation (3.6) cannot be satisfied. In addition, because
the vector momentum equation was divided by density before the projection operators
were applied, unless the density is held constant, the kinetic energy equation (3.6) also
cannot be satisfied even when ζ 
= 0. Thus, both the reduction and spatially varying
density can lead to non-physical generation of kinetic energy.

4. Numerical examples

In this section, we consider several simulations with the JOREK code for a test
case of a tearing mode in a circular-cross-section tokamak with an aspect ratio of 10
(figure 1). We compare the reduced model without parallel flow from the original set of
stellarator-capable models, as presented in Nikulsin et al. (2019), with the standard JOREK
tokamak model without parallel flow (Hoelzl et al. 2021). Note that in the tokamak limit
χ = F0φ, the latter is equivalent to the the model without parallel flow from the set of new
stellarator-capable models, as introduced in § 2. In addition, we point out that the standard
tokamak reduced MHD model in JOREK is known to accurately reproduce tearing modes
when compared with full MHD (Haverkort et al. 2016; Pamela et al. 2020), thus comparing
with the standard tokamak model is sufficient.

In the test cases considered below, F0 = 10 T m. The initial conditions were set
up by solving the Grad–Shafranov equation with FF′(ψn) = 1.173(1− ψn) in units of
T2 m, where ψn = (ψ − ψaxis)/(ψedge − ψaxis), and p(ψn) = 0. In the tokamak limit,
the ψ in the Grad–Shafranov equation is related to the Ψ in the magnetic field ansatz
(2.2) by ψ = F0Ψ . The density was initialized to be constant at 3.346× 10−7 kg m−3,
corresponding to 1020 deuterium ions per cubic metre, and Φ was initialized to zero. A
viscosity of μ = 5.159× 10−8 kg (m s)−1 was used in all simulations, which corresponds
to 10−5 in JOREK units for μt

⊥ in the standard tokamak model.2 When using the original
stellarator model, the kinematic viscosity was set to be ν = μ/ρ0 = 0.1542 m2 s−1 (10−7

in JOREK units). Finally, since JOREK discretizes the toroidal direction by approximating

2The viscosity μt
⊥ in the standard tokamak model is not the same as the μ⊥ of (2.9); instead we have μt

⊥ = F2
0μ⊥.
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(b)(a)

FIGURE 1. A flux-aligned grid used for simulating the tearing mode (a), and the n = 1 Fourier
mode of ψ = F0Ψ (JOREK units) in the standard tokamak model at t = 50 000 Alfvén times
(b).

all solutions as toroidal Fourier series, in all simulations shown in this section, the
Fourier series are truncated after the first mode for the sake of simplicity, keeping only
the axisymmetric (n = 0) and the n = 1 terms, unless noted otherwise. Finite elements
are used for discretization in the poloidal plane. Temporal discretization is done via the
Crank–Nicolson scheme, i.e. an average of the forward and backward Euler schemes.
Given equations of the type ∑

i

ai(U)
∂Ai(U)
∂t

= B(U), (4.1)

where U is the set of all unknowns in the model and ai, Ai and B are the expressions that
comprise the equations and can involve spatial derivatives, the Crank-Nicolson scheme
gives∑

i

[
1
2

ai(Un+1)+ 1
2

ai(U n)

]
[Ai(Un+1)− Ai(Un)] = �t

[
1
2

B(Un+1)+ 1
2

B(Un)

]
,

(4.2)
where n in the superscript refers to the already calculated values of the model variables
in the current time step and n+ 1 refers to the next time step, yet to be calculated. In
addition, a temporal linearization is done around the current time step, leading to the
actual numerical scheme that is implemented in the code:∑

i

ai(Un)
∂Ai

∂U

∣∣∣∣
Un

· δUn = �t
[

B(Un)+ 1
2
∂B
∂U

∣∣∣∣
Un

· δUn

]
, (4.3)

where δUn = Un+1 −Un. For more details on the numerical implementation, see Czarny
& Huysmans (2008), Huysmans & Czarny (2007) and Hoelzl et al. (2021).

