

An International journal of current research and theory with open peer commentary

Volume 36 | Issue 3 | June 2013 | ISSN: 0140-525X

Behavioral and Brain Sciences

Editors

Paul Bloom Barbara L. Finlay

URL: http://www.editorialmanager.com/bbs

E-mail: bbsjournal@cambridge.org

Behavioral and Brain Sciences

Journals Department

Cambridge University Press

32 Avenue of The Americas

New York, NY 10013-2473, U.S.A.

Managing Editor

Gennifer Levey

Chief Copy Editor

Sumitra Mukerji

Proofreaders

Sylvia Elvin Rashidah Ismaili AbuBakr

Editorial Board

Affective Neuroscience

Stephanie D. Preston/U. of Michigan

Atypical Neurodevelopment

Simon Baron-Cohen/Cambridge U.

Behavioral Neurogenetics

Wim E. Crusio/CNRS UMR

Cognition and Artificial Intelligence

Zenon Pylyshyn/Rutgers U.

Cognitive and Decision Sciences

Nick Chater/University College London

Cognitive Development

Annette Karmiloff-Smith/Birbeck College

Cognitive Neuroscience

Moshe Bar/Harvard Medical School

Computational Neuroscience

Nestor A. Schmajuk/Duke U.

Evolution of Brain and Cognition

Dean Falk/Florida State U.

Evolution of Cognition

Celia Heyes/Oxford U.

Experimental Analysis of Behavior

A. Charles Catania/U. Maryland, Baltimore County

Language and Language Disorders

Max Coltheart/Macquarie U.

Linguistics

Robert A. Freidin/Princeton U.

Perception

Bruce Bridgeman/U. of California, Santa Cruz

Philosophy of Science

Massimo Piattelli-Palmarini/U. of Arizona

Primate Cognition

Laurie R. Santos/Yale U.

Social Cognition

Mahzarin R. Banaji/Harvard U.

Social Cognitive Neuroscience

Rebecca Saxe/MIT

Vision, Language and Computation

Shimon Edelman/Cornell U.

FOUNDING EDITOR (1978–2001)

Stevan Harnad

Editorial Policy Behavioral and Brain Sciences (BBS) is an international journal providing a special service called Open Peer Commentary* to researchers in any area of psychology, neuroscience, behavioral biology, or cognitive science who wish to solicit, from fellow specialists within and across these BBS disciplines, multiple responses to a particularly significant and controversial piece of work. (See Instructions for Authors and Commentators, inside back cover and also at http://journals.cambridge.org/BBSJournal/Inst) The purpose of this service is to contribute to the communication, criticism, stimulation, and particularly the unification of research in the behavioral and brain sciences, from molecular neurobiology to artificial intelligence and the philosophy of mind.

Papers judged by the editors and referees to be appropriate for Commentary are circulated to a large number of commentators selected by the editors, referees, and author to provide substantive criticism, interpretation, elaboration, and pertinent complementary and supplementary material from a full cross-disciplinary perspective. The article, accepted commentaries, and the author's response then appear simultaneously in BBS.

Commentary on BBS articles may be provided by any qualified professional in the behavioral and brain sciences, but much of it is drawn from a large body of BBS Associates who have become formally affiliated with the project (see http://journals.cambridge.org/BBSJournal/BBSAssoc).

Qualified professionals are eligible to become BBS Associates if they have (1) been nominated by a current BBS Associate, (2) refereed for BBS, or (3) had a commentary or article accepted for publication. A special subscription rate is available to Associates. Individuals interested in serving as BBS Associates are asked to view the full instructions for joining at http://journals.cambridge.org/BBSJournal/Inst/Assoc and then email bbsjournal@cambridge.org.

© Cambridge University Press 2013. All rights reserved. No part of this publication may be reproduced, in any form or by any means, electronic, photocopying, or otherwise, without permission in writing from Cambridge University Press. Policies, request forms, and contacts are available at: http://www.cambridge.org/rights/permissions/permission.htm.

Permission to copy (for users in the U.S.A.) is available from Copyright Clearance Center, http://www.copyright.com, email:info@copyright.com.

