ON THE LAWS OF CERTAIN VARIETIES OF GROUPS
 Robert B. Howlett and Richard Levingston

```
Let m and n be coprime positive integers. The variety A A
(consisting of all groups G such that for some normal subgroup
H of G, H is abelian of exponent dividing m and G/H is
abelian of exponent dividing n) and the variety A A both
satisfy the following three laws:
all elements have order dividing mn ;
the commutator of two mth powers has order dividing m ;
the commutator of two nth powers has order dividing n .
It is proved that any law which holds in both these varieties
(notably that commutators commute) is a consequence of the above
three laws.
```


1. Preliminaries

We follow the notation of the book [2] of Neumann; in particular (if X and $\underline{\underline{Y}}$ are varieties)
$\underline{\underline{\text { XY }}}$ consists of those G such that for some $H \triangleleft G, H \in \underline{\underline{X}}$ and $G / H \in \underline{\underline{Y}}$,
$\underline{\underline{X}} \vee \underline{\underline{Y}}$ is the variety defined by the laws which hold in both \underline{X} and $\underline{\underline{Y}}$,

Received 18 September 1984.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/85 $\$ \mathrm{~A} 2.00+0.00$.
\underline{A}_{n} is the variety of abelian groups of exponent dividing n.

Throughout the paper m and n will be fixed coprime positive integers. It is easily proved (Proposition 2.2 below) that

$$
\mathrm{A}_{m=n}^{\mathrm{A}}=\operatorname{var}\left\{x^{m n}=1,[x, y]^{m}=1,\left[x^{n}, y^{n}\right]=1\right\}
$$

and symmetrically

$$
\hat{A}_{n} \underline{A}_{m}=\operatorname{var}\left\{x^{m n}=1,[x, y]^{n}=1,\left[x^{m}, y^{m}\right]=1\right\}
$$

Hence it seems natural to investigate whether the laws
(i) $x^{m n}=1$,
(ii) $\left[x^{m}, y^{m}\right]^{m}=1$,
(iii) $\left[x^{n}, y^{n}\right]^{n}=1$,
define the variety $A_{m} A_{n} \vee \underset{A_{n}}{A_{m}}$. This paper is devoted to proving that they do.

THEOREM 1. Lows (i), (ii) and (iii) above form a basis for the lows of the variety $A_{m} A_{n} \vee{\underset{A}{A}}_{A_{m}}^{A_{m}}$.

This improves the theorem of [1] where an additional law was needed.

2. Proof of Theorem 1

Since m and n are coprime the following is trivial.
LEMMA 2.1. Suppose that the group G satisfies low (i), and let $g \in G$. Then $g^{m}=1$ if and only if $g=h^{n}$ for some $h \in G$.

Interchanging m and n we see that, under the hypotheses of Lemma 2.1, $g^{n}=1$ if and only if $g=h^{m}$ for some $h \in G$. This symmetry between m and n persists throughout the paper, and in applications of the various lemmas we sometimes interchange m and n without explicitly mentioning it.

PROPOSITION 2.2. $\underset{A_{m-n}}{\mathrm{~A}_{n}}=\operatorname{var}\left\{x^{m n}=1,[x, y]^{m}=1,\left[x^{n}, y^{n}\right]=1\right\}$.

Proof. It is trivial that the given laws hold in $A_{n} A_{n}$. Conversely, suppose that a group G satisfies these laws. By Lemma 2.1 commutators in G are nth powers and hence commute. So G is metabelian, and the rest is clear.

LEMMA 2.3. If a and b are elements of any group G then $\left[b^{-1}, a, b, a\right]$ is conjugate in G to $\left[a, b^{-1}, a^{-1}, b\right]$.