To begin with, we tested the original stellarator model (Nikulsin et al. 2019) in the
linear regime by calculating the tearing mode growth rates at different resistivities and
comparing them with the growth rates obtained from the standard tokamak model (Hoelzl
et al. 2021). In both cases, we did a spatial and temporal resolution scan at each resistivity
to ensure that the growth rate that we recorded was converged. We then repeated the
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(a)(a)

FIGURE 2. Tearing mode growth rates at various plasma resistivities in the original stellarator
model and the standard tokamak model. (a) The growth rates for the n = 1 toroidal mode in
simulations with n = 0, 1. (b) The growth rates for the n = 2 toroidal mode in simulations
with n = 0, . . . , 4. The growth rates of the n = 2 modes are double those of the n = 1 modes,
indicating that the n = 2 modes are not naturally unstable but excited by nonlinear mode
coupling.

simulations with Fourier modes up to and including n = 4 with the same spatial and
temporal resolutions at which the growth rates converged for the n = 0, 1 simulations.
The results of the n = 0, 1 simulations are shown in figure 2(a). Figure 2(b) shows the
growth rates of the nonlinearly driven n = 2 modes in the simulations with n = 0, . . . , 4;
these modes are not inherently unstable, but are destabilized by the unstable n = 1 mode.
As can be seen, both models show decent agreement. At each resistivity, the n = 2 growth
rates are roughly twice the n = 1 growth rates, as expected. In both models at higher
resistivities, the n = 3 and n = 4 modes are destabilized shortly before the onset of the
nonlinear regime, and so the corresponding growth rates (not shown here) do not plateau,
but rather peak at values roughly three and four times the value of the n = 1 growth rate
and then decline rapidly as nonlinear saturation is reached. All of the growth rates shown
in figure 2 were calculated for β = 0, and the pressure was not evolved. In the case of
the the original stellarator model, this amounts to not using the full energy conservation
equation (third equation in (2.1)). For clarity, we explicitly list the equations solved in
table 1.

While the original stellarator model (Nikulsin et al. 2019) performs decently in the linear
regime and at β = 0, two problems can arise after nonlinear saturation. First, as discussed
in the previous section, non-physical kinetic energy can be generated. The rate at which it
is generated is negligible in the linear regime, but can become significant as saturation is
reached. This can be seen in figure 3, where we consider the tearing mode simulation
with a resistivity of 10−5 JOREK units (1.9382× 10−5 � m). In figure 3, −dE/dt is
plotted and compared with the physical energy loss rate. We define E = ∫V E dV , where
E is given in (2.1); this is the integrated total energy of the system at a given time. The
physical energy loss rate is defined as the sum of the energy fluxes across the plasma
boundary and the volume integral of energy sinks due to resistive and viscous dissipation
(conversion to internal energy is not accounted for since pressure is not evolved, so
dissipated energy is lost). If the inward energy fluxes are greater than outward fluxes plus
sinks, the physical loss rate is negative, i.e. energy is gained. As can be seen in figure 3(a),
the difference between −dE/dt and the physical loss rate is negligible in the linear regime
(until approximately 20 ms) and grows rapidly with the onset of saturation, due to the
uncontrollable increase in kinetic energy (figure 4a). The simulation is stopped at∼27 ms,
as it would crash shortly thereafter if allowed to continue. In order to allow the simulation
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Original stellarator model Standard tokamak model

∂ρ

∂t
= −Bv

[
ρ

B2
v

,Φ

]
+ P

∂ρ

∂t
= 1

R
[R2ρ, u]+ P[

ψv,
∂Ψ

∂t

]
=
[

[Ψ,Φ]− ∂‖Φ
Bv

, ψv

]
+ 1

Bv
∇ · (η∇ψv × j‖d)

∂ψ

∂t
= −F0

∂u
∂φ
+ R[ψ, u]− ηR2jφd

Δ⊥
∂Φ

∂t
= ∇ ·

[
Bv∂‖v2

2
∇⊥Ψ + ωχ∇Φ ×∇χ ∇ ·

(
R2ρ∇⊥ ∂u

∂t

)
= −1

2R
[R2ρ, v2]

−vχB2
vω
⊥ + B2

ρ
j⊥ − jχB2

v

ρ
∇Ψ ×∇χ − 1

ρ
f b ×∇χ + 1

R
[R4ρωφ, u]+ F0

R2
∂

∂φ
(R2jφ)+ 1

R
[R2jφ, ψ]

