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Abstract

In this paper we propose a new genetic algorithm specifically based on mutation and
selection in order to maximize a fitness function. This mutation–selection algorithm
behaves as a gradient algorithm which converges to local maxima. In order to obtain
convergence to global maxima we propose a new algorithm which is built by randomly
perturbing the selection operator of the gradient-like algorithm. The perturbation is
controlled by only one parameter: that which allows the selection pressure to be governed.
We use the Markov model of the perturbed algorithm to prove its convergence to global
maxima. The arguments used in the proofs are based on Freidlin and Wentzell’s (1984)
theory and large deviation techniques also applied in simulated annealing. Our main
results are that (i) when the population size is greater than a critical value, the control of
the selection pressure ensures the convergence to the global maxima of the fitness function,
and (ii) the convergence also occurs when the population is the smallest possible, i.e. 1.
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1. Introduction

We are interested in maximizing a fitness function f defined by f : E → [1, ∞), where E

is a finite set. In many industrial engineering problems, the objective function has an obvious
lower boundary. For instance, in reliability design problems the objective function (which is
often the reliability of a system) is a positive function (see, e.g. [14]). Thus, in order to obtain
an ad hoc fitness function f taking its values in the interval [1, ∞), we just have to make a
translation of the objective function.

Evolutionary algorithms are computation methods inspired by evolution. They have received
much attention as optimization methods in the last two decades. These optimization methods
are population-based algorithms which simulate natural evolution. A population is a set of
individuals. Each of them represents a possible solution to the optimization problem. Applying
genetic operators (the mutation process, the crossing over process, and the selection process)
causes the populations to evolve. Three main algorithmic trends are based on evolutionary
schemes: genetic algorithms (see [12] and [13]), evolution strategies (see [15]), and evolutionary
programming (see [10]).

In the authors’ opinion, a fourth technique should be added: parallel simulated annealing.
The link between these algorithms and simulated annealing has been established through the
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142 L. RIGAL AND L. TRUFFET

concepts introduced by Catoni (in [1] and [2]) and further generalized by Trouvé (in [17]
and [18]). Continuous-time versions of genetic algorithms have been analyzed following this
simulated annealing-like approach by Del Moral and Miclo in [8]. Many authors have proposed
this approach for evolutionary algorithms also. Here, we briefly discuss the works which are
most related to ours.

• In [7] Davis introduced a cooling schedule in the mutation probability of a genetic algo-
rithm. Unfortunately, this genetic algorithm converges to the set of uniform populations.
To overcome this drawback Cerf [6] introduced a cooling schedule in the three processes
(mutation, crossing over, and selection) of a genetic algorithm. This cooling schedule
allows the mutation probability and the crossing over probability to be decreased. At
the same time, this cooling schedule allows the selection pressure to be increased. Cerf
introduced the new parameters (a, b, c) to control the interaction between these three
perturbations. He proved the convergence of this genetic algorithm to the global maxima
of the fitness function.

• In [5] Cerf simplified the principle of his genetic algorithm by eliminating the crossing
over process. Thus, he obtained a mutation–selection algorithm. Nevertheless, this
algorithm is controlled by the parameters a and c and the cooling schedule. In the
model proposed by Cerf, the mutation operator is considered to be a random, vanishing
perturbation. In our model, the mutation operator is integrated into the unperturbed
process and is no longer considered to be a random, vanishing perturbation.

• In [9] François proved the convergence to the global maxima of the fitness function
of an exploration/selection algorithm. The cooling schedule allows the number of
offspring obtained by mutation at each generation to be governed. When the number
of offspring decreases, the selection pressure increases. Thus, the selection operator and
the exploration operator interact. The interest of this exploration/selection algorithm is
that fewer arguments are involved in their analysis than are in Cerf’s algorithms. Also,
the model for the exploration operator in [9] is more general than ours, which are only
based on binary coding.

