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1. Introduction. A Banach space X is said to have property {PROXBID) if the canonical
image of X in its bidual X** is proximal. In other words, if J : X-* X** is the canonical
embedding, then it is required that every element of X** have at least one best approximation
(i.e., nearest point) from the closed subspace J(X). We show below that, if X is the space of
(real or complex) continuous functions on a compact set, or the space of (real or complex)
continuous functions that vanish at infinity on a locally compact set, then X has property
(PROXBID). At this point we should mention the existence of a variety of examples [2, 8] of
Banach spaces which lack property (PROXBID).

Let us recall that the classical Gelfand-Naimark Theorem (e.g. [10, p. 4]) allows us to
identify any commutative C*-algebra A with either the space C(A) (if A has an identity) or else
the space C0(A) (if A has no identity). Here A is the pure state space of A. Thus we may
conclude that every commutative C*-algebra has property (PROXBID), and likewise, so does
the (real) space of all self-adjoint elements of any such algebra. Let us further recall that, in
[8], Holmes and Kripke have shown (constructively) that the noncommutative C*-algebra of
all compact operators on a Hilbert space is proximinal in the algebra of all bounded operators,
and consequently has property (PROXBID). More recently, and more generally, Fakhoury
[4] has shown (non-constructively) that any " M-ideal " in a Banach space X\s proximal in X,
and, in fact, that a continuous choice of best approximation can be defined on X. (An ex-
tensive presentation of the theory of M-ideals has been given by Alfsen and Effros [1]; here it
is pertinent only to note that every closed two-sided ideal in a C*-algebra is an M-ideal.) In
any event, we are led to raise the general question: Which C*-algebras have property (PROX-
BID)? Making use of the universal representation of a given C*-algebra A, we see that, in
order to answer this question affirmatively for A, it would suffice to show that A is proximinal
in the PF*-algebra generated by A. Indeed, this is in effect what was done in [8] and those
authors' earlier paper [6] (for the special cases under consideration there).

The fact that the spaces C0(A, R) have property (PROXBID) has already been established
by J. Blatter [2], as a special case of his very extensive theory of best approximation from
certain subspaces of C0(A, X), where X is a (real) Banach space whose dual is an abstract
L-space. His proof requires in particular the use of theorems of Kakutani and Seever to
identify the bidual C0(A,R)** with another space C(AU R) and C0(A,R) with a subalgebra of
this latter space. By contrast, our proof deals directly with the elements of the bidual qua
functions on the first dual, and is therefore relatively self-contained. Although we necessarily
employ certain special properties of spaces of continuous functions, we feel that this kind
of proof may be more useful as a model for proofs of property (PROXBID) in other
spaces for which a Kakutani-type representation theorem is not available. We further
remark that the present proof was originally developed for the case of real-valued functions,
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as another application of the " interposition " method of approximation as propounded in
[6, 7].

2. The existence of best approximations. Let A be a compact Hausdorff space and let
C(A) (resp. C(A, R)) be the linear space of all continuous complex-valued (resp. real-valued)
functions on A. When endowed with the usual supremum norm, these spaces are Banach
spaces. A state on such a Banach space is a positive linear functional of norm one. If e is the
identity in such a space (that is, the function everywhere equal to unity), then a state can
also be described as a norm-one linear functional whose value at e is 1. Thus for the Banach
spaces under discussion we can say that a state is simply a Borel probability measure on
A.

THEOREM 1. Let X be one of the spaces C(A) or C(A, R), and let <D be an arbitrary element
of the bidual X**. Then the distance from <J> to the canonical image J(X) is attained. Hence X
has property (PROXBID).

Proof. We shall deal only with the more general (and more difficult) case where X = C(A).
The alternative case is handled analogously, and certain simplifications are possible; these will
be indicated at the end of the proof.

We introduce the following notation:

C = complex plane;
dH = Hausdorff metric on the compact nonempty subsets of C;

Jf(t) = the directed family of open /-neighbourhoods, for re A;
Q(t,N) = the set of all states in C(A)* with support in N(Ne

AN(t) = closure of $(fi(f, N)).