−P
ρ

∇⊥Φ
]
+ νΔΔ⊥Φ − νhΔ

2Δ⊥Φ +∇ · (μt
⊥∇⊥Δ⊥u)

B = ∇χ +∇Ψ ×∇χ; v = ∇Φ ×∇χ
B2
v

B = F0∇φ +∇ψ ×∇φ; v = R2∇φ ×∇u

TABLE 1. The zero-β forms of the two reduced MHD models that are compared in this section,
namely the original stellarator model from Nikulsin et al. (2019) and the standard tokamak model
without field-aligned flow from Franck et al. (2015). Note that the new set of equations presented
in § 2 reduces to the standard tokamak model when ζ = v‖ = Ω = 0 and χ = F0φ, except for
the term containing P (eighth term on the right-hand side of (2.9)). In the cases considered,
P = ∇ · (D⊥∇⊥ρ). When using the original stellarator model, we set χ = F0φ and ψv = R,
where R is the distance from the central axis of symmetry; in addition a subscript χ means a dot
product of the corresponding vector with eχ = B/B2

v , and f b = −FF′∇Ψ |t=0/R2 is the force
balancing term (see Appendix A). In order for the initial condition to be a true equilibrium, we
have introduced jd = j − j0, where j0 is the current at t = 0.

to continue after saturation, we can introduce an artificial dissipation. Figure 3(b) shows
−dE/dt and physical energy loss rate for a simulation with artificial dissipation in the
form of a hyperviscosity term (with νh = 1.08× 10−3 m4 s−1, corresponding to 7× 10−10

in JOREK units) in the evolution equation forΦ. In this case, the physical energy loss rate
does not include the hyperviscous dissipation. As can be seen, with artificial dissipation,
the energy behaves much more reasonably, though it is still not conserved, hence the
mismatch between the total rate of energy change and physical energy loss. The reason for
such good behaviour is that the non-conservation comes mostly from the kinetic energy,
which is kept from exploding by the hyperviscosity term. In addition, the hyperviscosity
prevents the plasma from responding too quickly to numerical errors in the magnetic field,
thus stabilizing it against numerical instabilities that arise from the Ψ evolution equation
(discussed below).

One can introduce a finite pressure into the original stellarator model by using (2.15)
without affecting the energy conservation by much, since all of the error comes from the
kinetic energy, which is usually not dominant in fusion-relevant situations. However, we
find that the original stellarator model cannot correctly reproduce the growth rates when β
becomes non-negligible, likely because the pressure terms in the original stellarator model
(Nikulsin et al. 2019) (not shown in table 1) contain either ∇ρ or ∂‖p, both of which are
zero initially, and so they make the pressure terms small compared to the Lorentz force
terms.

Finally, for the sake of comparison, we show the same kind of graph for a simulation
with the standard tokamak model/new stellarator model without parallel flow (figure 3c),
both of which are equivalent in the tokamak limit. Note the small discrepancy between
−dE/dt and the physical energy loss rate in the last plot; unlike the discrepancy in
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(b)(a)

(c) (d )

FIGURE 3. The negative rate of change of total energy compared with the physical energy loss
rate in (a) the original stellarator model without artificial dissipation, (b) the original stellarator
model with artificial dissipation, (c) the standard tokamak model/new stellarator model and
(d) the original stellarator model with (2.18) replacing the Ψ equation in table 1.

(b)(a)

FIGURE 4. The negative rate of change of total energy −dE/dt from figure 3 plotted alongside
the negative rates of change of the magnetic and kinetic energies, where dE/dt = dEmag/dt +
dEkin/dt. (a) The negative rates of change in the original stellarator model without artificial
dissipation. (b) The same in the case with artificial dissipation.

figure 3(b), this discrepancy is purely numerical. As the arguments of § 3 continue to
apply even after the exact solutions are replaced by finite-element approximations, the
discrepancy is not due to poloidal discretization, and is independent of the resolution of the
finite elements, which we have confirmed by running simulations with higher resolution.
Instead, the two sources of error are: (a) the temporal discretization, where a small enough
time step is used in practice to diminish the deviation, and (b) the truncation of the toroidal
Fourier series, where a sufficiently large toroidal resolution is used in practice to avoid this
effect. We have carried out further simulations (not shown here), where we have confirmed
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(b)(a)

FIGURE 5. A simulation of a tearing mode with the standard tokamak model when the ψ
evolution equation is replaced by the corresponding equation from the original stellarator model.
(a) A comparison of the negative rate of change of total energy −dE/dt with the physical loss
rate. (b) The negative rates of change of magnetic and kinetic energy alongside −dE/dt. The
inset in (a) zooms in on times between 25 and 35 ms.

that by decreasing the time step size and increasing the number of Fourier modes kept, one
can make the discrepancy arbitrarily small.