In this paper we build a Markovian model of a new genetic algorithm by perturbing a
process. This genetic algorithm is specifically based on mutation and selection. In contrast to
Cerf’s genetic algorithms, in our mutation–selection algorithm the perturbation is controlled
by only one parameter. There exist at least two differences between our model and the model
proposed by François in [9]. First, in the algorithm proposed by François, the exploration
operator and the selection operator interact; in our algorithm the mutation operator and the
selection operator are completely independent. Second, in the algorithm proposed by François
the mutation process is a random perturbation which gradually vanishes, while in our algorithm
the mutation process does not change during the search. However the mutation process allows
the algorithm to explore new individuals. These new individuals could have better fitness values
than the individuals which belong to the current population. Thus, for particular problems our
algorithm, which continues to explore new solutions throughout the search, seems to be more
efficient than the exploration/selection algorithm proposed by François. Nevertheless, a number
of ‘no free lunch’ theorems establish that, for any algorithm, any elevated performance over
one class of problems is exactly paid for in performance over another class (see [19]).

At the beginning of each step of our mutation–selection algorithm there are µ individuals.
Each might generate a mutation, so midway through a step of the algorithm there are up
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to 2µ individuals. By sampling among these individuals with replacement µ times, a new
population of µ individuals is obtained. In the ‘unperturbed version’ of the algorithm the
sampling is uniform, while in the ‘perturbed version’ of the algorithm the sampling is biased
according to the fitness function raised to a power of �, the perturbation parameter, in the same
way as in [5].

In our genetic algorithm children are individuals which are created by applying the mutation
operator to the parent’s population. In Cerf’s genetic algorithms children replace the parents,
while in our algorithm the sampling is made among both parents and children. Consequently,
we obtained a new cost function. Our algorithm belongs to the class of ‘generalized simulated
annealing’ studied by Trouvé [17]. Trouvé’s work allows us to deduce that our algorithm
converges to a set W∗. In order to determine the set W∗, we follow the approach introduced
by Freidlin and Wentzell in [11]. As in [4], the structure of the set of attractors of the
unperturbed process is very rich. However, the ‘unperturbed versions’ of the algorithms
are completely different. In our case the unperturbed version of the algorithm has the same
behavior as a gradient algorithm. In Cerf’s case the unperturbed version of the algorithm is a
crossing over–selection algorithm in which the selection process preserves the diversity of the
individuals present in the population. The attractors of our unperturbed process are particular
subsets of populations. They form a partition of S, the set of equifitness populations. They are
divided into two groups: the stable attractors and the unstable attractors. There exists a group,
K∗, of stable attractors whose populations contain only the maxima of the fitness function. We
study the communication cost between attractors. As a consequence, when µ is greater than a
critical value µ∗, the set W∗ is included in the set K∗ (see Theorem 2). We also note that when
µ = 1 the set W∗ is included in the set K∗ (see Theorem 3).

This paper has the following structure. Sections 2–4 are devoted to the description of the
model: the unperturbed process and the random perturbation. Section 5 describes the structure
of the set of attractors of the unperturbed process. In Section 6 we prove the convergence of the
new algorithm obtained by perturbing the gradient algorithm (see Theorem 2). The convergence
is ensured if the population size is sufficiently large. However, in Section 7 we prove that the
same algorithm converges to global extrema for population size equal to 1 (see Theorem 3).

2. The population space

Our mutation–selection algorithm generates an initial population of size µ which evolves
at each generation using the mutation and the selection operators successively. A population
of size µ is a vector composed of µ individuals. In this paper we use a binary coding: an
individual e ∈ E is a binary string of length L. Thus, our mutation–selection algorithm is a
stochastic process with state space

Eµ = {0, 1}L×µ.

The population which represents the µ parents will be denoted by the letters x and/or y.
We denote by [x] the set of all individuals present in the population x ∈ Eµ:

x = (x1, . . . , xµ) �⇒ [x] = {xj : 1 ≤ j ≤ µ}.
From the µ parents, λ offspring are generated using the mutation operator, where λ is a

random variable such that λ ≤ µ. To represent the offspring by a population with a fixed
size µ, we model a population u composed of both λ offspring and µ − λ virtual individuals.
A virtual individual is also called an ‘empty individual’, and is denoted by e∅. Generation
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144 L. RIGAL AND L. TRUFFET

of a virtual individual e∅ means that the mutation operator has had no effect on the parent.
Let E∅ = E ∪ {e∅} be the extended solution space. We will denote the global population, of
size 2µ, by z = (x, u), which allows us to represent the µ parents and the λ offspring. For all
global populations z of size 2µ, we denote by [z] the set composed of both the µ parents and
the λ offsprings present in z, i.e. we have the following mapping:

