BULL. AUSTRAL. MATH. SOC. VOL. 31 (1985), 145-154.

ON THE LAWS OF CERTAIN VARIETIES OF GROUPS ROBERT B. HOWLETT AND RICHARD LEVINGSTON

Let m and n be coprime positive integers. The variety $\underline{A} \underset{m \in n}{A}$ (consisting of all groups G such that for some normal subgroup H of G, H is abelian of exponent dividing m and G/H is abelian of exponent dividing n) and the variety $\underline{A} \underset{m \in m}{A}$ both satisfy the following three laws: all elements have order dividing mn; the commutator of two mth powers has order dividing m; the commutator of two nth powers has order dividing n. It is proved that any law which holds in both these varieties (notably that commutators commute) is a consequence of the above three laws.

1. Preliminaries

We follow the notation of the book [2] of Neumann; in particular (if \underline{X} and \underline{Y} are varieties)

 \underline{XY} consists of those G such that for some $H \lhd G$, $H \in \underline{X}$ and $G/H \in \underline{Y}$,

 \underline{X} V \underline{Y} is the variety defined by the laws which hold in both \underline{X} and \underline{Y} ,

Received 18 September 1984.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/85 \$A2.00 + 0.00.

Robert B. Howlett and Richard Levingston

 \underline{A}_n is the variety of abelian groups of exponent dividing n.

Throughout the paper m and n will be fixed coprime positive integers. It is easily proved (Proposition 2.2 below) that

$$\underline{A} = \operatorname{var} \{ x^{mn} = 1, [x, y]^m = 1, [x^n, y^n] = 1 \},$$

and symmetrically

$$\underline{A}_{n} = \operatorname{var} \{ x^{mn} = 1, [x, y]^n = 1, [x^m, y^m] = 1 \}.$$

Hence it seems natural to investigate whether the laws

- (i) $x^{mn} = 1$, (ii) $[x^m, y^m]^m = 1$,
- (iii) $[x^{n}, y^{n}]^{n} = 1$,

define the variety $\underline{A} \underbrace{A}_{m-n} \lor \underbrace{A}_{n-m} A$. This paper is devoted to proving that they do.

THEOREM 1. Laws (i), (ii) and (iii) above form a basis for the laws of the variety $\underline{A}, \underline{A}, \vee \underline{A}, \underline{A}, \dots$.

This improves the theorem of [1] where an additional law was needed.

2. Proof of Theorem 1

Since m and n are coprime the following is trivial.

LEMMA 2.1. Suppose that the group G satisfies law (i), and let $g \in G$. Then $g^m = 1$ if and only if $g = h^n$ for some $h \in G$. \Box

Interchanging m and n we see that, under the hypotheses of Lemma 2.1, $g^n = 1$ if and only if $g = h^m$ for some $h \in G$. This symmetry between m and n persists throughout the paper, and in applications of the various lemmas we sometimes interchange m and n without explicitly mentioning it.

PROPOSITION 2.2. A =
$$var\{x^{mn} = 1, [x, y]^m = 1, [x^n, y^n] = 1\}$$
.

146

Proof. It is trivial that the given laws hold in $\underline{A} \underbrace{A}_{m-n}$. Conversely, suppose that a group *G* satisfies these laws. By Lemma 2.1 commutators in *G* are *n*th powers and hence commute. So *G* is metabelian, and the rest is clear. \Box

LEMMA 2.3. If a and b are elements of any group G then $[b^{-1}, a, b, a]$ is conjugate in G to $[a, b^{-1}, a^{-1}, b]$. Proof.

$$[a, b^{-1}, a^{-1}, b] = [[a, b^{-1}]^{-1}[a, b^{-1}]^{a^{-1}}, b]$$
$$= [b^{-1}, a]^{a^{-1}}[a, b^{-1}][b^{-1}, a]^{b}[a, b^{-1}]^{a^{-1}b}$$