Proof.

$$
\begin{aligned}
{\left[a, b^{-1}, a^{-1}, b\right] } & =\left[\left[a, b^{-1}\right]^{-1}\left[a, b^{-1}\right]^{-1}, b\right] \\
& =\left[b^{-1}, a\right]^{a^{-1}}\left[a, b^{-1}\right]\left[b^{-1}, a\right]^{b}\left[a, b^{-1}\right]^{a^{-1} b}
\end{aligned}
$$

Thus

$$
\begin{aligned}
{\left[a, b^{-1}, a^{-1}, b\right]^{a} } & =\left[b^{-1}, a\right]\left[a, b^{-1}\right]^{a}\left[b^{-1}, a\right]^{b a}\left[a, b^{-1}\right]^{a^{-1} b a} \\
& \left.=\left[b^{-1}, a\right]\left[a, b^{-1}\right]^{a}\left[b^{-1}, a\right]\right]^{b a}\left[a, b^{-1}\right]^{b}
\end{aligned}
$$

which is conjugate to

$$
\begin{aligned}
& {\left[a, b^{-1}\right]^{b}\left[b^{-1}, a\right]\left[a, b^{-1}\right]^{a}\left[b^{-1}, a\right]^{b a} } \\
&=\left[\left[^{-1}, a\right]^{-1}\left[b^{-1}, a\right]^{b}, a\right]=\left[b^{-1}, a, b, a\right] .
\end{aligned}
$$

Let $\underline{\underline{V}}$ be the variety defined by the laws (i), (ii) and (iii). It is trivial that laws (i), (ii) and (iii) hold in $\hat{A}_{m} A_{n}$ and in $\underline{A}_{n} A_{m}$, and hence

Throughout the rest of this paper G will denote an arbitrary group in $\underline{\underline{v}}$.

LEMMA 2.5. If $a, b \in G$ and $a^{m}=b^{n}=1$ then
(a) $\left[b^{-1}, a, b, a\right]=1=\left[a, b^{-1}, a^{-1}, b\right]$,
(b) $\left[[a, b],\left[a, b^{-1}\right]\right]^{n}=1$.

Proof. (a) We have

$$
\begin{equation*}
\left[b^{-1}, a, b\right]^{m}=\left[b\left(b^{-1}\right)^{a}, b\right]^{m}=\left[\left(b^{-1}\right)^{a}, b\right]^{m}=1 \tag{1}
\end{equation*}
$$

by law (ii) and Lemma 2.1 (since $b^{n}=1$). Hence by law (iii) and Lemma 2.1, $\left[b^{-1}, a, b, a\right]^{n}=1$. By Lemma 2.3 we deduce that $\left[a, b^{-1}, a^{-1}, b\right]^{n}=1$. But

$$
\left[a, b^{-1}, a^{-1}\right]^{n}=\left[a^{-1} a^{b^{-1}}, a^{-1}\right]^{n}=\left[a^{b^{-1}}, a^{-1}\right]^{n}=1
$$

by law (iii), and therefore (by law (ii)) $\left[a, b^{-1}, a^{-1}, b\right]^{m}=1$. Since m and n are coprime, $\left[a, b^{-1}, a^{-1}, b\right]=1$, and (by Lemma 2.3) $\left[b^{-1}, a, b, a\right]=1$ also.
(b)

$$
\begin{aligned}
{\left[[a, b],\left[a, b^{-1}\right]\right] } & =\left[\left[b^{-1}, a\right]^{b},\left[a, b^{-1}\right]\right] \\
& =\left[\left[a, b^{-1}\right]\left[b^{-1}, a\right]^{b},\left[a, b^{-1}\right]\right] \\
& =\left[\left[b^{-1}, a, b\right],\left[a, b^{-1}\right]\right] \\
& =\left[b^{-1}, a, b, a^{-1} a^{b^{-1}}\right] \\
& =\left[b^{-1}, a, b, a^{b^{-1}}\right]
\end{aligned}
$$

since $\left[b^{-1}, a, b\right]$ commutes with a by (a). But (1) above gives $\left[b^{-1}, a, b, a^{b^{-1}}\right]^{n}=1$ by law (iii). Thus $\left[[a, b],\left[a, b^{-1}\right]\right]^{n}=1$.

