AN APPROXIMATIVE PROPERTY OF SPACES OF CONTINUOUS FUNCTIONS

by R. B. HOLMES and J. D. WARD

(Received 31 October, 1972; revised 19 May, 1973)

1. Introduction. A Banach space X is said to have property (PROXBID) if the canonical image of X in its bidual X^{**} is proximal. In other words, if $J: X \to X^{**}$ is the canonical embedding, then it is required that every element of X^{**} have at least one best approximation (i.e., nearest point) from the closed subspace J(X). We show below that, if X is the space of (real or complex) continuous functions on a compact set, or the space of (real or complex) continuous functions that vanish at infinity on a locally compact set, then X has property (PROXBID). At this point we should mention the existence of a variety of examples [2, 8] of Banach spaces which lack property (PROXBID).

Let us recall that the classical Gelfand-Naimark Theorem (e.g. [10, p. 4]) allows us to identify any commutative C*-algebra A with either the space $C(\Lambda)$ (if A has an identity) or else the space $C_0(\Lambda)$ (if A has no identity). Here Λ is the pure state space of A. Thus we may conclude that every commutative C^* -algebra has property (PROXBID), and likewise, so does the (real) space of all self-adjoint elements of any such algebra. Let us further recall that, in [8], Holmes and Kripke have shown (constructively) that the noncommutative C^* -algebra of all compact operators on a Hilbert space is proximinal in the algebra of all bounded operators, and consequently has property (PROXBID). More recently, and more generally, Fakhoury [4] has shown (non-constructively) that any "M-ideal" in a Banach space X is proximal in X, and, in fact, that a continuous choice of best approximation can be defined on X. (An extensive presentation of the theory of *M*-ideals has been given by Alfsen and Effros [1]; here it is pertinent only to note that every closed two-sided ideal in a C*-algebra is an M-ideal.) In any event, we are led to raise the general question: Which C^* -algebras have property (PROX-BID)? Making use of the universal representation of a given C^* -algebra A, we see that, in order to answer this question affirmatively for A, it would suffice to show that A is proximinal in the W^* -algebra generated by A. Indeed, this is in effect what was done in [8] and those authors' earlier paper [6] (for the special cases under consideration there).

The fact that the spaces $C_0(\Lambda, R)$ have property (PROXBID) has already been established by J. Blatter [2], as a special case of his very extensive theory of best approximation from certain subspaces of $C_0(\Lambda, X)$, where X is a (real) Banach space whose dual is an abstract L-space. His proof requires in particular the use of theorems of Kakutani and Seever to identify the bidual $C_0(\Lambda, R)^{**}$ with another space $C(\Lambda_1, R)$ and $C_0(\Lambda, R)$ with a subalgebra of this latter space. By contrast, our proof deals directly with the elements of the bidual qua functions on the first dual, and is therefore relatively self-contained. Although we necessarily employ certain special properties of spaces of continuous functions, we feel that this kind of proof may be more useful as a model for proofs of property (PROXBID) in other spaces for which a Kakutani-type representation theorem is not available. We further remark that the present proof was originally developed for the case of real-valued functions, as another application of the "interposition" method of approximation as propounded in [6, 7].

2. The existence of best approximations. Let Λ be a compact Hausdorff space and let $C(\Lambda)$ (resp. $C(\Lambda, R)$) be the linear space of all continuous complex-valued (resp. real-valued) functions on Λ . When endowed with the usual supremum norm, these spaces are Banach spaces. A *state* on such a Banach space is a positive linear functional of norm one. If *e* is the identity in such a space (that is, the function everywhere equal to unity), then a state can also be described as a norm-one linear functional whose value at *e* is 1. Thus for the Banach spaces under discussion we can say that a state is simply a Borel probability measure on Λ .

THEOREM 1. Let X be one of the spaces $C(\Lambda)$ or $C(\Lambda, R)$, and let Φ be an arbitrary element of the bidual X^{**}. Then the distance from Φ to the canonical image J(X) is attained. Hence X has property (PROXBID).

Proof. We shall deal only with the more general (and more difficult) case where $X = C(\Lambda)$. The alternative case is handled analogously, and certain simplifications are possible; these will be indicated at the end of the proof.