Thus

(1)

$$\begin{bmatrix} a, b^{-1}, a^{-1}, b \end{bmatrix}^{a} = \begin{bmatrix} b^{-1}, a \end{bmatrix} \begin{bmatrix} a, b^{-1} \end{bmatrix}^{a} \begin{bmatrix} b^{-1}, a \end{bmatrix}^{ba} \begin{bmatrix} a, b^{-1} \end{bmatrix}^{a^{-1}ba} \\ = \begin{bmatrix} b^{-1}, a \end{bmatrix} \begin{bmatrix} a, b^{-1} \end{bmatrix}^{a} \begin{bmatrix} b^{-1}, a \end{bmatrix}^{ba} \begin{bmatrix} a, b^{-1} \end{bmatrix}^{b} ,$$

which is conjugate to

$$[a, b^{-1}]^{b}[b^{-1}, a][a, b^{-1}]^{a}[b^{-1}, a]^{ba}$$
$$= [[b^{-1}, a]^{-1}[b^{-1}, a]^{b}, a] = [b^{-1}, a, b, a] . \square$$

Let $\underline{\underline{V}}$ be the variety defined by the laws (i), (ii) and (iii). It is trivial that laws (i), (ii) and (iii) hold in $\underline{\underline{A}}_{m-n}$ and in $\underline{\underline{A}}_{n-m}$, and hence

LEMMA 2.4.
$$\underline{A}_{m = n} \lor \underline{A}_{n = m} \le \underline{\underline{V}}$$
.

Throughout the rest of this paper $\,G\,$ will denote an arbitrary group in $\,\underline{V}$.

LEMMA 2.5. If
$$a, b \in G$$
 and $a^{m} = b^{n} = 1$ then
(a) $[b^{-1}, a, b, a] = 1 = [a, b^{-1}, a^{-1}, b]$,
(b) $[[a, b], [a, b^{-1}]]^{n} = 1$.
Proof. (a) We have
 $[b^{-1}, a, b]^{m} = [b(b^{-1})^{a}, b]^{m} = [(b^{-1})^{a}, b]^{m} = 1$

by law (ii) and Lemma 2.1 (since $b^n = 1$). Hence by law (iii) and Lemma 2.1, $[b^{-1}, a, b, a]^n = 1$. By Lemma 2.3 we deduce that $[a, b^{-1}, a^{-1}, b]^n = 1$. But

$$[a, b^{-1}, a^{-1}]^n = [a^{-1}a^{b^{-1}}, a^{-1}]^n = [a^{b^{-1}}, a^{-1}]^n = 1$$

by law (iii), and therefore (by law (ii)) $[a, b^{-1}, a^{-1}, b]^m = 1$. Since m and n are coprime, $[a, b^{-1}, a^{-1}, b] = 1$, and (by Lemma 2.3) $[b^{-1}, a, b, a] = 1$ also. (b)

$$[[a, b], [a, b^{-1}]] = [[b^{-1}, a]^{b}, [a, b^{-1}]]$$

= $[[a, b^{-1}][b^{-1}, a]^{b}, [a, b^{-1}]]$
= $[[b^{-1}, a, b], [a, b^{-1}]]$
= $[b^{-1}, a, b, a^{-1}a^{b^{-1}}]$
= $[b^{-1}, a, b, a^{b^{-1}}]$

since $[b^{-1}, a, b]$ commutes with a by (a). But (1) above gives $[b^{-1}, a, b, a^{b^{-1}}]^n = 1$ by law (iii). Thus $[[a, b], [a, b^{-1}]]^n = 1$.

LEMMA 2.6. If $a, b \in G$ with $a^n = b^n = 1$ and $[a, a^b] = 1$ then [a, b] = 1.

Proof. We have $[a, b]^m = 1$ (law (ii)). But since a commutes with a^b , $(a^{-1}a^b)^n = (a^{-1})^n (a^b)^n = 1$, and since m and n are coprime, [a, b] = 1.

LEMMA 2.7. Suppose that $a, b, c \in G$ with $a^n = b^m = [a, b] = c^n = 1$. Then $[a^c, b] = 1$.

Proof. By law (ii) we have $[a, c]^m = 1$ and so law (iii) gives

(2)
$$[a, c, b]^n = 1$$

and

(3)
$$[[a, c]^{b}, [a, c]]^{n} = 1$$

By (2) and law (iii),

(4)
$$[a, c, b, a]^m = 1$$

and

(5)
$$[a, c, b, a^c]^m = 1$$
.

By law (ii), $[a^{c}, a]^{m} = 1$, and so, by law (iii),

(6)
$$[b^{-a^c}, [a^c, a]]^n = 1$$
.