LEMMA 2.6. If $a, b \in G$ with $a^{n}=b^{n}=1$ and $\left[a, a^{b}\right]=1$ then $[a, b]=1$.

Proof. We have $[a, b]^{m}=1$ (law (ii)]. But since a commutes with $a^{b},\left(a^{-1} a^{b}\right)^{n}=\left(a^{-1}\right)^{n}\left(a^{b}\right)^{n}=1$, and since m and n are coprime, $[a, b]=1$.

LEMMA 2.7. Suppose that $a, b, c \in G$ with $a^{n}=b^{m}=[a, b]=c^{n}=1$. Then $\left[a^{c}, b\right]=1$.

Proof. By law (ii) we have $[a, c]^{m}=1$ and so law (iii) gives

$$
\begin{equation*}
[a, c, b]^{n}=1 \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[[a, c]^{b},[a, c]\right]^{n}=1 . \tag{3}
\end{equation*}
$$

By (2) and law (iii),

$$
\begin{equation*}
[a, c, b, a]^{m}=1 \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[a, c, b, a^{c}\right]^{m}=1 \tag{5}
\end{equation*}
$$

By law (ii), $\left[a^{c}, a\right]^{m}=1$, and so, by law (iii),

$$
\begin{equation*}
\left[b^{-a^{c}},\left[a^{c}, a\right]\right]^{n}=1 \tag{6}
\end{equation*}
$$

But

$$
\begin{aligned}
{[a, c, b, a] } & =\left[a^{-1} a^{c}, b, a\right] \\
& \left.=\left[a^{c}, b, a\right] \text { (since }[a, b]=1\right) \\
& =\left[\left(b^{-1}\right)^{a^{c}} b, a\right] \\
& \left.=\left[\left(b^{-1}\right)^{a^{c}}, a\right]^{b} \text { (since }[a, b]=1\right) \\
& \left.=\left[\left(b^{-1}\right)^{a^{c}},\left(a^{-1}\right)^{a^{c}} a\right]^{b} \quad \text { (since }\left[b^{c}, a^{a^{c}}\right]=1\right) \\
& =\left[\left(b^{-1}\right)^{a^{c}},\left[a^{c}, a\right]\right]^{b}
\end{aligned}
$$

and since m and n are coprime, (4) and (6) give

$$
\begin{equation*}
[a, c, b, a]=1 \tag{7}
\end{equation*}
$$

Therefore

$$
\begin{aligned}
{\left[a, c, b, a^{c}\right] } & =\left[a, c, b, a^{-1} a^{c}\right] \\
& =\left[a^{-1} a^{c}, b, a^{-1} a^{c}\right] \\
& =\left[\left(a^{-1} a^{c}\right)^{b}, a^{-1} a^{c}\right]
\end{aligned}
$$

By (3) and (5) therefore $\left[\left(a^{-1} a^{c}\right)^{b}, a^{-1} a^{c}\right]=1$. Now $\left(a^{-1} a^{c}\right)^{m}=b^{m}=1$, and so Lemma 2.6 gives $\left[a^{-1} a^{c}, b\right]=1$. Since a and b commute this gives $\left[a^{c}, b\right]=1$.

COROLLARY 2.8. If $d, e, f \in G$ with $d^{n}=e^{m}=[d, e]=f^{m}=1$
then $\left[d^{f}, e\right]=1$.
Proof. From Lemma 2.7, by interchanging m and n, we have $\left[d, e^{f^{-1}}\right]=1$ and hence $\left[d^{n}, e\right]=1$.

LEMMA 2.9. If $a, b \in G$ with $a^{n}=b^{m}=[r, b]=1$ then $a l l$ conjugates of a commute with b.