Now, for each / e A, consider the net N t-* AN(t) defined on Jf{t). The range of this net
lies in the compact metric space M(<5; dH) whose elements are the compact convex and non-
empty subsets of the disk in C with centre 0 and radius || O ||. We put

,4(0= lim AN(t); (1)
N e jr (t)

this limit exists in M(O; dH) by virtue of the compactness of this space and monotonicity of the
net N t-» AN(t). It may be verified that

A(t)= n AN(t). (2)

We show that the map A: A -> 2C just defined is upper semicontinuous. This requires us
to choose any nonempty open set G c C and then show that {teA: A{t) c G} is open. Let tQ

belong to this set. Then, by (1), there is an NeJ^^o) for which AN(t0) c G. Hence, if teN,
we have by (2) that

A(t) c AN(t) = AN(t0) c G,

and so A is upper semicontinuous.
Now let r(t) be the Chebyshev radius [5, § 33] of A(t); that is,
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r(t)= inf sup |a - / J | , (3)
( i C e >(t)

and put

R(A) = sup{r(t):teA}.

Clearly R(A) g 11011. Following Olech [9, p. 288] we introduce the map B: A -> 2C defined by

where Z>(/?, /?) is the closed disk in C with centre /? and radius R. Olech proved that the values
B(t) are compact, convex and nonempty subsets of C and that B is lower semicontinuous.
Thus, by the Michael selection principle, there is an/oeC(A) for which fo(t)e B(t), for all
te A. We shall complete the proof by showing that any such/0 is a best approximation to O
from J(C(A)), and that dist (O,/(C(A))) = R(A).

First we establish that R(A) ^ dist (O,/(C(A))), by showing that

R(A)<, | |<&-/(/)| | for all /eC(A). (4)

Given e > 0, choose te A so that r(t) > r(A)—e. If/e C(A), we can choose Ne^{t) for which
osc(/; N)<e, and then

whenever neQ.(t,N). (Recall that e is the identity in C(A).) Taking into account (1), (3), and
the fact that/(/)e .4(0, we may assume that N has also been chosen so small that there is an
a e AN(t) for which | a - / ( 0 | > K0 ~ e- By definition of AN(t), there exists a /z 6 Q(t, N) for which
| a - $00| < e. Consequently

|| O - J(f) || ^ |<D(/i)-</,/i> | £ | a - / ( / ) | - 1 a-S>0<)|-1/(0-<f, fi> \ > r(t)-3e £ R(A)-4e,

and this establishes the inequality (4).
It remains to prove that

\\®-J(fQ)\\£R(A).

Let e > 0 and teA. There is an Nterf(t) for which

max {osc(/0; Nt),dH(ANt{t),A(t))} < e.

Since/0 is a selection of B, we know that A{t) c D(fo(t),R(A)). Therefore, if neSl(t, Nt),

(5)

if a e A{t) satisfies | a - <b(ji) | < e. Next we cover A by a finite number of these neighbourhoods
Nt, say by N^ = Ntl,...,Nk = Ntk, and then choose a partition of unity subordinate to this
cover, say/>!,... ,pk. Consider now any state \i in C(A)*. The measures sgQ(ptn) belong to
J2(/;,iV,) and we have, by (5),
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= | I \\pifi || (<£>(sgn(/>f n))- </0, sgn (/>f/i)» |

since

In this way we obtain the inequality

(6)\
whenever ^ is a state in C(A)*.

Finally, if fi is any element of the unit sphere of C(A)*, there are states //, and //2, and
complex numbers s and / with | s | +11 | = 1 such that n = sfit + t\i2. It follows from (6) that

and the proof of Theorem 1 is complete.

REMARKS, (a) As mentioned earlier, the proof of Theorem 1 applies equally well to the
case where X = C(A, R). Let us note, however, the following simplifications, which also serve
to illustrate the constructions involved in the preceding proof. We can define a pair of
bounded real-valued functions / and u on A by

fsup
= ton { {<DOi):/xen(t,iV)}.