But

$$[a, c, b, a] = [a^{-1}a^{c}, b, a]$$

$$= [a^{c}, b, a] \text{ (since } [a, b] = 1 \text{)}$$

$$= [(b^{-1})^{a^{c}}b, a]$$

$$= [(b^{-1})^{a^{c}}, a]^{b} \text{ (since } [a, b] = 1 \text{)}$$

$$= [(b^{-1})^{a^{c}}, (a^{-1})^{a^{c}}a]^{b} \text{ (since } [b^{a^{c}}, a^{a^{c}}] = 1 \text{)}$$

$$= [(b^{-1})^{a^{c}}, [a^{c}, a]]^{b},$$
where and mean equation (b) and (6) gives

and since m and n are coprime, (4) and (6) give (7) [a, c, b, a] = 1.

Therefore

$$[a, c, b, a^{c}] = [a, c, b, a^{-1}a^{c}]$$
$$= [a^{-1}a^{c}, b, a^{-1}a^{c}]$$
$$= [(a^{-1}a^{c})^{b}, a^{-1}a^{c}]$$

By (3) and (5) therefore $[(a^{-1}a^c)^b, a^{-1}a^c] = 1$. Now $(a^{-1}a^c)^m = b^m = 1$, and so Lemma 2.6 gives $[a^{-1}a^c, b] = 1$. Since a and b commute this gives $[a^c, b] = 1$.

COROLLARY 2.8. If d, e, $f \in G$ with $d^n = e^m = [d, e] = f^m = 1$

then $[d^f, e] = 1$.

Proof. From Lemma 2.7, by interchanging m and n, we have $\begin{bmatrix} d \\ \end{bmatrix}, e^{f^{-1}} = 1$ and hence $\begin{bmatrix} d^{n}, e \end{bmatrix} = 1$.

LEMMA 2.9. If $a, b \in G$ with $a^n = b^m = [\sigma, b] = 1$ then all conjugates of a commute with b.

Proof. Let $g \in G$ and let p, q be integers with pm + qn = 1. Then g = cf where $c = g^{pm}$ and $f = g^{qn}$. By law (i), $c^n = 1$, and so Lemma 2.7 gives $[a^c, b] = 1$. But $f^m = 1$ (law (i)); so Corollary 2.8 with a^c in place of d and b in place of e gives $[a^{cf}, b] = 1$.

LEMMA 2.10. If a, b, $c \in G$ with $a^n = 1$ and $[a, a^b] = [a, a^c] = 1$ then $[a^b, a^c] = 1$.

Proof. Since a commutes with a^b and a^c it commutes with $[a^b, a^c]$. But $[a^b, a^c]^m = 1$ (law (ii)); so by Lemma 2.9 all conjugates of a commute with $[a^b, a^c]$. Thus

$$1 = \left[\left[a^{b}, a^{c} \right], a^{b} \right] = \left[\left[a^{b} \right]^{a^{c}}, a^{b} \right]$$

and, by Lemma 2.6, $\left[a^{b}, a^{c} \right] = 1$.

LEMMA 2.11. If $a, b, c \in G$ with $[a, a^b] = [a, a^c] = 1$ then $[a^b, a^c] = 1$. The set $T = \{t \in G \mid [a, a^t] = 1\}$ is a subgroup of G.

Proof. Let a_1 , a_2 be powers of a with $a_1^n = a_2^m = 1$ and $a_1a_2 = a$. Since $[a_1, a_2] = 1$ it follows from Lemma 2.9 that $\begin{bmatrix} a_1^b, a_2^c \end{bmatrix} = \begin{bmatrix} a_1^c, a_2^b \end{bmatrix} = 1$. Since $[a, a^b] = 1$, $\begin{bmatrix} a^r, (a^r)^b \end{bmatrix} = 1$ for all integers r. So $\begin{bmatrix} a_1, a_1^b \end{bmatrix} = \begin{bmatrix} a_2, a_2^b \end{bmatrix} = 1$, and similarly $\begin{bmatrix} a_1, a_1^c \end{bmatrix} = \begin{bmatrix} a_2, a_2^c \end{bmatrix} = 1$. By Lemma 2.10 we obtain $\begin{bmatrix} a_1^b, a_1^c \end{bmatrix} = \begin{bmatrix} a_2^b, a_2^c \end{bmatrix} = 1$. Hence $\begin{bmatrix} a^b, a^c \end{bmatrix} = \begin{bmatrix} a_1^b a_2^b, a_1^c a_2^c \end{bmatrix} = 1$. Since $[a^b, a^c] = 1$ yields $[a, a^{cb^{-1}}] = 1$ we see that $b, c \in T$ implies $cb^{-1} \in T$. Since $1 \in T$, T is a subgroup. \Box