Proof. Let $g \in G$ and let p, q be integers with $p m+q n=1$. Then $g=c f$ where $c=g^{p m}$ and $f=g^{q n}$. By law (i), $c^{n}=1$, and so Lemma 2.7 gives $\left[a^{c}, b\right]=1$. But $f^{m}=1$ (law (i)); so Corollary 2.8 with a^{c} in place of d and b in place of e gives $\left[a^{c f}, b\right]=1$.

LEMMA 2.10. If $a, b, c \in G$ with $a^{n}=1$ and $\left[a, a^{b}\right]=\left[a, a^{c}\right]=1$ then $\left[a^{b}, a^{c}\right]=1$.

Proof. Since a commutes with a^{b} and a^{c} it commutes with $\left[a^{b}, a^{c}\right]$. But $\left[a^{b}, a^{c}\right]^{m}=1$ (law (ii)); so by Lemma 2.9 all conjugates of a commute with $\left[a^{b}, a^{c}\right]$. Thus

$$
1=\left[\left[a^{b}, a^{c}\right], a^{b}\right]=\left[\left(a^{b}\right)^{a^{c}}, a^{b}\right]
$$

and, by Lemma 2.6, $\left[a^{b}, a^{c}\right]=1$.
LEMMA 2.11. If $a, b, c \in G$ with $\left[a, a^{b}\right]=\left[a, a^{c}\right]=1$ then $\left[a^{b}, a^{c}\right]=1$. The set $T=\left\{t \in G \mid\left[a, a^{t}\right]=1\right\}$ is a subgroup of G.

Proof. Let a_{1}, a_{2} be powers of a with $a_{1}^{n}=a_{2}^{m}=1$ and $a_{1} a_{2}=a$. Since $\left[a_{1}, a_{2}\right]=1$ it follows from Lemma 2.9 that $\left[a_{1}^{b}, a_{2}^{c}\right]=\left[a_{1}^{c}, a_{2}^{b}\right]=1 . \operatorname{Since}\left[a, a^{b}\right]=1,\left[a^{r},\left(a^{2}\right)^{b}\right]=1$ for all integers r. So $\left[a_{1}, a_{\underline{1}}^{\bar{b}}\right]=\left[a_{2}, a_{\underline{2}}^{b}\right]=1$, and similarly $\left[a_{1}, a_{1}^{c}\right]=\left[a_{2}, a_{2}^{c}\right]=1$. By Lemma 2.10 we obtain $\left[a_{1}^{b}, a_{1}^{c}\right]=\left[a_{2}^{b}, a_{2}^{c}\right]=1$. Hence $\left[a^{b}, a^{c}\right]=\left[a_{1}^{b} a_{2}^{b}, a_{1}^{c} a_{2}^{c}\right]=1$.

Since $\left[a^{b}, a^{c}\right]=1$ yields $\left[a, a^{c b^{-1}}\right]=1$ we see that $b, c \in T$ implies $c b^{-1} \in T$. Since $l \in T, T$ is a subgroup.

LEMMA 2.12. Suppose that $a, b \in G$ satisfy $a^{m}=b^{n}=(a b)^{m}=1$, and let H be the subgroup of G generated by $\{a, b\}$. Then the elements $b^{a^{i}}, 0 \leq i \leq m-1$, generate an abelian normal subgroup B of H. The set $\left\{b^{-1} b^{i} \mid \perp \leq i \leq m-1\right\}$ also generates B.

Proof. $[a, b]^{n}=[a, a b]^{n}=1$ by law (iii), since $a^{m}=(a b)^{m}=1$. But $\left[a, b^{-1}\right]=b[a, b]^{-1} b^{-1}$; so $\left[a, b^{-1}\right]^{n}=1$, and, by law (ii), $\left[[a, b],\left[a, b^{-1}\right]\right]^{m}=1$. But, by Lemma $2.5(b),\left[[a, b],\left[a, b^{-1}\right]\right]^{n}=1$, and hence $\left[[a, b],\left[a, b^{-1}\right]\right]=1$. So $\left[[a, b],[a, b]^{b^{-1}}\right]=1$, and by Lemma 2.6 we deduce that $[a, b]$ commutes with b. Thus $a \in\left\{t \in G \mid\left[b, b^{t}\right]=1\right\}$, and by Lemma 2.11 it follows that $\left[b, b^{a^{i}}\right]=1$ for all i. So B is an abelian normal subgroup of H.