Subscriptions Behavioral and Brain Sciences (ISSN 0140-525X) is published bimonthly in February, April, June, August, October, and December. The subscription price of Volume 36 (2013) for institutions is US \$1288.00 for print and online and US \$1055.00 for online only in the U.S.A., Canada, and Mexico; and UK £759.00 for print and online and UK £624.00 for online only elsewhere. The subscription price for individuals is US \$374.00 for print and online and UK £199 for online only elsewhere. For BBS Associates, with proof of eligibility with order, US \$139.00 in the U.S.A., Canada, and Mexico; and UK £219.00 for print and online and UK £199 for online only elsewhere. For BBS Associates, with proof of eligibility with order, \$116.00 in the U.S.A., Canada, and Mexico; and UK £68.00 elsewhere. Subscription price includes surface postage. Single parts cost US \$250.00 (UK £124.00) plus postage. Institutional orders may be sent to a bookseller, or, in the U.S.A., Canada, and Mexico direct to: Cambridge University Press, 32 Avenue of The Americas, New York, NY 10013-2473 email: journals_subscriptions@cambridge.org; in the U.K. and rest of the world to: Cambridge University Press, The Edinburgh Building, Shaftesbury Road, Cambridge CB2 8RU, England, e-mail:journals_subscriptions@cambridge.cam.ac.uk. Individuals must order direct from the Press. You may also subscribe through the Cambridge Journals website, http://journals.cambridge.org/bbs.

Postmaster: Send address changes in the U.S.A., Canada, and Mexico to *Behavioral and Brain Sciences*, Cambridge University Press, Journals Dept., 100 Brook Hill Drive, West Nyack, NY 10994-2133, U.S.A. Send address change elsewhere to *Behavioral and Brain Sciences*, Cambridge University Press, The Edinburgh Building, Shaftesbury Road, Cambridge CB2 8RU, England.

Online availability *Behavioral and Brain Sciences* is part of the Cambridge Journals Online (CJO) service at http://journals.cambridge.org.

Institutional subscribers: Access to full-text articles online is currently included with the cost of the print subscription. Subscription must be activated; see http://cambridge.journals.org.

Advertising Inquiries about advertising should be sent to the Journals Advertising Department of the Cambridge or New York Office of Cambridge University Press.

*Modelled on the "CA Comment" service of the journal Current Anthropology.

Contents Volume 36:3 June 2013

Clark, A. Whatever next? Predictive 1	brains	, situated agents, and the future of	
cognitive science			181
Open Peer Commentary:		Little, D. YJ. & Sommer, F. T. Maximal	
Anderson, M. L. & Chemero, T. The problem		mutual information, not minimal entropy, for	
with brain GUTs: Conflation of different senses of		escaping the "Dark Room"	220
"prediction" threatens metaphysical disaster	204	Muckli, L., Petro, L. S. & Smith, F. W.	
Block, N. & Siegel, S. Attention and perceptual		Backwards is the way forward: Feedback in the	
adaptation	205	cortical hierarchy predicts the expected future	221
Bowman, H., Filetti, M., Wyble, B. & Olivers,	• • •	Paton, B., Skewes, J., Frith, C. & Hohwy, J.	
C. Attention is more than prediction precision	206	Skull-bound perception and precision	222
Bridgeman , B. Applications of predictive control	• • • •	optimization through culture	222
in neuroscience	208	Phillips, W. A. Neuronal inference must be local,	222
Buckingham, G. & Goodale, M. A. When the	• • • •	selective, and coordinated	222
predictive brain gets it really wrong	208	Rasmussen, D. & Eliasmith, C. God, the devil,	
Dennett, D. C. Expecting ourselves to expect:	200	and the details: Fleshing out the predictive	222
The Bayesian brain as a projector	209	processing framework	223
Egner, T. & Summerfield, C. Grounding		Roepstorff, A. Interactively human: Sharing	22.4
predictive coding models in empirical	210	time, constructing materiality	224
neuroscience research	210	Ross, D. Action-oriented predictive processing	225
Farmer, T. A., Brown, M. & Tanenhaus, M. K.		and the neuroeconomics of sub-cognitive reward	225
Prediction, explanation, and the role of generative	211	Schaefer, R. S., Overy, K. & Nelson, P. Affect	
models in language processing	211	and non-uniform characteristics of predictive	226
Friston, K. Active inference and free energy	212	processing in musical behaviour	226
Froese, T. & Ikegami, T. The brain is not an	210	Seth, A. K. & Critchley, H. D. Extending	
isolated "black box," nor is its goal to become one	213	predictive processing to the body: Emotion as	227
Gerrans, P. Unraveling the mind	214	interoceptive inference	227
Gowaty, P. A. & Hubbell, S. P. Bayesian animals		Shea, N. Perception versus action: The	
sense ecological constraints to predict fitness and		computations may be the same but the direction	220
organize individually flexible reproductive	015	of fit differs	228
decisions	215	Silverstein, S. M. Schizophrenia-related	
Hirsh, J. B., Mar, R. A. & Peterson, J. B.		phenomena that challenge prediction error as the	229
Personal narratives as the highest level of cognitive	216	basis of cognitive functioning	230
integration Holm, L. & Madison, G. Whenever next:	210	Sloman, A. What else can brains do?	230
	217	Spratling, M. W. Distinguishing theory from implementation in predictive coding accounts of	
Hierarchical timing of perception and action Khalil F. L. Two kinds of theory laden cognitive	211	implementation in predictive coding accounts of brain function	231
Khalil, E. L. Two kinds of theory-laden cognitive			201
processes: Distinguishing intransigence from dogmatism	218	Trappenberg, T. & Hollensen, P. Sparse coding and challenges for Bayesian models of the brain	232
König, P., Wilming, N., Kaspar, K.,	210	and chancinges for Dayesian models of the Drain	<i>404</i>
Nagel, S. K. & Onat, S. Predictions in the light of		Author's Response:	
your own action repertoire as a general		Clark, A. Are we predictive engines? Perils,	
computational principle	219	prospects, and the puzzle of the porous perceiver	233
comparational principic	410	prospects, and the puzzle of the porous perceiver	200