Eµ × E
µ
∅

→ P (E),

z = (z1, . . . , z2µ) 	→ [z] = {zj ∈ E : 1 ≤ j ≤ 2µ},
where P (E) denotes the set of all subsets of E. For all e ∈ E, we denote by z(e) =
|{1 ≤ j ≤ 2µ : zj = e}| the number of occurrences of e in z. With f we associate a
[1, ∞]-valued function f̂ defined on Eµ × E

µ
∅

by

f̂ (z) = max
1≤i≤2µ

f (zi),

with the convention that f (e∅) = 0. That is, f̂ is the maximal fitness of the µ parents and the
λ offspring which comprise the global population z. The set composed of the best individuals
from among both the parents and the offspring is the set ẑ defined by

ẑ = {zi : f (zi) = f̂ (z)}.
With f we also associate another [1, ∞]-valued function denoted by f̂ , but defined on Eµ by

f̂ (x) = max
1≤i≤µ

f (xi)

Because f (e∅) = 0 and f ≥ 1, the two different functions denoted by f̂ play the same role.
That is, for a population v (in Eµ or in Eµ ×E

µ
∅

), f̂ (v) is the maximal fitness of the individuals
of v.

3. The unperturbed process

We first describe the underlying process which drives the algorithm. When there is no
perturbation, the process under study is a Markov chain (X+∞

n ) with state space Eµ. The
superscript ‘+∞’ reflects the fact that this process corresponds to the limit behavior of our
model when the perturbation vanishes. In fact, this unperturbed process is a mutation–selection
algorithm which has the same behavior as the gradient algorithm. The transition mechanism
from (X+∞

n ) to (X+∞
n+1) is decomposed into two stages,

X+∞
n

mutation−−−−→ U+∞
n and (X+∞

n , U+∞
n )

selection−−−−→ X+∞
n+1,

where U+∞
n is the random population of size µ obtained after the mutation process. We now

describe the mutation and selection operators in detail.

3.1. X+∞
n −→ U+∞

n : the mutation process

We define the |Eµ| × |Eµ
∅

| matrix α which describes the mutation process from X+∞
n to

U+∞
n by

α(x, u) = P(U+∞
n = u | X+∞

n = x) for all (x, u) ∈ Eµ × E
µ
∅

.
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The mutation process is applied independently to each individual of the population X+∞
n . Thus,

we have
α(x, u) = αE(x1, u1) · · · αE(xµ, uµ),

where αE(xi, ui) is the |E| × |E∅| transition matrix which describes the application of the
process of mutation from xi ∈ E to ui ∈ E∅, according to which with probability pm a
neighbor of xi (namely ui) is generated and with probability 1 − pm an empty individual e∅

is generated. The individual ui is said to be a neighbor of the individual xi if d(xi, ui), the
number of bits of xi and ui which are different, is equal to 1. We remind the reader that d is
the Hamming distance defined in, e.g. [16]. Thus,

αE(xi, ui) =

⎧⎪⎨
⎪⎩

pm/L if ui ∈ E and d(xi, ui) = 1,

1 − pm if ui = e∅,

0 otherwise.

The mutation process is an exploration operator which allows the algorithm to visit the
neighborhoods of λ different xi , where the individuals xi are chosen from among the parent
population of size µ.

We remark that, for each couple of individuals (xi, yi) ∈ E × E with xi �= yi, yi could
be generated by switching d(xi, yi) bits of xi . In other words, one way to generate yi is
successively to apply the mutation process d(xi, yi) times starting from xi . Let ri be a positive
integer such that ri = d(xi, yi) + 1 if xi �= yi and ri = 3 otherwise. Then,

for all (xi, yi) ∈ E × E, there exists an (e1
i , . . . , e

ri
i ) ∈ Eri

with e1
i = xi and e

ri
i = yi such that

∏
1≤k≤ri−1 αE(ek

i , e
k+1
i ) > 0. (1)