Since $(a b)^{m}=1$ we obtain $b^{a^{m-1}} \ldots b^{a^{2}} b^{a} b=1$, and hence $b^{-m}=\left(b^{-1} b^{a}\right)\left(b^{-1} b^{2}\right) \ldots\left(b^{-1} b^{a^{m-1}}\right)$. Therefore the subgroup generated by $\left\{b^{-1} b^{i} \mid 1 \leq i \leq m-1\right\}$ contains b, hence contains $b^{a^{i}}$ for all i, hence equals B.

LEMMA 2.13. If c, d, e G with $e^{n}=d^{n}=e^{m}=1$ then $[c, d, e, c]=1$.

Proof. Let $a=[c, d], b=[a, e]$. Then $a^{m}=1$ (by law (ii)), $b^{n}=1$ (by law (iii)), and $(a b)^{m}=\left(a^{e}\right)^{m}=1$. By Lemma 2.12 therefore there exists an abelian subgroup B such that

$$
\begin{gather*}
\left\{b^{-1} b^{i} \mid 1 \leq i \leq m-1\right\} \text { generates } B \tag{8}\\
b^{a^{i}} \in B \text { for } i=0,1, \ldots, m-1 \tag{9}
\end{gather*}
$$

We have $a^{m}=1, c^{n}=1$ and $(c a)^{n}=\left(c^{d}\right)^{n}=1$. Hence by Lemma 2.12 with m and n interchanged the elements $a^{c^{r}}, 0 \leq r \leq n-1$, generate an abelian subgroup. So, for each $i \in\{1,2, \ldots, m-1\}$,

$$
\begin{aligned}
\left(a^{i} c^{-1}\right)^{n} & =a^{i}\left(a^{i}\right)^{c} \ldots\left(a^{i}\right)^{c^{n-1}} \\
& =\left(a^{c^{n-1}} \ldots a^{c} a\right)^{i} \\
& =\left((c a)^{n}\right)^{i} \\
& =1
\end{aligned}
$$

and hence, by law (ii),

$$
\begin{equation*}
[b, c]^{m}=\left[b, a^{i} c^{-1}\right]^{m}=1 \tag{10}
\end{equation*}
$$

Let $i \in\{1,2, \ldots, m-1\}$ and let $g=\left[b^{c}, b^{-1} b^{i}\right]$. Since $b^{n}=1$ and b commutes with $b^{a^{i}}$, law (ii) gives $g^{m}=1$. But

$$
\begin{aligned}
g & =b^{-c} b\left(b^{-1}\right)^{i}{ }_{b} c_{b}-1 b a^{i} \\
& =\left[b^{-1} b^{c}, b^{-c} b^{a^{i}}\right] \\
& =\left[[b, c],\left[b, a^{i} c^{-1}\right]^{c}\right]
\end{aligned}
$$

so that (10) gives $g^{n}=1$. Hence $g=1$; that is, b^{c} centralizes $b^{-1} b^{i}$. Since this holds for all $i,(8)$ and (9) yield $\left[b^{c}, b\right]=1$. But $b^{n}=c^{n}=1$; so Lemma 2.6 gives $[b, c]=1$, as required.

LEMMA 2.14. If $a, b, f \in G$ with $a^{n}=b^{n}=f^{m}=1$ $[a, b, f]=1$.