We introduce the following notation:

 $\mathbb{C} = \text{complex plane};$

 d_{H} = Hausdorff metric on the compact nonempty subsets of \mathbb{C} ;

 $\mathcal{N}(t)$ = the directed family of open *t*-neighbourhoods, for $t \in \Lambda$;

 $\Omega(t, N)$ = the set of all states in $C(\Lambda)^*$ with support in $N(N \in \mathcal{N}(t))$;

 $A_N(t) = \text{closure of } \Phi(\Omega(t, N)).$

Now, for each $t \in \Lambda$, consider the net $N \mapsto A_N(t)$ defined on $\mathcal{N}(t)$. The range of this net lies in the compact metric space $\mathcal{M}(\Phi; d_H)$ whose elements are the compact convex and nonempty subsets of the disk in \mathbb{C} with centre 0 and radius $||\Phi||$. We put

$$A(t) = \lim_{N \in \mathcal{N}(t)} A_N(t); \tag{1}$$

this limit exists in $M(\Phi; d_H)$ by virtue of the compactness of this space and monotonicity of the net $N \mapsto A_N(t)$. It may be verified that

$$A(t) = \bigcap_{N \in \mathcal{N}(t)} A_N(t).$$
⁽²⁾

We show that the map $A: \Lambda \to 2^{\mathbb{C}}$ just defined is upper semicontinuous. This requires us to choose any nonempty open set $G \subset \mathbb{C}$ and then show that $\{t \in \Lambda: A(t) \subset G\}$ is open. Let t_0 belong to this set. Then, by (1), there is an $N \in \mathcal{N}(t_0)$ for which $A_N(t_0) \subset G$. Hence, if $t \in N$, we have by (2) that

$$A(t) \subset A_N(t) = A_N(t_0) \subset G,$$

and so A is upper semicontinuous.

Now let r(t) be the Chebyshev radius [5, §33] of A(t); that is,

D

$$r(t) = \inf_{\substack{\beta \in \mathbf{C} \ \alpha \in A(t)}} \sup_{\alpha \in A(t)} |\alpha - \beta|, \qquad (3)$$

and put

$$R(A) = \sup \{r(t) \colon t \in \Lambda\}.$$

Clearly $R(A) \leq ||\Phi||$. Following Olech [9, p. 288] we introduce the map $B: \Lambda \to 2^{\mathbb{C}}$ defined by

$$B(t) = \{\beta \in \mathbb{C} : A(t) \subset D(\beta, R(A))\},\$$

where $D(\beta, R)$ is the closed disk in \mathbb{C} with centre β and radius R. Olech proved that the values B(t) are compact, convex and nonempty subsets of \mathbb{C} and that B is lower semicontinuous. Thus, by the Michael selection principle, there is an $f_0 \in C(\Lambda)$ for which $f_0(t) \in B(t)$, for all $t \in \Lambda$. We shall complete the proof by showing that any such f_0 is a best approximation to Φ from $J(C(\Lambda))$, and that dist $(\Phi, J(C(\Lambda))) = R(A)$.

First we establish that $R(A) \leq \text{dist}(\Phi, J(C(\Lambda)))$, by showing that

$$R(A) \leq \left\| \Phi - J(f) \right\| \quad \text{for all} \quad f \in C(\Lambda). \tag{4}$$

Given $\varepsilon > 0$, choose $t \in \Lambda$ so that $r(t) > r(A) - \varepsilon$. If $f \in C(\Lambda)$, we can choose $N \in \mathcal{N}(t)$ for which $osc(f; N) < \varepsilon$, and then

$$\left|\langle f, \mu \rangle - f(t)\right| = \left|\langle f - f(t)e, \mu \rangle\right| \le \left|\left|(f - f(t)e)\right|N\right|\right| < \varepsilon,$$

whenever $\mu \in \Omega(t, N)$. (Recall that *e* is the identity in $C(\Lambda)$.) Taking into account (1), (3), and the fact that $f(t) \in A(t)$, we may assume that N has also been chosen so small that there is an $\alpha \in A_N(t)$ for which $|\alpha - f(t)| > r(t) - \varepsilon$. By definition of $A_N(t)$, there exists a $\mu \in \Omega(t, N)$ for which $|\alpha - \Phi(\mu)| < \varepsilon$. Consequently

$$\left|\left|\Phi-J(f)\right|\right| \ge \left|\Phi(\mu)-\langle f,\mu\rangle\right| \ge \left|\alpha-f(t)\right|-\left|\alpha-\Phi(\mu)\right|-\left|f(t)-\langle f,\mu\rangle\right| \ge r(t)-3\varepsilon \ge R(A)-4\varepsilon,$$

and this establishes the inequality (4).