3.2. (X+∞
n , U+∞

n ) −→ X+∞
n+1: the selection process

When the perturbation vanishes, the selection pressure is equal to ∞. The selection process
of the unperturbed Markov chain, (X+∞

n ), is highly elitist. To form the population X+∞
n+1, only

the best individuals of the global population Z+∞
n = (X+∞

n , U+∞
n ) obtained by mutation are

selected. If Z+∞
n = z then the individuals of the population X+∞

n+1 are chosen, independently
and randomly according to the uniform distribution, from among the elements of ẑ, i.e. for all
(z, y) ∈ (Eµ × E

µ
∅

) × Eµ,

P(X+∞
n+1 = y | Z+∞

n = z) =: γ+∞(z, y) =
µ∏

i=1

1ẑ(yi)z(yi)

|ẑ| ,

where

1ẑ : E → {0, 1}, e 	→
{

1 if e ∈ ẑ,

0 otherwise.

3.3. The convergence of the unperturbed process (X+∞
n )

The transition mechanism of the process (X+∞
n ) is given by

P(X+∞
n+1 = y | X+∞

n = x) =
∑
u

α(x, u)γ+∞((x, u), y).
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Let U(x) be the set of the populations u generated by applying the mutation process to x, i.e.

U(x) = {u ∈ E
µ
∅

: α(x, u) > 0}.
From the global population (x, u), the selection process chooses only the populationy composed
of the best individuals, i.e. such that

[y] ⊆ (̂x, u),

where (̂x, u) denotes the set composed of the best individuals of the population (x, u). Then
we deduce that

P(X+∞
n+1 = y | X+∞

n = x) > 0 ⇐⇒ [y] ⊆ Û(x), (2)

where Û(x) is the set defined by

Û(x) =
⋃

u∈U(x)

(̂x, u).

In one step (of the algorithm), the process (X+∞
n ) is trapped in the set of equifitness populations

S defined by
S = {x ∈ Eµ : f (x1) = · · · = f (xµ)}.

Let R be the equivalence relation defined on S by

xRy ⇐⇒ there exists a k ∈ N \ {0, 1} such that

(x = p1, . . . , pk = y) ∈ S × · · · × S for all i ∈ {1, . . . , k − 1},
where [pi+1] ⊆ Û(pi) and f̂ (p1) = · · · = f̂ (pk). (3)

If xRy then there exists a path p leading from x to y (or from y to x) composed of populations
which have the same fitness value. The equivalence relation R induces a partition of the set S.
Because the state space Eµ is finite, the number of equivalence classes is finite. Let r denote
the number of equivalence classes. These equivalence classes, denoted by Ci , i ∈ {1, . . . , r},
are indexed such that

1 ≤ f̂ (C1) ≤ · · · ≤ f̂ (Cr ) = max
e∈E

f (e),

where f̂ (Ci ) = f̂ (x) for all i ∈ {1, . . . , r} and all x ∈ Ci .
The equivalence (2) means that in one step the process (X+∞

n ) is in a particular equivalence
class. The Markov chain (X+∞

n ) wanders through particular subsets of S which are the
equivalence classes. We will say that the equivalence class Ci ‘communicates’ with the
equivalence class Cj if and only if

f̂ (Ci ) < f̂ (Cj ) and there exists a (x, y) ∈ Ci × Cj such that [y] ⊆ Û(x).

Assume that the equivalence class Ci communicates with another equivalence class. Because
of the property of the matrix αE stated in (1), if the Markov chain (X+∞

n ) enters Ci then the
exit time from Ci is finite. On the other hand, if we assume that Ci does not communicate with
any other equivalence class, then Ci is an absorbing group of states of (X+∞

n ). The equivalence
classes Ci which do not communicate with any other equivalence class are the sets composed
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of individuals which are the local maxima of the fitness function. These particular sets are
denoted by Kj , and indexed from 1 to τ (with 1 ≤ τ ≤ r) in increasing order of fitness value:

f̂ (K1) ≤ · · · ≤ f̂ (Kτ ).

The chain (X+∞
n ) simulates the behavior of the gradient algorithm. Indeed, the Markov chain

(X+∞
n ) converges to the set, K = ⋃τ

j=1 Kj , of populations composed of local maxima of the
fitness function; i.e.

lim
n→∞ P(X+∞

n ∈ K | X+∞
0 = x) = 1 for all x ∈ Em.