The second problem is that, while looking benign, the Ψ evolution equation can often
produce ill-conditioned time stepping matrices, resulting in numerical instabilities. In fact,
the Ψ equation is what destabilizes the kinetic energy, causing it to explode in figure 4(a).
If we replace the Ψ evolution equation in the original stellarator model (see table 1) by
(2.18), we can run the simulations well into the post-saturation regime without needing
to introduce hyperviscosity, as can be seen in figure 3(d), albeit with a higher energy
conservation error than when hyperviscosity is present. On the other hand, we can replace
the ψ evolution equation in the standard tokamak model by the corresponding equation
from the original stellarator model (table 1), thus testing the Ψ equation from the original
stellarator model in a setting where energy is conserved in the continuous limit. In this case
(figure 5a), energy conservation issues begin around the same time that the original model
without hyperviscosity would have crashed (figure 3a). However, instead of exploding, the
energy rapidly decreases, and so this simulation can run slightly longer before crashing.
Figure 5(b) shows that the kinetic energy plays no part in this numerical instability; all of
the energy conservation error comes from the buildup of numerical errors in the magnetic
energy. As can be seen, while the Ψ evolution equation in the original stellarator model
in table 1 is equivalent to equation (2.18) in the analytical sense, numerically it behaves
very differently. Finally, we verified that replacing the ψ evolution equation in all models
considered in this section does not have any significant impact on the growth rates.

To conclude this section, we note that we had initially intended to use the full
energy conservation equation, as shown in (2.1), to evolve pressure and ensure energy
conservation. However, using the full energy conservation equation would make the
internal energy into a reservoir, drawing energy from it when there is a non-physical gain
of kinetic energy, or depositing energy into it if there is a non-physical loss of kinetic
energy. This shifts the energy conservation error to pressure while ensuring total energy
conservation. While this may be acceptable when the internal energy is much larger than
the kinetic energy, using the full energy conservation equation would thus disallow low-β
simulations. It is much better to use equation (2.15) with the original stellarator model
instead of the full energy conservation equation, although, as noted above, the original
stellarator model is unable to accurately reproduce growth rates when β is not negligible.
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5. Approximate conservation of momentum

Reduced MHD models usually do not conserve linear momentum exactly, except for
some special cases. Locally, this can be seen from the fact that there are only two
velocity variables, Φ and v‖, in reduced MHD, so the three components of the full
MHD momentum equation cannot be satisfied simultaneously. However, different reduced
MHD models can have different amounts of error in the momentum conservation. In
the remainder of this section, we first compare momentum conservation properties of
the original model presented in Nikulsin et al. (2019) with those of the new model
derived in § 2, and then show how global momentum behaves in the new model using
some numerical examples. When discussing momentum conservation, we do not exclude
exchange of momentum with the walls, such as in the case of a vertical displacement
event. Exchange of momentum is a physical process, and, while the total momentum of
the simulated system can change, no momentum is created or destroyed. In this section,
we are concerned with the non-physical generation of momentum within the plasma due
to approximations made in reduced MHD.

5.1. General local momentum conservation properties of the reduced models
We begin by reviewing the momentum conservation properties of the original reduced
model, which were discussed in detail in Nikulsin et al. (2019). The action of the first
projection operator (2.4) on a vector Q can be written as ∇χ · ∇ × [∇χ × (eχ ×Q)] =
∇χ · ∇ × (eχQχ −Q). Thus, if Q is the full MHD momentum equation (2.1), the
action of the projection operator corresponds to dropping the two vector components
of a vorticity-like equation, ∇ × (eχQχ −Q), that are perpendicular to ∇χ . If all three
components of this equation were satisfied simultaneously (which, in general, is not
possible as noted before), then the original full MHD momentum equation would also
be satisfied and momentum would be conserved exactly. We can estimate the magnitude
of momentum conservation error by considering the components of the vorticity-like
equation perpendicular to ∇χ . This equation can be written as

