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1. Introduction. A Banach space X is said to have property (PROXBID) if the canonical
image of X in its bidual X** is proximal. In other words, if J: X — X** is the canonical
embedding, then it is required that every element of X** have at least one best approximation
(i.e., nearest point) from the closed subspace J(X). We show below that, if X is the space of
(real or complex) continuous functions on a compact set, or the space of (real or complex)
continuous functions that vanish at infinity on a locally compact set, then X has property
(PROXBID). At this point we should mention the existence of a variety of examples [2, 8] of
Banach spaces which lack property (PROXBID).

Let us recall that the classical Gelfand—Naimark Theorem (e.g. [10, p. 4]) allows us to
identify any commutative C*-algebra A with either the space C(A) (if 4 has an identity) or else
the space Co(A) (if 4 has no identity). Here A is the pure state space of 4. Thus we may
conclude that every commutative C*-algebra has property (PROXBID), and likewise, so does
the (real) space of all self-adjoint elements of any such algebra. Let us further recall that, in
[8), Holmes and Kripke have shown (constructively) that the noncommutative C*-algebra of
all compact operators on a Hilbert space is proximinal in the algebra of all bounded operators,
and consequently has property (PROXBID). More recently, and more generally, Fakhoury
[4] has shown (non-constructively) that any “ M-ideal > in a Banach space X is proximal in X,
and, in fact, that a continuous choice of best approximation can be defined on X. (An ex-
tensive presentation of the theory of M-ideals has been given by Alfsen and Effros [1]; here it
is pertinent only to note that every closed two-sided ideal in a C*-algebra is an M-ideal.) In
any event, we are led to raise the general question: Which C*-algebras have property (PROX-
BID)? Making use of the universal representation of a given C*-algebra 4, we see that, in
order to answer this question affirmatively for 4, it would suffice to show that 4 is proximinal
in the W*-algebra generated by 4. Indeed, this is in effect what was done in [8] and those
authors’ earlier paper [6] (for the special cases under consideration there).

The fact that the spaces Co(A, R) have property (PROXBID) has already been established
by J. Blatter [2}, as a special case of his very extensive theory of best approximation from
certain subspaces of Cy(A, X), where X is a (real) Banach space whose dual is an abstract
L-space. His proof requires in particular the use of theorems of Kakutani and Seever to
identify the bidual Cy(A, R)** with another space C(A,, R) and Cy(A, R) with a subalgebra of
this latter space. By contrast, our proof deals directly with the elements of the bidual qua
functions on the first dual, and is therefore relatively self-contained. Although we necessarily
employ certain special properties of spaces of continuous functions, we feel that this kind
of proof may be more useful as a model for proofs of property (PROXBID) in other
spaces for which a Kakutani-type representation theorem is not available. We further
remark that the present proof was originally developed for the case of real-valued functions,
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as another application of the “ interposition ’ method of approximation as propounded in
(6, 71.

2. The existence of best approximations. Let A be a compact Hausdorff space and let
C(A) (resp. C(A, R)) be the linear space of all continuous complex-valued (resp. real-valued)
functions on A. When endowed with the usual supremum norm, these spaces are Banach
spaces. A state on such a Banach space is a positive linear functional of norm one. If eis the
identity in such a space (that is, the function everywhere equal to unity), then a state can
also be described as a norm-one linear functional whose value at e is 1. Thus for the Banach
spaces under discussion we can say that a state is simply a Borel probability measure on
A.

THEOREM 1. Let X be one of the spaces C(A) or C(A, R), and let ® be an arbitrary element
of the bidual X**. Then the distance from ® to the canonical image J(X) is attained. Hence X
has property (PROXBID). '

Proof. We shall deal only with the more general (and more difficult) case where X = C(A).
The alternative case is handled analogously, and certain simplifications are possible; these will
be indicated at the end of the proof.

We introduce the following notation:

C = complex plane;
dy = Hausdorff metric on the compact nonempty subsets of C;
A(t) = the directed family of open t-neighbourhoods, for teA;
(1, N) = the set of all states in C(A)* with support in N (Ne A4 (1));
Ax(t) = closure of ®(Q(t, N)).

Now, for each te A, consider the net N + Ay(t) defined on A7(¢). The range of this net
lies in the compact metric space M(®; dy;) whose elements are the compact convex and non-
empty subsets of the disk in C with centre 0 and radius ||®||. We put

A= lim AyD); (1)
Ne @) .
this limit exists in M(®; d,;) by virtue of the compactness of this space and monotonicity of the
net N Ay(t). It may be verified that
A= N AxQ). )]
NeA(r)

We show that the map A: A — 2€ just defined is upper semicontinuous. This requires us
to choose any nonempty open set G = C and then show that {teA: A(t) = G} is open. Let ¢,
belong to this set. Then, by (1), there is an Ne 4 (¢,) for which Ay(¢;) = G. Hence, if te N,
we have by (2) that

A(t) = AN(1) = Ax(to) = G,

and so A is upper semicontinuous.
Now let r(¢) be the Chebyshev radius [5, §33] of A(z); that is,

D
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r(t) = inf sup |a—B|, 3)
BeC ae A1)

and put
R(A) =sup {r(t): teA}.