It remains to prove that

$$\left\|\Phi-J(f_0)\right\|\leq R(A).$$

Let $\varepsilon > 0$ and $t \in \Lambda$. There is an $N_t \in \mathcal{N}(t)$ for which

$$\max\left\{\operatorname{osc}(f_0; N_t), d_H(A_{N_t}(t), A(t))\right\} < \varepsilon.$$

Since f_0 is a selection of B, we know that $A(t) \subset D(f_0(t), R(A))$. Therefore, if $\mu \in \Omega(t, N_t)$,

$$\left|\Phi(\mu) - \langle f_0, \mu \rangle\right| \le \left|\Phi(\mu) - \alpha\right| + \left|\alpha - f_0(t)\right| + \left|f_0(t) - \langle f_0, \mu \rangle\right| \le R(A) + 2\varepsilon, \tag{5}$$

if $\alpha \in A(t)$ satisfies $|\alpha - \Phi(\mu)| < \varepsilon$. Next we cover Λ by a finite number of these neighbourhoods N_t , say by $N_1 \equiv N_{t_1}, \ldots, N_k \equiv N_{t_k}$, and then choose a partition of unity subordinate to this cover, say p_1, \ldots, p_k . Consider now any state μ in $C(\Lambda)^*$. The measures $\operatorname{sgn}(p_i\mu)$ belong to $\Omega(t_i, N_i)$ and we have, by (5),

50

$$\begin{split} \left| \Phi(\mu) - \langle f_0, \mu \rangle \right| &= \left| \Phi(\Sigma p_i \mu) - \langle f_0, p_i \mu \rangle \right| \\ &= \left| \Sigma \right| \left| p_i \mu \right| \left| \left(\Phi(\operatorname{sgn}(p_i \mu)) - \langle f_0, \operatorname{sgn}(p_i \mu) \rangle \right) \right| \\ &\leq \Sigma \left| \left| p_i \mu \right| \right| \left(R(A) + 2\varepsilon \right) \\ &= R(A) + 2\varepsilon, \end{split}$$

since

$$\Sigma || p_i \mu || = \Sigma \langle e, p_i \mu \rangle = \Sigma \langle p_i, \mu \rangle = \langle e, \mu \rangle = 1.$$

In this way we obtain the inequality

$$\left|\Phi(\mu) - \langle f_0, \mu \rangle\right| \le R(A),\tag{6}$$

whenever μ is a state in $C(\Lambda)^*$.

Finally, if μ is any element of the unit sphere of $C(\Lambda)^*$, there are states μ_1 and μ_2 , and complex numbers s and t with |s|+|t| = 1 such that $\mu = s\mu_1 + t\mu_2$. It follows from (6) that

$$\begin{aligned} \left| \Phi(\mu) - \langle f_0, \mu \rangle \right| &\leq \left| s \right| \left| \Phi(\mu_1) - \langle f_0, \mu_1 \rangle \right| + \left| t \right| \left| \Phi(\mu_2) - \langle f_0, \mu_2 \rangle \right| \\ &\leq \left| s \right| R(A) + \left| t \right| R(A) \\ &= R(A), \end{aligned}$$

and the proof of Theorem 1 is complete.