Proof. By Lemma 2.13 with a, b, f in place of c, d, e we have

$$
\begin{equation*}
[a, b, f]^{a}=[a, b, f] \tag{11}
\end{equation*}
$$

But by Lemma 2.13 with $b, a^{-1}, f^{a^{-1}}$ in place of c, d, e we have that b centralizes $\left[b, a^{-1}, f^{a^{-1}}\right]=\left[[a, b]^{a^{-1}}, f^{a^{-1}}\right]=[a, b, f] \quad$ (by (ll)). Since a and b both centralize $[a, b, f]$, so does $[a, b]$. Hence

$$
\left[[a, b]^{f},[a, b]\right]=1
$$

and since $f^{m}=[a, b]^{m}=1 \quad(\operatorname{law}(i i))$, Lemma 2.6 gives $[a, b, f]=1 . \square$
LEMMA 2.15. If $H \in \underline{\underline{V}}$ satisfies $h^{m}=1$ for all $h \in H$ then H is abelian.

Proof. Let $a, b \in H$. By hypothesis $[a, b]^{m}=1$. But $a^{m}=b^{m}=1$; so by Lemma 2.1 and law (iii), $[a, b]^{n}=1$. Hence $[a, b]=1$.

LEMMA 2.16. Let H be the subgroup of G generated by $S=\left\{[a, b] \mid a, b \in G, a^{n}=b^{n}=1\right\}$. Then H is abelian, $h^{m}=1$ for all $h \in H, H \triangleleft G$ and $G / H \in \mathcal{A}_{n} A_{m}$.

Proof. Clearly $S^{g}=S$ for all $g \in G$, and hence $H \triangleleft G$. If $f \in S$ then $f^{m}=1$ by law (ii). So, by Lemma 2.14, f commutes with $[a, b]$ whenever $a^{n}=b^{n}=1$; that is, f commutes with all elements of S. Hence H is abelian.

Since H is abelian and its generating set S consists of elements of order dividing m it follows that $h^{m}=1$ for all $h \in H$.

Let L be the subgroup of G generated by $T=\left\{a \in G \mid a^{n}=1\right\}$. Then clearly $H \leq L \triangleleft G$. Moreover if $a, b \in T$ then $[a, b] \in H$, and so L / H is abelian. But L / H is generated by elements of order dividing n; so $L / H \in{\underset{\underline{A}}{n}}$. Finally, if $g \in G$ then, by law (i), $g^{m} \in L$, whence $G / L \in{\underset{A}{m}}^{(b y}$ Lemma 2.15), whence $G / H \in A_{n} A_{m}$.

LEMMA 2.17. $G \in{\underset{A}{A} A_{m}}_{A_{m}} \vee \underline{A}_{n} A_{n}$.
Proof. Let H be as in Lemma 2.16, K the subgroup of G generated by $\left\{[a, b] \mid a, b \in G, a^{m}=b^{m}=1\right\}$. By Lemma 2.16 if $g \in H$ then $g^{m}=1$, and dually if $g \in K$ then $g^{n}=1$. Hence $H \cap K=1$. But, by Lemma 2.16, $G / H \in \underset{=n=m}{A_{A}} \leq{ }_{A}^{A} A=m \vee \underset{=m=n}{A}$, and dually

$x \mapsto(x H, x K)$ is an embedding of G in $G / H \times G / K \in A_{n} A_{n} \vee A_{m} A_{n}$, whence the result.

Lemma 2.17 shows that $\underset{\underline{V}}{\leq A_{n}} A_{m} \vee A_{m} A_{n}$. The reverse inclusion is obvious since laws (i), (ii) and (iii) hold in both $A_{n} A$ and $A A_{n}^{A}$. Thus Theorem 1 is proved.

References

[1] Richard Levingston, "The laws of some metabelian varieties", J. Austral. Math. Soc. Ser. A 30 (1981), 469-472.
[2] Hanna Neumann, Varieties of groups (Ergebnisse der Mathematik und ihrer Grenzgebiete, 37. Springer-Verlag, Berlin, Heidelberg, New York, 1967).

Department of Pure Mathematics,
University of Sydney,
Sydney,
New South Wales 2006,
Australia;
22 Swinden Street,
Downer,
ACT 2602,
Australia.