LEMMA 2.12. Suppose that $a, b \in G$ satisfy $a^m = b^n = (ab)^m = 1$, and let H be the subgroup of G generated by $\{a, b\}$. Then the elements b^{a^i} , $0 \le i \le m-1$, generate an abelian normal subgroup B of H. The set $\{b^{-1}b^{a^i} \mid 1 \le i \le m-1\}$ also generates B.

Proof. $[a, b]^n = [a, ab]^n = 1$ by law (iii), since $a^m = (ab)^m = 1$. But $[a, b^{-1}] = b[a, b]^{-1}b^{-1}$; so $[a, b^{-1}]^n = 1$, and, by law (ii), $[[a, b], [a, b^{-1}]]^m = 1$. But, by Lemma 2.5 (b), $[[a, b], [a, b^{-1}]]^n = 1$, and hence $[[a, b], [a, b^{-1}]] = 1$. So $[[a, b], [a, b]^{b^{-1}}] = 1$, and by Lemma 2.6 we deduce that [a, b] commutes with b. Thus $a \in \{t \in G \mid [b, b^t] = 1\}$, and by Lemma 2.11 it follows that $[b, b^{a^i}] = 1$ for all i. So B is an abelian normal subgroup of H.

Since $(ab)^m = 1$ we obtain $b^{a^{m-1}} \dots b^{a^2} b^a b = 1$, and hence $b^{-m} = (b^{-1}b^a)(b^{-1}b^{a^2}) \dots (b^{-1}b^{a^{m-1}})$. Therefore the subgroup generated by $\{b^{-1}b^{a^i} \mid 1 \le i \le m-1\}$ contains b, hence contains b^{a^i} for all i, hence equals B.

LEMMA 2.13. If c, d, e G with $c^n = d^n = e^m = 1$ then [c, d, e, c] = 1.

Proof. Let a = [c, d], b = [a, e]. Then $a^m = 1$ (by law (ii)), $b^n = 1$ (by law (iii)), and $(ab)^m = (a^e)^m = 1$. By Lemma 2.12 therefore there exists an abelian subgroup B such that

(8)
$$\{b^{-1}b^{a^{i}} \mid 1 \leq i \leq m-1\}$$
 generates B ,

(9)
$$b^{a^{i}} \in B \text{ for } i = 0, 1, ..., m-1$$
.

We have $a^m = 1$, $c^n = 1$ and $(ca)^n = (c^d)^n = 1$. Hence by Lemma 2.12 with m and n interchanged the elements a^{c^n} , $0 \le r \le n-1$, generate an abelian subgroup. So, for each $i \in \{1, 2, ..., m-1\}$,

$$(a^{i}c^{-1})^{n} = a^{i}(a^{i})^{c} \dots (a^{i})^{c^{n-1}}$$
$$= (a^{c^{n-1}} \dots a^{c}a)^{i}$$
$$= ((ca)^{n})^{i}$$
$$= 1$$

and hence, by law (ii),

(10)
$$[b, c]^m = [b, a^i c^{-1}]^m = 1$$
.

Let $i \in \{1, 2, ..., m-1\}$ and let $g = [b^c, b^{-1}b^{a^t}]$. Since $b^n = 1$ and b commutes with b^{a^t} , law (ii) gives $g^m = 1$. But

$$g = b^{-c}b(b^{-1})^{a^{i}}b^{c}b^{-1}b^{a^{i}}$$
$$= [b^{-1}b^{c}, b^{-c}b^{a^{i}}]$$
$$= [[b, c], [b, a^{i}c^{-1}]^{c}]$$

so that (10) gives $g^n = 1$. Hence g = 1; that is, b^c centralizes $b^{-1}b^{a^i}$. Since this holds for all i, (8) and (9) yield $[b^c, b] = 1$. But $b^n = c^n = 1$; so Lemma 2.6 gives [b, c] = 1, as required.