∂ω

∂t
+ μ0v‖

∂j
∂t
+∇v‖×∂B

∂t
− μ0j

Bv
∂‖v2 −∇

(
∂‖v2

Bv

)
× B+∇ × (ω × v)

− μ0 j
B2
v

∇χ · (ω × v)−∇
[∇χ · (ω × v)

B2
v

]
× B+ ω

P
ρ
+∇

(
P
ρ

)
× v = B

ρ2
( j · ∇ρ)

− j
ρ2
(B · ∇ρ)+ 1

ρ
(B · ∇)j− 1

ρ
( j · ∇)B− j

ρB2
v

∇χ · ( j × B)−∇
[∇χ · ( j × B)

ρB2
v

]
× B

+ 1
ρ2

∇ρ ×∇p+ j
ρBv

∂‖p+∇
(
∂‖p
ρBv

)
× B, (5.1)

where the reduced velocity v = −∇χ × (eχ × v) = ∇Φ ×∇χ/B2
v and the reduced

vorticity ω = ∇ × v were introduced, and the viscosity term is not considered. If the
components of this equation perpendicular to ∇χ are identically zero, then there is no
approximation in the reduction as nothing is being neglected, and momentum is still
conserved. The most general case in which these components are zero is the following:

∂‖u = 0, u ∈ {gik, Φ,Ψ, v‖, p, ρ,P}, (5.2)

where gik are the components of the metric tensor of the vacuum field-aligned coordinate
system. As can be shown by a simple calculation, in this case both ω and j will be
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directed strictly along ∇χ . If we allow gik,Φ or Ψ to vary along ∇χ , the same calculation
will show that ω has non-zero perpendicular components. This will cause ∂ω/∂t to have
non-zero components perpendicular to ∇χ , which cannot be cancelled by any other terms
since there are no more time derivatives involving Φ in the equation. Similarly, if we
let any of the other quantities vary along ∇χ , the last term and the seventh term on
the right-hand side (pressure), the first term and the seventh term on the right-hand side
(density), the last term on the left-hand side (P) and the third term on the left-hand side
(v‖) will have non-zero perpendicular components, which will not be cancelled by any
other terms. If the conditions (5.2) are met, then only the sixth and eighth terms on the
left-hand side have non-zero perpendicular components. As can be shown by a simple
expansion of the eighth term:

[∇ × (ω × v)]⊥−
[
∇
[∇χ · (ω × v)

B2
v

]
× B

]⊥
≡ 0. (5.3)

Now we consider the new reduced model. For the first projection operator (2.6), the
vorticity-like equation analogous to (5.1) can be written as

∇
(
ρ

B2
v

)
× ∂v
∂t
+ ρ

B2
v

∂ω

∂t
+∇

(
ρ

B2
v

∂v‖
∂t

)
× B+μ0ρ

B2
v

∂v‖
∂t

j+∇
(
ρv‖
B2
v

)
× ∂B
∂t
+ μ0ρv‖

B2
v

∂j
∂t

+ 1
2
∇
(
ρ

B2
v

)
×∇v2 +∇ ×

(
ρω × v

B2
v

)
+∇

(
P
B2
v

)
× v + P

B2
v

ω +∇
(

Pv‖
B2
v

)
× B

+ μ0Pv‖
B2
v

j = 2B
B3
v

j · ∇Bv − 2j
B3
v

B · ∇Bv + 1
B2
v

(B · ∇)j − 1
B2
v

( j · ∇)B+ 2
B3
v

∇Bv ×∇p.

(5.4)

Equation (2.9) is just the contravariant χ component of this equation. In the above
equation, the third and eleventh terms on the left-hand side will have perpendicular
components even when condition (5.2) is met; namely ∇⊥(ρB−2

v ∂v‖/∂t)×∇χ from the
third term and ∇⊥(Pv‖B−2

v )×∇χ from the eleventh term. In addition, while the eighth
term on the left-hand side of (5.4) is analogous to the sixth term on the left-hand side of
(5.1), there is no term in (5.4) analogous to the eighth term of (5.1) to cancel the non-zero
perpendicular components of its eighth term. Thus, a more stringent condition is required
to ensure that the perpendicular components of equation (5.4) are identically zero and
momentum is exactly conserved in the new reduced MHD model. Namely, in addition to
the conditions (5.2), we must also have v‖ = 0. This additional condition causes the third
and eleventh terms to vanish, and the eighth term becomes

∇ ×
(
ρω × v

B2
v

)
= ∇ ×

(
ρωχ∇⊥Φ

B2
v

)
= ∇

(
ρωχ

B2
v

)
×∇⊥Φ − ρωχ

B2
v

∇
(
∂‖Φ
Bv

)
×∇χ.