Clearly R(4) < ||®]|. Following Olech [9, p. 288] we introduce the map B: A — 2 defined by
B(t) = {BeC: A(t) = D(B, R(4))},

where D(B, R) is the closed disk in C with centre § and radius R. Olech proved that the values
B(t) are compact, convex and nonempty subsets of C and that B is lower semicontinuous.
Thus, by the Michael selection principle, there is an f,e C(A) for which fy(t)e B(t), for all
te A. We shall complete the proof by showing that any such fj is a best approximation to @
from J(C(A)), and that dist (®, J(C(A))) = R(A).

First we establish that R(4) £ dist(®, J(C(A))), by showing that

RA) £||@-J(N)| forall feC(A). @

Given ¢ > 0, choose te A so that r(t) > r(4)—e. If fe C(A), we can choose Ne A#(¢) for which
osc(f; N) < ¢, and then

[<h > =f0)] = |<F~fDe, )] S [[(~f@)e)| N|| <,

whenever peQ(t, N). (Recall that e is the identity in C(A).) Taking into account (1), (3), and
the fact that f(r) € A(t), we may assume that N has also been chosen so small that there is an
€ Ay(t) for which |a—f(z)| > r(t)—e. By definition of 4(t), there exists a u e Q(t, N) for which
|a—®(u)| <. Consequently

|o-J(N| 2 |0 —<fm> | 2 |a=f) |~ |a—@w) | = [A)=<f 1> | 2 r(1)—3e 2 R(4)—4e,

and this establishes the inequality (4).
It remains to prove that

|| @=J(f0) || £ R(4).
Let ¢ > 0and teA. There is an N,e A(¢t) for which
max {05c(fo; N, du(Aw(0), A1)} <.
Since f; is a selection of B, we know that A(t) c D(fy(t), R(4)). Therefore, if ueQ(t, N,),
| @)~ < for > | £ | @) =] +|a—fo() |+ ] o) = {fo, 1D | S R(A)+25, ©)

ifae A(t) satisfies |« — (i) | < e. Next we cover A by a finite number of these neighbourhoods
N,, say by Ny =N,,,..., N, = N,,, and then choose a partition of unity subordinate to this
cover, say py,...,P Consider now any state u in C(A)*. The measures sgn(p;u) belong to
Q(t;, N)) and we have, by (5),
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| O(1) = fo, > | = | ®Ep ) = fo, Pi D |

= |Z||pipe|| (@(sen (pi 1)~ { fo, 580 (P: 1)) |

SZ||pin]| (R(4)+2¢)

= R(A)+2e,
since

|| pin]| = Eepind = Zppp> =<e,p> = 1.
In this way we obtain the inequality
|®()— < fo, > | = R(A), (6)

whenever p is a state in C(A)*.

Finally, if u is any element of the unit sphere of C(A)*, there are states u, and u,, and
complex numbers s and ¢ with |s|+|¢| = 1 such that u = sp, +tu,. It follows from (6) that

| @)= for 13| S [ 5] D) — <o 1D |+ ] [ ®(2) = {Sos 2D |
< |s| R(A)+]|t| R(4)
= R(A),
and the proof of Theorem 1 is complete.

REMARKS. (a) As mentioned earlier, the proof of Theorem 1 applies equally well to the
case where X = C(A, R). Let us note, however, the following simplifications, which also serve
to illustrate the constructions involved in the preceding proof. We can define a pair of
bounded real-valued functions / and 4 on A by

u(t) sup
= lim { {®(u): peQ(t, N)}.

1) Mo linf

These functions u and / are respectively upper and lower semicontinuous on A, and clearly
I(-) £ u(-). In our earlier notation we have

A@) = [I(@), u(1)),
R(T) = i’ ” u—l”ooa
B(t) = [u(t)— R(A4), I(t)+ R(A)].

The assertions about the map B and its values B(z), for whose proofs we made references to
[9], are clearly valid in the present case. Further, the problem of obtaining a continuous
selection of B (to serve as a best approximation to ®) does not now require the use of the
Michael selection principle (although it of course applies), but instead yields to the original
Dieudonné interposition theorem [3, p. 75]. Thus, as we mentioned in the introduction, the
proof that C(A, R) has property (PROXBID) can be viewed as a further application of the
** interposition method * of approximation as developed in [6, 7).

(b) In the course of proving Theorem 1, we showed that any continuous selection of the
map B was a best approximation to ®. Now we observe that the converse holds, that is, any
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best approximation fe C(A) must satisfy f(t)e B(¢) for all te A. Indeed, given ae A(¢) and
e > 0, there is an Ne#(¢) and a ueQ(t, N) for which la—d)(y)| < ¢&. Therefore

|a—f0)| < |a=@@) |+ | ®(u)— fs 1) | +| <Fo D =10) |
< 2e+||@-J(N)||
= 2e+R(A),

showing that A(t) < D(f(¢), R(A4)), or, in other words, that f(¢)e B(¢).