LEMMA 2.14. If a, b, $f \in G$ with $a^n = b^n = f^m = 1$ [a, b, f] = 1.

Proof. By Lemma 2.13 with a, b, f in place of c, d, e we have (11) $[a, b, f]^a = [a, b, f]$.

But by Lemma 2.13 with $b, a^{-1}, f^{a^{-1}}$ in place of c, d, e we have that b centralizes $[b, a^{-1}, f^{a^{-1}}] = [[a, b]^{a^{-1}}, f^{a^{-1}}] = [a, b, f]$ (by (11)). Since a and b both centralize [a, b, f], so does [a, b]. Hence

152

 $[[a, b]^{f}, [a, b]] = 1$,

and since $f^m = [a, b]^m = 1$ (law (ii)), Lemma 2.6 gives [a, b, f] = 1.

LEMMA 2.15. If $H \in \underline{V}$ satisfies $h^m = 1$ for all $h \in H$ then H is abelian.

Proof. Let $a, b \in H$. By hypothesis $[a, b]^m = 1$. But $a^m = b^m = 1$; so by Lemma 2.1 and law (iii), $[a, b]^n = 1$. Hence [a, b] = 1.

LEMMA 2.16. Let H be the subgroup of G generated by $S = \{[a, b] \mid a, b \in G, a^n = b^n = 1\}$. Then H is abelian, $h^m = 1$ for all $h \in H$, $H \lhd G$ and $G/H \in \underline{A} = A$.

Proof. Clearly $S^{\mathcal{G}} = S$ for all $g \in G$, and hence $H \lhd G$. If $f \in S$ then $f^{\mathcal{M}} = 1$ by law (ii). So, by Lemma 2.14, f commutes with [a, b] whenever $a^{\mathcal{N}} = b^{\mathcal{N}} = 1$; that is, f commutes with all elements of S. Hence H is abelian.

Since *H* is abelian and its generating set *S* consists of elements of order dividing *m* it follows that $h^m = 1$ for all $h \in H$.

Let L be the subgroup of G generated by $T = \{a \in G \mid a^n = 1\}$. Then clearly $H \leq L \lhd G$. Moreover if $a, b \in T$ then $[a, b] \in H$, and so L/H is abelian. But L/H is generated by elements of order dividing n; so $L/H \notin \underline{A}_n$. Finally, if $g \notin G$ then, by law (i), $g^m \notin L$, whence $G/L \notin \underline{A}_m$ (by Lemma 2.15), whence $G/H \notin \underline{A}_m$. \Box

LEMMA 2.17. $G \in \underline{A}_{m} \vee \underline{A}_{m}$.

Proof. Let H be as in Lemma 2.16, K the subgroup of G generated by $\{[a, b] \mid a, b \in G, a^m = b^m = 1\}$. By Lemma 2.16 if $g \in H$ then $g^m = 1$, and dually if $g \in K$ then $g^n = 1$. Hence $H \cap K = 1$. But, by Lemma 2.16, $G/H \in A = A = M = M = M = M$, and dually $G/K \in A = A = M = M = M = M = M = M$. Since $H \cap K = 1$ the homomorphism

6

 $x \mapsto (xH, xK)$ is an embedding of G in $G/H \times G/K \in A$ A $\to M$, whence the result. \Box

Lemma 2.17 shows that $\underline{V} \leq \underline{A} \underbrace{A}_{m} \vee \underline{A} \underbrace{A}_{m}$. The reverse inclusion is obvious since laws (i), (ii) and (iii) hold in both $\underline{A} \underbrace{A}_{m}$ and $\underline{A} \underbrace{A}_{m}$. Thus Theorem 1 is proved.

References

- [1] Richard Levingston, "The laws of some metabelian varieties", J. Austral. Math. Soc. Ser. A 30 (1981), 469-472.
- [2] Hanna Neumann, Varieties of groups (Ergebnisse der Mathematik und ihrer Grenzgebiete, 37. Springer-Verlag, Berlin, Heidelberg, New York, 1967).

Department of Pure Mathematics, University of Sydney, Sydney, New South Wales 2006, Australia; 22 Swinden Street, Downer, ACT 2602, Australia.