(5.5)
Clearly, if condition (5.2) is met, the eighth term, as shown above, will not have any
perpendicular components.

As can be seen, the original reduced model (Nikulsin et al. 2019) has better momentum
conservation properties than the new reduced model (§ 2). This was the reason why we
initially attempted to work with the original model. However, as energy conservation is
generally more important than momentum conservation, we will use the new model for
future simulations.
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(b)(a)

FIGURE 6. A flux-aligned grid used for simulating the ballooning mode, shown here with
reduced resolution for clarity (a), and the sum of n > 0 Fourier mode of F0Ψ (JOREK units) in
the standard tokamak model at 250 time steps, at t = 641.1 Alfvén times (b).

5.2. Global momentum conservation error (numerical examples)
As a test case, we use a simple ballooning mode in an X-point plasma in a tokamak with
an aspect ratio of 3 (figure 6). In the simulations shown here only the Fourier modes with
0 � n � 6 were included. The simulation parameters were as follows: F0 = 3 T m, a time
step of 3 Alfvén times, a resistivity of η = 3.8764× 10−6 � m (2× 10−6 JOREK units)
and a viscosity of μ = 2.293× 10−7 kg (m s)−1, corresponding to μt

⊥ = 4× 10−6 JOREK
units. The initial conditions were set up by solving the Grad–Shafranov equation with

FF′(ψn) = 1
2

[
1.6(1− ψn)− 0.43 cosh−2 ψn − 0.9

0.07

](
1− tanh

ψn − 1
0.03

)
, (5.6)

T(ψn) = 0.015(1− 0.66ψn)[1− tanh((ψn − 0.94)/0.08)]/2+ 3× 10−4 and ρ(ψn) =
[1− tanh((ψn − 0.94)/0.08)]/2+ 0.01, where FF′ is in units of T2 m, T is in
(1020kBμ0) K and ρ is in 3.346× 10−7 kg m−3. In addition, a hyperresistivity of ηh =
5.8146× 10−10 �m−2 (3× 10−10 JOREK units) was used in the simulations. We compare
the new reduced model with v‖ = 0 with the new reduced model with v‖ 
= 0. Since in
the tokamak limit these models match the standard JOREK tokamak models, we used the
tokamak models for the actual simulations.

To quantify the momentum conservation error, we calculate the total linear momentum
in the Cartesian x and y directions for the entire plasma. Physically, this momentum
should be zero throughout the simulation; however, due to the inaccuracies discussed
in the previous subsection, a non-zero momentum tends to appear. Here, we choose the
x direction as the R direction when φ = 0 and the y direction as the R direction when
φ = π/2, with the z axis being the axis of symmetry of the torus. We do not consider
momentum in the z direction since the global z momentum is conserved in the tokamak
limit, as can be seen by setting Φ∗ = ln R in (3.1) and recalling that Bv = F0/R in the
tokamak case.

As can be seen in figure 7, after about 1.5 ms, the momentum conservation error in the
model with v‖ 
= 0 is worse by more than an order of magnitude than that in the model
with v‖ = 0. In both cases, the instability has reached nonlinear saturation, and at that
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(b)(a)

FIGURE 7. Total linear momentum in the Cartesian x and y directions as a function of time.
Momentum evolution is shown for simulations using the reduced model with v‖ = 0 (a) and the
reduced model with v‖ 
= 0 (b).

point the momenta no longer grow in amplitude, but tend to oscillate around zero with the
amplitude of the oscillations remaining at the same order of magnitude.