4. The perturbed process

We build a stochastic mutation–selection algorithm which will be proved to converge to the
set of global maxima of the fitness function f . This mutation–selection algorithm is obtained
by randomly perturbing the Markov chain (X+∞

n ). The perturbation acts only on the selection
process. The mechanism of the perturbation consists in decreasing the selection pressure.
The intensity of the perturbation is governed by a positive parameter �, so we obtain a family
of Markov chains (X�

n) indexed by �. The transition from X�
n to X�

n+1 includes two stages,
respectively corresponding to the mutation and selection processes

X�
n

mutation−−−−→ U�
n and (X�

n, U
�
n)

selection−−−−→ X�
n+1.

4.1. X�
n −→ U�

n: the mutation process

The mutation process is not perturbed in any way: this stage is exactly the same as the
passage from X+∞

n to U+∞
n described in Subsection 3.1. Thus, the mutation process from X�

n

to U�
n is given by

P(U�
n = u | X�

n = x) = α(x, u) for all (x, u) ∈ Eµ × E
µ
∅

.

4.2. (X�
n, U�

n) −→ X�
n+1: the selection process

We perturb the selection process of the Markov chain (X+∞
n ). The selection operator of

the perturbed Markov chain (X�
n) is built as a proportional selection process applied with the

objective function

f∅,� : E∅ → R+, e 	→
{

exp(ln(f (e))�) if e ∈ E,

0 if e = e∅.

If � increases then so does the selection pressure, i.e. the process becomes more selective.
The perturbed selection process allows us to choose µ independent individuals to form the
next population X�

n+1 from the µ parents and the λ offspring. Recall that the µ parents and
λ offspring at the nth iteration are represented by the global population Z�

n = (X�
n, U

�
n). Let

z = (z1, z2, . . . , z2µ) ∈ Eµ × E
µ
∅

be a vector of the global population Z�
n, and let F�(j, z) be

the probability of selecting the individual zj from the population z = (z1, z2, . . . , z2µ). Thus,
the selection process of the perturbed Markov chain (X�

n) is described by

P(X�
n+1 = y | Z�

n = z) =: γ�(z, y) =
µ∏

i=1

∑
{j : zj =yi }

F�(j, z)

for all (z, y) ∈ (Eµ × E
µ
∅

) × Eµ, (4)
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where the function F� is defined by

F� : {1, . . . , 2µ} × Eµ × E
µ
∅

→ R+, (j, z1, . . . , z2µ) 	→ f∅,�(zj )∑2µ
k=1 f∅,�(zk)

.

As the selection pressure tends to ∞, the selection process concentrates its choice on the best
individuals of the population Z�

n = z, which belong to the set ẑ, i.e.

lim
�→∞ F�(j, z) = 1ẑ(zj )

|ẑ| .

Thus, when the perturbation vanishes the selection process of the perturbed Markov chain (X�
n)

tends to the selection process of the unperturbed Markov chain (X+∞
n ).

Lemma 1. For all (z, y) ∈ (Eµ × E
µ
∅

) × Eµ,

lim
�→∞ γ�(z, y) = γ+∞(z, y).

4.3. The vanishing perturbation

Considering all possible paths between the populations X�
n and X�

n+1, we can define the
one-step transition probability of the Markov chain (X�

n) by

P(X�
n+1 = y | X�

n = x) =
∑
u

α(x, u)γ�((x, u), y). (5)

The perturbation appears only in the selection process; thus, Lemma 1 implies that

lim
�→∞ P(X�

n+1 = y | X�
n = x) = P(X+∞

n+1 = y | X+∞
n = x).

This means that the transition probabilities of (X�
n) converge to those of (X+∞

n ) as � tends to ∞.
Thus, the Markov chain (X�

n) appears as a perturbation of the Markov chain (X+∞
n ).

4.4. Convergence of the homogeneous algorithm

This subsection is devoted to the study of the behavior of the Markov chain (X�
n) for a

fixed value of � as n goes to ∞. For all x ∈ Eµ and all u ∈ E
µ
∅

, γ�((x, u), x) > 0 and∑
u α(x, u) = 1. Thus, we have

P(X�
n+1 = x | X�

n = x) =
∑
u

α(x, u)γ�((x, u), x) > 0.