Now we turn to the case where A is a (generally non-compact) locally compact Hausdorff
space and X is either the Banach space Cy(A) of continuous complex-valued functions on A
which vanish at infinity or the analogous real space Cy(A, R). If we replace A by its one-point
compactification A, then X can be identified with the subspace of C(A) (resp. C(A, R)) con-
sisting of those functions in X which vanish at the point at infinity. With this viewpoint it is
clear that the next theorem establishes that X has property (PROXBID).

THEOREM 2. Let A be a compact Hausdor(f space and t,e A. Let X be the hyperplane in
either C(A) or C(A, R) consisting of all functions f for which f(1y) = 0. Then X has property
(PROXBID).

Proof. As before, we shall deal only with the more general case of complex-valued
functions. Let §, be the state “ evaluation at ¢, ”’, so that X = ker(d,). We can identify the
bidual X** with the hyperplane {§,}* in C(A)**. Choose ®eX**. Let D(0,R,) be the
smallest disk in C which contains the set A(?,) (notation as in the proof of Theorem 1), and put
R(4,1,) = max {R(4), Ro}. We claim that

R(4, to) = dist (D, J(X)), ™

and that this distance is attained at some point in J(X).
Suppose that R(4, t,) = R,. We choose an fe X and show that

R(4,15) £ || @=J(N)||- ®)
Given ¢ > 0, we know that for all sufficiently small Ne #'(¢,) we have
max {osc(f; N), dg(4x(to), Ato))} <e.

Also, by definition of Ry, there exists o€ 4(,) such that || > Ry—e, and consequently there
is a peQ(t,, N) for which |®(u)| > R, —2¢e. Therefore

lo—JN|| 2 |@@W) - fud| 2 |00)|-|<find| = Ro—38 = R(4, 1) 3¢,
since f(2,) = 0. This proves (8).
Now introducing the map
t v B(t) = {BEC: A1) < D(B, R(4, 1))},

we have (by [9] again) that B is lower semicontinuous and that (by construction) 0e B(t,). If
we put
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B(®) (t# 1),
B(t) =
0 (t = tO)s

we have again that B is lower semicontinuous and consequently there is a continuous selection
fo for B. Clearly foe X. We claim that f, satisfies || ®—J(fo) || < R(4, ). The argument at
this point is very nearly identical to the analogous part of Theorem 1, and we omit it. This
inequality establishes (7), and completes the proof of Theorem 2 in the case where R(4, o) = R,.
In the alternative case, we have R(4, ;) = R(4). But now 0eB(t,) automatically. Thus we
may define B and proceed as before. The proof of Theorem 2 is now complete.

REMARK. 1 Again we observe that best approximations to @ from J(X) can be charac-
terized as the continuous selections of a certain mapping, namely B.

REMARK 2. As in Theorem 2, let X be the subspace of either C(A) or C(A, R) consisting
of all functions vanishing at t,€ A. According as X is real or complex, let ¥ be either C(A, R)
or C(A). Let ®e Y**. By using the techniques of Theorems 1 and 2, it can be shown that, if
X is real,
dist (@, J(X)) = dist (D, J(Y))+dist (P (D), J(X)),

where P (®) is the set of all best approximations to ® from J(Y) and
dU, V) =inf{||u—v||: ue U, veV}.

It may also be shown that this equation must be replaced by an inequality ( £) when X is
complex.

REFERENCES

1. E. Alfsen and E. Effros, Structure in real Banach spaces, Ann. Math. 96 (1972), 98-173.

2. ). Blatter, Grothendieck Spaces in Approximation Theory, Amer. Math. Soc. Memoir 120
(Providence, R.I., 1972).

3. 1. Dieudonné, Une généralisation des espaces compacts, J. Math. Pures Appl. 23 (1944), 65-76.

4. H. Fakhoury, Projections de meilleure approximation continues dans certains espaces de

Banach, C.R. Acad. Sci. Paris 276 (1973), A45-A48.

5. R. Holmes, A Course on Optimization and Best Approximation (Springer-Verlag, Berlin-
Heidelberg-New York, 1972).

6. R. Holmes and B. Kripke, Approximation of bounded functions by continuous functions,
Bull. Amer. Math. Soc. 11 (1965), 896-897.

7. R.Holmes and B. Kripke, Interposition and approximation, PacificJ. Math. 24 (1968), 103-110.
8. R. Holmes and B. Kripke, Best approximation by compact operators, Indiana Univ. Math. J.
21 (1971), 255-263.
9. C. Olech, Approximation of set-valued functions by continuous functions, Collect. Math.
19 (1968), 285-293.
197 %0. S. Sakai, C*-Algebras and W*-Algebras (Springer-Verlag, New York-Heidelberg-Berlin,
1).

PurDUE UNIVERSITY
WEST LAFAYETTE, INDIANA 47907

https://doi.org/10.1017/5001708950000210X Published online by Cambridge University Press


https://doi.org/10.1017/S001708950000210X