6. Conclusion

In continuation of our previous work (Nikulsin et al. 2019), we have implemented the
stellarator-capable reduced MHD model derived in our previous paper and tested it in
the tokamak limit. We find that, even in the simple case of a tearing mode in a circular
high-aspect-ratio tokamak, energy conservation can only be approximately satisfied, due
to the possibility of non-physical gain or loss of kinetic energy. Our original plan, as
presented in Nikulsin et al. (2019), was to use the full energy conservation equation
when evolving pressure, thus ensuring energy conservation. However, that would require
the internal energy to be much larger than the kinetic energy, thus excluding low-β
situations. Even without exact energy conservation, meaningful linear results, such as
growth rates, could be obtained without any further modifications; however, the lack of
energy conservation required artificial dissipation to be introduced to prevent a crash after
nonlinear saturation was reached due to non-physical kinetic energy buildup. Introducing
artificial dissipation in the form of a hyperviscosity term kept the kinetic energies in check
and allowed the simulations to proceed into the post-saturation regime. Although exact
energy conservation could not be achieved, the error in energy conservation remained
small because the kinetic energy is small compared to the total energy, and the magnetic
energy evolved correctly. Thus, energy should be approximately conserved whenever
the kinetic energy is small, which is usually the case in fusion-relevant situations. We
also found that the kinetic energy blowup was triggered by numerical errors from the
magnetic field. Replacing the magnetic field equation with a different form that is
analytically equivalent to the original, but more numerically stable alleviates the need
for hyperviscosity, although the energy conservation error in this case is larger than when
hyperviscosity is present.

To remedy the lack of energy conservation in our original model, we used a new set
of projection operators to obtain scalar momentum equations from the full MHD vector
momentum equation. With these new projection operators, the reduced MHD model
matches the standard JOREK reduced MHD models for tokamaks (Franck et al. 2015;
Hoelzl et al. 2021) in the tokamak limit, i.e. when χ = F0φ, where ∇χ is the vacuum
magnetic field and φ is the toroidal angle. When using the new model, energy is conserved
almost exactly, with a small amount of error due to temporal discretization and the use of
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a truncated Fourier decomposition in the toroidal direction. However, the new model also
has more error in the momentum conservation than the original model whenever v‖ 
= 0.
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Appendix A

In most reduced MHD models used for tokamaks, including the tokamak reduced MHD
model implemented in JOREK (Franck et al. 2015; Hoelzl et al. 2021), field compression
is neglected altogether via the ansatz B = F0∇φ +∇Ψ ×∇φ, which assumes that the
background vacuum field is purely toroidal and only allows field line bending corrections
to that. This is possible due to a property of the projection operator used, ∇φ · ∇ × (R2∗,
which allows exact force balance in the reduced system of equations when equilibria
satisfy the Grad–Shafranov equation, even if field compression is neglected. Consider the
second (poloidal momentum) equation in § 2.6 of Franck et al. (2015) with u = v‖ = 0:3

0 = − 1
R

[R2, p]+ 1
Rμ0

[Ψ, j]− F0

R2μ0

∂j
∂φ
, (A1)

where R is the distance from the axis of symmetry (major radius coordinate), p is pressure,
Ψ is the poloidal flux and j = Δ∗Ψ . One can easily see that this equation can be obtained
by applying the projection operator ∇φ · ∇ × (R2 to the static equilibrium condition j ×
B = ∇p. Under the assumption of axisymmetry, the derivative in the last term in (A1)
is zero. In addition, since pressure is a flux function, we have ∇p = p′∇Ψ . Thus, (A1)
becomes

0 = μ0p′[R2, Ψ ]+ [Δ∗Ψ,Ψ ]. (A2)

Meanwhile, the Grad–Shafranov equation reads

Δ∗Ψ = −μ0R2p′ − FF′. (A3)

Substituting this into the second term in (A2), we have

0 = μ0p′[R2, Ψ ]− μ0[R2p′, Ψ ]− [FF′, Ψ ] ≡ −μ0R2[p′, Ψ ]− [FF′, Ψ ] ≡ 0, (A4)

where the last two terms are identically zero since p′ and FF′ are both functions of only
Ψ , so their Poisson bracket with Ψ must be zero. Finally, the last (parallel momentum)

3We include here a factor of 1/μ0 in the second and third terms, which was not present in Franck et al. (2015) due
to the current being normalized.
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equation in § 2.6 of Franck et al. (2015) with u = v‖ = 0 reads

0 = − 1
R

[p, Ψ ]− F0

R2

∂p
∂φ
, (A5)

and can be obtained by projecting j × B = ∇p onto B. In this equation, the first term is
again identically zero due to p being a flux function, and the second term is zero due to
axisymmetry. Thus, any solution of the Grad–Shafranov equation is also an exact solution
of the reduced MHD system with v = 0, and so this version of reduced MHD has the same
set of axisymmetric equilibria as full MHD.