Consequently, (X�
n) is an aperiodic Markov chain. We remark that γ�(z, y) > 0 if and only if

[y] ⊆ [z], and in applying the property of the transition matrix αE stated in (1) we obtain the
following result: for all i ∈ {1, . . . , µ} and (x, yi) ∈ Eµ × E, there exists an ri ∈ N such that

P(X�
n+ri

= (x1, . . . , xi−1, yi, xi+1, . . . , xµ) | X�
n = (x1, . . . , xµ)) > 0.

This result allows us to conclude that the chain (X�
n) is an aperiodic homogeneous and irreducible

Markov chain. Thus, the chain (X�
n) admits a unique invariant probability measure, µ�, such

that
µ�(y) = lim

n→∞ P(X�
n = y | X�

0 = x) > 0 for all x ∈ Eµ and all y ∈ Eµ.

This measure charges all populations of the space Eµ. Under the mutation–selection algorithm,
and for a fixed value of the selection parameter �, (X�

n) does not converge to the set of global
maxima of the fitness function.
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4.5. Asymptotic transition probabilities of the chain (X�
n)

Recall (5), which describes the transition matrix of (X�
n):

P(X�
n+1 = y | X�

n = x) =
∑

u∈E
µ
∅

α(x, u)γ�((x, u), y).

Let D(x, y) denote the set of populations u which allow us to create population y from
population x in only one iteration with a strictly positive transition probability, i.e.

D(x, y) = {u ∈ E
µ
∅

: α(x, u) > 0 and [y] ⊆ [(x, u)]}.
Considering all the paths between the populations X�

n and X�
n+1 which have a strictly positive

associated probability, we deduce that

P(X�
n+1 = y | X�

n = x) =
∑

u∈D(x,y)

α(x, u)γ�((x, u), y). (6)

To determine the asymptotic transition probabilities of the perturbed Markov chain (X�
n), we

just have to study the behavior of γ� as � goes to ∞. The perturbation in the selection process
appears in the same way as in [3, p. 49]. By translating the reasoning proposed in [3, p. 55] to
our selection process, it is easy to see that, by definition of γ� (given by (4)),

γ�(z, y) ∼ γ̈ (z, y) exp(−V (z, y)�) as � → ∞, for all (z, y) ∈ Eµ × E
µ
∅

× Eµ.

Here

• V (z, y) = ∑µ
i=1[ln(f̂ (z)) − ln(f (yi))] represents the perturbation cost necessary to

achieve all the antiselection, and

• γ̈ (z, y) = ∏µ
i=1 z(yi)/|ẑ| is the weight associated with the perturbation cost V .

By applying this result in (6), we obtain the following result, the proof of which is obvious.

Lemma 2. We have

P(X�
n+1 = y | X�

n = x) ∼ C∗(x, y) exp(−V ∗(x, y)�) as � → ∞,

where

• V ∗(x, y) is the communication cost, defined on Eµ × Eµ by

V ∗(x, y) = min
u∈D(x,y)

V ((x, u), y),

• D∗(x, y) is the set of the populations u ∈ D(x, y) which realize the minimum, i.e.

D∗(x, y) = {u ∈ D(x, y) : V ((x, u), y) = V ∗(x, y)},
and

• C∗(x, y) is the weighting associated with the communication cost V ∗, defined on Eµ×Eµ

by
C∗(x, y) =

∑
u∈D∗(x,y)

α(x, u)γ̈ ((x, u), y).

https://doi.org/10.1239/aap/1175266473 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1175266473


150 L. RIGAL AND L. TRUFFET

We define the communication kernel q on Eµ × Eµ by

q(x, y) = C∗(x, y)∑
y∈Eµ C∗(x, y)

.

Moreover, we remark that, for each x, y in Eµ,

q(x, y) = 0 ⇐⇒ V ∗(x, y) = ∞.

