Further determination of interband lags between variations in B, V, R, and I bands in active galactic nuclei

S. G. Sergeev

Crimean Astrophysical Observatory of the Taras Shevchenko National University of Kyiv, p/o Nauchny, Crimea 98409, Ukraine email: sergeev@crao.crimea.ua

Abstract. New estimates of the interband lags between variations in the B band and variations in the V, R, and I bands for three active galactic nuclei (AGNs) are present. In contrast to the previous study by Sergeev *et al.* (2005), the effect of the contribution of the broad lines to the bands is taken into account.

Keywords. galaxies: active, galaxies: nuclei, galaxies: photometry, galaxies: Seyfert

1. Introduction

To explain the observed correlation between flux variations in the X-ray, ultraviolet, and optical wavelengths in AGNs, the reprocessing model has been proposed. In this model, the accretion disk irradiates not only due to viscous friction, but also due to X-ray heating. The model has received some observational support from comparison of flux variations at various wavelengths (e.g., Collier *et al.* 1998, 1999; Sergeev *et al.* 2005).

2. Observations and Method

Photometric observations and instrumental setup are described in details in Sergeev et al. (2005). The filter wheel contains a set of B, V, R, R1, and I filters, where the filter designated R1 closely resembles the Cousins I filter, while the other filters closely resemble the standard Johnson filters. I have used Crimean data obtained as a part of the international monitoring campaign over a 140-day span beginning in 2010 August (Grier et al. 2012). To subtract broad-line fluxes from the photometric light curves of AGNs, I have used the Crimean optical spectra of these AGNs. I have separated broad emission lines from the continuum. The net broad-line spectra were then passed through the transparency curves of our filters to simulate magnitudes of the broad emission lines. The broad-line spectrum consists of the following lines: Balmer lines (usually most bright), He II, He I, and Fe II multiplets. To account for the contribution of the bright H_{α} line to the red filters, when the H_{α} region spectra were unavailable, it was assumed that the H_{α} line profile is identical to the H_{β} line profile with the Balmer decrement of 3.

3. Results and Summary

I have analyzed the three AGNs: 3C 120, Mrk 6, and Mrk 1513. The light curves of the Mrk 6 nucleus are shown in Fig. 1. The interpolation cross-correlation functions (ICCF) have been computed between variations in the *B* filters and variations in other filters. I have measured a lag at the ICCF peak (τ_{peak}) and the ICCF centroid (τ_{cent}). The cross-correlation results are present in Table 1 (both original data and after subtraction the

Figure 1. Light curves of the Mrk 6 nucleus. The flux units for each filter are arbitrary.

Object Name	Filter		$ au_p, \ ext{conf. i} \ -3\sigma$	a^{k} nterval +3 σ	τ_{cent} (days)	$ au_c$ conf. i -3σ	$t_{n terval}^{ent} + 3\sigma$	$r_{m \ a \ x}$
broad-line contribution is NOT subtracted:								
3C 120	V	-0.39	-3.34	+2.41	-0.45	-2.95	+1.75	0.9917
3C 120	R	+1.62	-1.68	+6.89	+2.31	-0.31	+5.07	0.9783
3C 120	R1	+1.44	-2.46	+5.54	+1.79	-1.32	+4.43	0.9766
3C 120	Ι	+1.40	-2.45	+6.40	+1.89	-1.13	+4.86	0.9784
Mrk 6	V	+0.40	-1.63	+3.22	+0.99	-1.40	+3.29	0.9937
Mrk 6	R	+4.57	+0.45	+7.33	+5.26	+2.79	+7.84	0.9738
Mrk 6	R1	+3.32	-0.34	+8.15	+5.26	+2.85	+8.26	0.9654
Mrk 6	Ι	+5.75	+0.38	+13.0	+6.18	+2.95	+12.0	0.9522
Mrk 1513	V	+0.48	-2.44	+3.40	-0.20	-4.44	+3.31	0.9821
Mrk 1513	\mathbf{R}	+1.48	-1.34	+6.47	+2.38	-1.08	+5.57	0.9784
Mrk 1513	R1	+4.43	-1.33	+8.55	+4.77	-0.99	+8.06	0.9623
Mrk 1513	Ι	+3.41	-1.46	+11.3	+4.94	+1.04	+8.58	0.9491
broad-line contribution is subtracted:								
$3C \ 120$	V	+0.53	-1.66	+3.50	+1.08	-1.38	+3.09	0.9850
3C 120	\mathbf{R}	+1.52	-0.90	+5.71	+2.41	+0.06	+4.80	0.9723
Mrk 6	V	+0.38	-1.62	+3.27	+0.95	-1.49	+3.42	0.9934
Mrk 6	R	+3.33	-0.90	+6.40	+4.09	+1.35	+11.6	0.9628
Mrk 1513	V	+0.49	-1.67	+2.62	+0.72	-1.38	+3.53	0.9775
Mrk 1513	R	+1.47	-0.71	+4.80	+2.75	-0.81	+5.60	0.9694
Mrk 1513	R1	+3.52	-0.55	+8.57	+5.60	+0.55	+8.46	0.9474
Mrk 1513	Ι	+3.41	-0.72	+15.4	+5.87	+2.27	+12.6	0.9356

 Table 1. Interband cross-correlation results

broad-line contribution). Also given are maximum correlation coefficient r_{max} and $\pm 3\sigma$ confidence intervals for the lag. A positive lag means that the *B*-filter flux varies first, while other filters follow it with some delay. The interband lags are positive at more than 3σ confidence in several cases and there is a tendency for the lag to be greater for more red filters. It is obvious that the broad-line contribution affects the lag measurements, although not catastrophically in most cases. The lag increases if the relative broad-line contribution to the *B* band is greater than that for a given band and vice versa.

I confirm our previous result (Sergeev *et al.* 2005): the variations at the V, R, and I bands lag behind those at the B band and the lag is higher for longer wavelengths.

References

Sergeev, S. G., Doroshenko, V. T., Golubinskiy, Y. V., Merkulova, N. I., & Sergeeva, E. A. 2005, *ApJ*, 622, 129

Collier, S. J., Horne, K., Kaspi, S., et al. 1998, ApJ, 500, 162

Collier, S. J., Horne, K., Wanders, I., & Peterson, B. M. 1999, MNRAS, 302, L24

Grier C. J., Peterson B. M., Pogge R. W., et al. 2012, ApJ, 755, 60