Pothos, E. M. & Busemeyer, J. R. direction for cognitive modeling?	Can q	uantum probability provide a new	255
Open Peer Commentary: Aerts, D., Broekaert, J., Gabora, L. & Sozzo,		Kusev, P. & van Schaik, P. The cognitive economy: The probabilistic turn in psychology and	
S. Quantum structure and human thought	274	human cognition	294
Atmanspacher, H. At home in the quantum		Lee, M. D. & Vanpaemel, W. Quantum models	
world	276	of cognition as Orwellian newspeak	295
Baldo, M. V. C. Signal detection theory in Hilbert		Love, B. C. Grounding quantum probability in	
space	277	psychological mechanism	296
Banerjee, A. & Horwitz, B. Can quantum		MacLennan, B. J. Cognition in Hilbert space	296
probability help analyze the behavior of functional	270	Marewski, J. N. & Hoffrage, U. Processes	
brain networks?	278	models, environmental analyses, and cognitive	
Behme, C. Uncertainty about the value of quantum probability for cognitive modeling	279	architectures: Quo vadis quantum probability theory?	297
Blutner, R. & beim Graben, P. The (virtual)	213	Mender , D . The implicit possibility of dualism in	201
conceptual necessity of quantum probabilities in		quantum probabilistic cognitive modeling	298
cognitive psychology	280	Navarro, D. J. & Fuss, I. What are the	_00
de Castro, A. On the quantum principles of		mechanics of quantum cognition?	299
cognitive learning	281	Newell, B. R., van Ravenzwaaij, D. & Donkin,	
Corr, P. J. Cold and hot cognition: Quantum		C. A quantum of truth? Querying the alternative	
probability theory and realistic psychological		benchmark for human cognition	300
modeling	282	Noori, H. R. & Spanagel, R. Quantum modeling	202
Dzhafarov, E. N. & Kujala, J. V. Beyond		of common sense	302
quantum probability: Another formalism shared	200	Oaksford, M. Quantum probability, intuition,	202
by quantum physics and psychology	283	and human rationality	303
Franceschetti, D. R. & Gire, E. Quantum probability and cognitive modeling: Some cautions		Pleskac, T. J., Kvam, P. D. & Yu, S. What's the predicted outcome? Explanatory and predictive	
and a promising direction in modeling physics		properties of the quantum probability	
learning	284	framework	303
Gelman, A. & Betancourt, M. Does quantum		Rakow, T. If quantum probability = classical	
uncertainty have a place in everyday applied		probability + bounded cognition; is this good, bad,	
statistics?	285	or unnecessary?	304
Gonzalez, C. & Lebiere, C. Cognitive		Ross, D. & Ladyman, J. Quantum probability,	
architectures combine formal and heuristic		choice in large worlds, and the statistical structure	
approaches	285	of reality	305
Grace, R. C. & Kemp, S. Quantum probability	207	Shanteau, J. & Weiss, D. J. Physics envy: Trying	200
and comparative cognition	287	to fit a square peg into a round hole Stewart, T. C. & Eliasmith, C. Realistic neurons	306
Hameroff, S. R. Quantum mathematical cognition requires quantum brain biology: The		can compute the operations needed by quantum	
"Orch OR" theory	287	probability theory and other vector symbolic	
Hampton, J. A. Quantum probability and	_0.	architectures	307
conceptual combination in conjunctions	290	Tentori, K. & Crupi, V. Why quantum	
Houston, A. I. & Wiesner, K. Is quantum		probability does not explain the conjunction	
probability rational?	291	fallacy	308
Kaznatcheev, A. & Shultz, T. R. Limitations of			
the Dirac formalism as a descriptive framework			
for cognition	292	Authors' Response:	
Khalil, E. L. Disentangling the order effect from		Pothos, E. M. & Busemeyer, J. R. Quantum	
the context effect: Analogies, homologies, and	293	principles in psychology: The debate, the evidence, and the future	310
quantum probability	∠3O	Cridence, and the future	210