Thus, we are now in the framework of generalized simulated annealing studied by Trouvé in [17]
and [18]. That is, the transition probabilities of the process (X�

n) form a family of Markov kernels
on the space Eµ, indexed by �, which is admissible for the communication kernel q and the
cost function V ∗. Our mutation–selection algorithm can be seen as an optimization algorithm
minimizing the virtual energy (see Proposition 2.6 of [18]). We restate Definition 2.5 of [18],
which defines the virtual energy W associated with the cost function V ∗. To do so, we have to
recall the notion of an A-graph as defined in [11]. As there, x → y will denote the pair (x, y).

Definition 1. Let A ⊆ Eµ. We say that a set G of arrows x → y in (Eµ \ A) × Eµ is an
A-graph if and only if

1. for all x ∈ Eµ \ A, there exists a unique y ∈ Eµ such that x → y ∈ G, and

2. for all x ∈ Eµ \ A, there exists a path x = p1 → p2 → · · · → pr such that pk →
pk+1 ∈ G, ending at a population in A.

We denote by G(A) the set of A-graphs. Furthermore, for each G ∈ G(A) we write

V ∗(G) =
∑

x→y∈G

V ∗(x, y).

We can now define the virtual energy as follows.

Definition 2. For all y ∈ Eµ,
W(y) = inf

G∈G(y)
V ∗(G).

We also write

Wmin = inf
y∈Eµ

W(y), W∗ = {y ∈ Eµ : W(y) = Wmin}.

We now restate Trouvé’s result for the convergence in the inhomogeneous case, where
the parameter � is an increasing function of n. Then we have an inhomogeneous Markov
chain (X

�(n)
n ).

Theorem 1. (Point 1 of Theorem 2.22 of [18].) There exists a constant H1, called the critical
height, such that for all increasing sequences �(n) we have

lim
n→∞ P(X�(n)

n /∈ W∗ | X0 = x) = 0 for all x ∈ Eµ ⇐⇒
∑
n∈N

exp(−H1�(n)) = ∞.
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5. The virtual energy W

As we have demonstrated in the last section, it is very important to determine the set W∗ in
order to describe the asymptotic convergence of the process (X

�(n)
n ). In order to study the virtual

energy W , we follow the approach introduced by Freidlin and Wentzell [11]. They analyzed the
structure of the set of attractors of the deterministic system. They distinguished between two
kinds of attractors: the stable attractors and the unstable attractors. In our perturbation model,
some particular subsets of populations play the same role as the attractors of the deterministic
system. Thus, we call these particular subsets the attractors of the unperturbed process. By
translating part of the theory proposed in [11] to our model, we will prove that the set W∗ is
included in the set of stable attractors.

5.1. The set of attractors

In this subsection we will prove that the attractors of the unperturbed process are the
equivalence classes defined in Subsection 3.3. In order to define the set of attractors of the
unperturbed process (X+∞

n ), we use a new communication cost function, V ′. To do so, we
have to introduce the following definitions and notation.

Definition 3. A path p in Eµ is a finite sequence of populations of size µ denoted by p1 →
· · · → pr . The length of the path p is denoted by |p| and is equal to r .

A path p is said to join two populations x and y if p1 = x and p|p| = y. By Dµ we denote
the set of paths in Eµ which correspond to possible trajectories of the process (X�

n), i.e. the
paths p satisfying

V ∗(pk, pk+1) < ∞ for all k ∈ {1, . . . , |p| − 1}.
The set of all paths in Dµ joining the populations x and y is denoted by Dµ(x, y). The V ∗-cost
of p ∈ Dµ is given by

V ∗(p) =
|p|−1∑
k=1

V ∗(pk, pk+1).

We define the communication cost function V ′ on Eµ × Eµ by

V ′(x, y) = inf
p∈Dµ(x,y)

V ∗(p) for all (x, y) ∈ Eµ × Eµ. (7)

We can use the results of [11] to study the virtual energy by virtue of the following proposition.

Proposition 1. (Proposition 5.4 of [5].) The virtual energy W associated with the communi-
cation cost function V ∗ coincides with the virtual energy associated with the communication
cost function V ′.

We define the set of attractors of the unperturbed process (X+∞
n ) in the same way as Freidlin

and Wentzell defined the stable attractors of the deterministic system. They defined the stable
attractors using the three properties stated in [11, p. 169]. In our case we will prove that the
following properties are possessed by the r equivalence classes defined in Subsection 3.3.