REMARKS. (a) As mentioned earlier, the proof of Theorem 1 applies equally well to the case where $X = C(\Lambda, R)$. Let us note, however, the following simplifications, which also serve to illustrate the constructions involved in the preceding proof. We can define a pair of bounded real-valued functions l and u on Λ by

$$\frac{u(t)}{l(t)} = \lim_{N \in \mathcal{N}(t)} \begin{cases} \sup_{\substack{\{ \Phi(\mu) : \mu \in \Omega(t, N) \}. \\ \inf}} \end{cases}$$

These functions u and l are respectively upper and lower semicontinuous on Λ , and clearly $l(\cdot) \leq u(\cdot)$. In our earlier notation we have

$$A(t) = [l(t), u(t)],$$

$$R(T) = \frac{1}{2} ||u - l||_{\infty},$$

$$B(t) = [u(t) - R(A), l(t) + R(A)].$$

The assertions about the map B and its values B(t), for whose proofs we made references to [9], are clearly valid in the present case. Further, the problem of obtaining a continuous selection of B (to serve as a best approximation to Φ) does not now require the use of the Michael selection principle (although it of course applies), but instead yields to the original Dieudonné interposition theorem [3, p. 75]. Thus, as we mentioned in the introduction, the proof that $C(\Lambda, R)$ has property (PROXBID) can be viewed as a further application of the "interposition method" of approximation as developed in [6, 7].

(b) In the course of proving Theorem 1, we showed that any continuous selection of the map B was a best approximation to Φ . Now we observe that the converse holds, that is, any

best approximation $f \in C(\Lambda)$ must satisfy $f(t) \in B(t)$ for all $t \in \Lambda$. Indeed, given $\alpha \in A(t)$ and $\varepsilon > 0$, there is an $N \in \mathcal{N}(t)$ and a $\mu \in \Omega(t, N)$ for which $|\alpha - \Phi(\mu)| < \varepsilon$. Therefore

$$\begin{aligned} |\alpha - f(t)| &< |\alpha - \Phi(\mu)| + |\Phi(\mu) - \langle f, \mu \rangle| + |\langle f, \mu \rangle - f(t)| \\ &\leq 2\varepsilon + ||\Phi - J(f)|| \\ &= 2\varepsilon + R(A), \end{aligned}$$

showing that $A(t) \subset D(f(t), R(A))$, or, in other words, that $f(t) \in B(t)$.

Now we turn to the case where Λ is a (generally non-compact) locally compact Hausdorff space and X is either the Banach space $C_0(\Lambda)$ of continuous complex-valued functions on Λ which vanish at infinity or the analogous real space $C_0(\Lambda, R)$. If we replace Λ by its one-point compactification $\overline{\Lambda}$, then X can be identified with the subspace of $C(\overline{\Lambda})$ (resp. $C(\overline{\Lambda}, R)$) consisting of those functions in X which vanish at the point at infinity. With this viewpoint it is clear that the next theorem establishes that X has property (PROXBID).

THEOREM 2. Let Λ be a compact Hausdorff space and $t_0 \in \Lambda$. Let X be the hyperplane in either $C(\Lambda)$ or $C(\Lambda, R)$ consisting of all functions f for which $f(t_0) = 0$. Then X has property (PROXBID).

Proof. As before, we shall deal only with the more general case of complex-valued functions. Let δ_0 be the state "evaluation at t_0 ", so that $X = \ker(\delta_0)$. We can identify the bidual X^{**} with the hyperplane $\{\delta_0\}^{\perp}$ in $C(\Lambda)^{**}$. Choose $\Phi \in X^{**}$. Let $D(0, R_0)$ be the smallest disk in \mathbb{C} which contains the set $A(t_0)$ (notation as in the proof of Theorem 1), and put $R(A, t_0) = \max \{R(A), R_0\}$. We claim that

$$R(A, t_0) = \operatorname{dist}(\Phi, J(X)), \tag{7}$$

and that this distance is attained at some point in J(X).