As is clear in the proof above, the Grad–Shafranov equation plays a crucial role. Without
it, the reduced MHD system would not admit a solution with v = 0 even if we were to
find a (Ψ, p) satisfying j × B = ∇p. In other words, for three-dimensional equilibria, one
should not expect to have force balance in the reduced MHD system. While not proven,
it seems unlikely to us that a different choice of projection operator could resolve this
problem.

At high aspect ratios, lack of force balance becomes less significant due to the neglected
field compression becoming smaller, and vanishing completely in the cylindrical limit.
However, for an aspect ratio of 10, the lack of force balance is already significant. In order
to carry out the simulations presented in § 4 with our original model, we had to introduce
a static force balancing term, which was not considered in Nikulsin et al. (2019). For
the sake of clarity, we consider the force balancing term before the projection operator is
applied; however, note that the full MHD vector momentum equation is overconstrained if
the velocity ansatz is used but the projection operator is not applied. The modified equation
is as follows:

∂

∂t
(ρv)+∇ · (ρvv) = j × B−∇p+ ρν�v + ( jf × Bf − j × B)|t=0, (A6)

where B is the magnetic field given by the ansatz, μ0j = ∇ × B and Bf and jf are the full
MHD magnetic field and current, i.e. the actual field and current, not their ansatz-based
approximations. At t = 0, the two ansatz-based Lorentz force terms cancel, and the forces
are balanced by the full MHD Lorentz force; the first Lorentz force term then evolves with
time while the force balancing term remains frozen. Such an approach should work in
most cases, as instabilities tend to not compress the magnetic field due to the large amount
of energy required to do so. In the tokamak limit, the force balancing term reduces to
−FF′∇Ψ |t=0/R2.

We can show that this extra term does not violate global conservation of momentum. If
we ignore the viscosity term, (A6) can be rewritten as

∂

∂t
(ρv)+∇ ·

[
ρvv +

(
p+ B2 + (B2

f − B2)|t=0

2μ0

)
←→

I − BB+ (Bf Bf − BB)|t=0

μ0

]
= 0.

(A7)
Integrating over the plasma volume and assuming that both the reduced and full magnetic
fields are tangential to the plasma boundary, we obtain

d
dt

∫
V
ρv dV = −

∮
∂V

(
p+ B2 + (B2

f − B2)|t=0

2μ0

)
dS. (A8)

The right-hand side is just the force exerted by the walls on the plasma. Note that the
term (B2

f − B2)|t=0/(2μ0) is approximately the energy density stored by compressing
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the background vacuum field in equilibrium. Since instabilities tend to not compress the
magnetic field, the energy density stored in the compression should be roughly constant
throughout the simulation, we should have B2 + (B2

f − B2)|t=0 ≈ B2
f , where B2

f /(2μ0) is
the total magnetic energy density, which includes both field line bending and compression.

To conclude, we note that the momentum conservation properties discussed in § 5
remain unchanged with the addition of the force balancing term. To show this, we
substitute p = p|t=0 + p̃ into (A6), where p̃ is defined as p− p|t=0. Then, because ( jf ×
Bf )|t=0 = ∇p|t=0, those terms will cancel, and the only term remaining in (A6) that was
not originally present in the vector momentum equation (2.1) is −( j × B)|t=0. However,
this is just the reduced Lorentz force term at t = 0, which has the same structure as
the time-varying reduced Lorentz force term that we have already dealt with. Most
importantly, if ∂‖Ψ = ∂‖gik = 0, then j ‖ ∇χ , where gik are the components of the metric
tensor of the vacuum field-aligned coordinate system. The conditions for exact momentum
conservation are thus

∂‖u = 0, u ∈ {gik, Φ,Ψ, v‖, p̃, ρ,P}. (A9)

The only minor difference from condition (5.2) is the replacement of p with p̃.
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