NeJrit) [inf
These functions u and / are respectively upper and lower semicontinuous on A, and clearly
/( ') = «(•)• IQ o u r earlier notation we have

The assertions about the map B and its values B(t), for whose proofs we made references to
[9], are clearly valid in the present case. Further, the problem of obtaining a continuous
selection of B (to serve as a best approximation to O) does not now require the use of the
Michael selection principle (although it of course applies), but instead yields to the original
Dieudonne" interposition theorem [3, p. 75]. Thus, as we mentioned in the introduction, the
proof that C(A, R) has property (PROXBID) can be viewed as a further application of the
" interposition method " of approximation as developed in [6, 7].

(b) In the course of proving Theorem I, we showed that any continuous selection of the
map B was a best approximation to O. Now we observe that the converse holds, that is, any
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best approximation feC(A) must satisfy f{t)eB(t) for all teA. Indeed, given aeA(t) and
e > 0, there is an Ne^V(t) and a [ieSl(t,N) for which | a—Q>(ji) \ < e. Therefore

g 26+ || * - / ( / ) ||

= 2e + R(A),

showing that A(t) c D(f(t),R(A)), or, in other words, thatf(t)eB(t).
Now we turn to the case where A is a (generally non-compact) locally compact Hausdorff

space and X is either the Banach space C0(A) of continuous complex-valued functions on A
which vanish at infinity or the analogous real space C0(A, R). If we replace A by its one-point
compactification A, then X can be identified with the subspace of C(K) (resp. C(K, R)) con-
sisting of those functions in X which vanish at the point at infinity. With this viewpoint it is
clear that the next theorem establishes that X has property (PROXBID).

THEOREM 2. Let Abe a compact Hausdorff space and toe A. Let X be the hyperplane in
either C(A) or C(A,H) consisting of all functions ffor which f(t^) = 0. Then X has property
(PROXBID).

Proof. As before, we shall deal only with the more general case of complex-valued
functions. Let <50 be the state " evaluation at t0 ", so that X = ker(<50). We can identify the
bidual A'** with the hyperplane {So}1 in C(A)**. Choose $ e l * * . Let D(0,Ro) be the
smallest disk in C which contains the set A{t0) (notation as in the proof of Theorem 1), and put
R{A, t0) = max {R(A), Ro}. We claim that

R(A,to) = dist(^, J(X)), (7)

and that this distance is attained at some point in J{X).
Suppose that R(A, t0) = Ro. We choose an /e X and show that

(8)

Given s > 0, we know that for all sufficiently small A^e^"(/0) we have

max {osc(/; N), dB(AN(t0), A(t0))} < e.

Also, by definition of Ro, there exists aeA(t0) such that | a \ > Ro—e, and consequently there
is a fi 6 Q(t0, N) for which | <&(ji) \ > Ro - 2e. Therefore

*R0-3e = R(A,to)-3e,

since f(t0) = 0. This proves (8).

Now introducing the map

t ^ 5 ( 0 = {peC: A(t) a D(fi,R{A, t0))},

we have (by [9] again) that B is lower semicontinuous and that (by construction) OeB(to). If
we put
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(B(t) (t*tQ),
Bit) = \

[o (t = *0),
we have again that B is lower semicontinuous and consequently there is a continuous selection
/0forJ3. Clearly foeX. We claim that/0 satisfies 11$-/(/<>)|| ^ R(A,t0). The argument at
this point is very nearly identical to the analogous part of Theorem 1, and we omit it. This
inequality establishes (7), and completes the proof of Theorem 2 in the case where R(A, t0) = Ro.
In the alternative case, we have R(A, t0) = R(A). But now OeB(t0) automatically. Thus we
may define B and proceed as before. The proof of Theorem 2 is now complete.

REMARK. 1 Again we observe that best approximations to O from J(X) can be charac-
terized as the continuous selections of a certain mapping, namely B.

REMARK 2. As in Theorem 2, let X be the subspace of either C(A) or C(A, R) consisting
of all functions vanishing at t0 e A. According as X is real or complex, let Y be either C(A, R)
or C(A). Let Oe Y**. By using the techniques of Theorems 1 and 2, it can be shown that, if
X is real,

dist (<&,/(*)) = dist(O,/(y))+dist(Pc(O),

where PC(O) is the set of all best approximations to O from J(Y) and

d(U, V) = inf {||«-»||: lie U, ve V}.

It may also be shown that this equation must be replaced by an inequality ( ̂  ) when X is
complex.
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