Suppose that $R(A, t_0) = R_0$. We choose an $f \in X$ and show that

$$R(A, t_0) \leq \left\| \Phi - J(f) \right\|. \tag{8}$$

Given $\varepsilon > 0$, we know that for all sufficiently small $N \in \mathcal{N}(t_0)$ we have

 $\max\left\{\operatorname{osc}(f; N), d_{H}(A_{N}(t_{0}), A(t_{0}))\right\} < \varepsilon.$

Also, by definition of R_0 , there exists $\alpha \in A(t_0)$ such that $|\alpha| > R_0 - \varepsilon$, and consequently there is a $\mu \in \Omega(t_0, N)$ for which $|\Phi(\mu)| > R_0 - 2\varepsilon$. Therefore

$$\left\| \Phi - J(f) \right\| \ge \left| \Phi(\mu) - \langle f, \mu \rangle \right| \ge \left| \Phi(\mu) \right| - \left| \langle f, \mu \rangle \right| \ge R_0 - 3\varepsilon \equiv R(A, t_0) - 3\varepsilon,$$

since $f(t_0) = 0$. This proves (8).

Now introducing the map

$$t \mapsto B(t) = \{\beta \in \mathbb{C} \colon A(t) \subset D(\beta, R(A, t_0))\},\$$

we have (by [9] again) that B is lower semicontinuous and that (by construction) $0 \in B(t_0)$. If we put

SPACES OF CONTINUOUS FUNCTIONS

$$\overline{B}(t) = \begin{cases} B(t) & (t \neq t_0), \\ 0 & (t = t_0), \end{cases}$$

we have again that \overline{B} is lower semicontinuous and consequently there is a continuous selection f_0 for \overline{B} . Clearly $f_0 \in X$. We claim that f_0 satisfies $||\Phi - J(f_0)|| \leq R(A, t_0)$. The argument at this point is very nearly identical to the analogous part of Theorem 1, and we omit it. This inequality establishes (7), and completes the proof of Theorem 2 in the case where $R(A, t_0) = R_0$. In the alternative case, we have $R(A, t_0) = R(A)$. But now $0 \in B(t_0)$ automatically. Thus we may define \overline{B} and proceed as before. The proof of Theorem 2 is now complete.

REMARK. 1 Again we observe that best approximations to Φ from J(X) can be characterized as the continuous selections of a certain mapping, namely \overline{B} .

REMARK 2. As in Theorem 2, let X be the subspace of either $C(\Lambda)$ or $C(\Lambda, R)$ consisting of all functions vanishing at $t_0 \in \Lambda$. According as X is real or complex, let Y be either $C(\Lambda, R)$ or $C(\Lambda)$. Let $\Phi \in Y^{**}$. By using the techniques of Theorems 1 and 2, it can be shown that, if X is real,

$$\operatorname{dist}(\Phi, J(X)) = \operatorname{dist}(\Phi, J(Y)) + \operatorname{dist}(P_c(\Phi), J(X)),$$

where $P_c(\Phi)$ is the set of all best approximations to Φ from J(Y) and

$$d(U, V) = \inf \{ ||u - v|| : u \in U, v \in V \}.$$

It may also be shown that this equation must be replaced by an inequality (\leq) when X is complex.

REFERENCES

1. E. Alfsen and E. Effros, Structure in real Banach spaces, Ann. Math. 96 (1972), 98-173.

2. J. Blatter, Grothendieck Spaces in Approximation Theory, Amer. Math. Soc. Memoir 120 (Providence, R.I., 1972).

3. J. Dieudonné, Une généralisation des espaces compacts, J. Math. Pures Appl. 23 (1944), 65-76.

4. H. Fakhoury, Projections de meilleure approximation continues dans certains espaces de Banach, C.R. Acad. Sci. Paris 276 (1973), A45-A48.

5. R. Holmes, A Course on Optimization and Best Approximation (Springer-Verlag, Berlin-Heidelberg-New York, 1972).

6. R. Holmes and B. Kripke, Approximation of bounded functions by continuous functions, Bull. Amer. Math. Soc. 71 (1965), 896-897.

7. R. Holmes and B. Kripke, Interposition and approximation, Pacific J. Math. 24(1968), 103-110.

8. R. Holmes and B. Kripke, Best approximation by compact operators, Indiana Univ. Math. J. 21 (1971), 255–263.

9. C. Olech, Approximation of set-valued functions by continuous functions, *Collect. Math.* 19 (1968), 285-293.

10. S. Sakai, C^* -Algebras and W^* -Algebras (Springer-Verlag, New York-Heidelberg-Berlin, 1971).

Purdue University West Lafayette, Indiana 47907