Property 1. For all equivalence classes Ci we have

V ′(x, y) = V ′(y, x) = 0 for all (x, y) ∈ Ci × Ci . (8)
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Property 2. For all (i, j) ∈ {1, . . . , r} × {1, . . . , r} with i �= j , we have

V ′(x, y) �= 0 or V ′(y, x) �= 0, for all (x, y) ∈ Ci × Cj .

Property 3. P(there exist n0 ≥ 0 and j ∈ {1, . . . , r} such that X+∞
n ∈ Cj for n ≥ n0) = 1.

In order to prove the first property, we demonstrate the following lemma.

Lemma 3. V ∗(x, y) = 0 if and only if [y] ⊆ Û(x).

Proof. Because D(x, y) is a finite set, we have

V ∗(x, y) = 0 ⇐⇒ min
u∈D(x,y)

V ((x, u), y) = 0

⇐⇒ there exists a u ∈ U(x) such that

[y] ⊆ [(x, u)] and f̂ ((x, u)) = f (yi) for all i ∈ {1, . . . , µ}
⇐⇒ there exists a u ∈ U(x) such that [y] ⊆ (̂x, u).

By using this lemma and the definition of the equivalence relation R (see (3)), for all
equivalence classes Ci we have the following result:

for all (x, y) ∈ Ci × Ci , there exists a k ∈ N \ {0, 1} such that

(x = p1, p2, . . . , pk−1, pk = y) ∈ S × · · · × S,

where V ∗(pi+1, pi) = 0 for all i ∈ {1, . . . , k − 1}.
To conclude the proof of Property 1, we just have to use the definition of V ′ (see (7)) and remark
that the cost, V ∗(p), associated with the path p = (p1 → p2 → · · · → pk−1 → pk) is equal
to 0.

In order to prove the second property, we demonstrate the following lemma.

Lemma 4. For all (x, y) ∈ Eµ × Eµ such that f̂ (x) ≥ f̂ (y), we have

V ∗(x, y) ≥ µ(ln(f̂ (x)) − ln(f̂ (y))).

Proof. If D(x, y) = ∅ then V ∗(x, y) = ∞; otherwise, for all u ∈ D(x, y) we have
f̂ ((x, u)) ≥ f̂ (x) and, so,

V ((x, u), y) ≥
µ∑

i=1

(ln(f̂ (x)) − ln(f (yi)))

≥ µ(ln(f̂ (x)) − ln(f̂ (y))).

In using the definition of V ′ stated in (7) and by applying the previous lemma, we obtain the
following lemma.

Lemma 5. For all (j1, j2) ∈ {1, . . . , r} × {1, . . . , r} such that f̂ (Cj1) > f̂ (Cj2), we have

V ′(x, y) ≥ µ(ln(f̂ (Cj1)) − ln(f̂ (Cj2))) for all (x, y) ∈ Cj1 × Cj2 .

Proof. See Appendix A.
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We easily observe that if, for all (i, j) ∈ {1, . . . , r}×{1, . . . , r} with i �= j , Ci communicates
with Cj , then f̂ (Cj ) > f̂ (Ci ). Thus, by applying Lemma 5 we conclude the proof of Property 2.

Because the equivalence classes which do not communicate with any other equivalence
class are the absorbing groups of states of the Markov chain (X+∞

n ), the proof of Property 3 is
obvious.

Thus, the equivalence classes are the attractors of the unperturbed process (X+∞
n ).

5.2. The set of stable attractors

In this subsection it will be proved that

1. the sets Kj , j = 1, . . . , τ , play the same role as the stable attractors of the deterministic
system in [11], and

2. the sets Kj , j = 1, . . . , τ , possess the same properties as the stable attractors of the
deterministic system in [11].

The set Kj does not communicate with any other equivalence class. Thus,

V ′(x, y) > 0 for all (x, y) ∈ Kj × (Eµ \ Kj ). (9)

This property is similar to that which defines the stable attractors of the deterministic system
in [11, p. 188]. Thus, we will say that the sets Kj , j = 1, . . . , τ , are the stable attractors of
the unperturbed process. We define the cost between attractors in the same way as in [11].

Definition 4. V ′(Ci , Cj ) = min(x,y)∈Ci×Cj
V ′(x, y).

From (8), we have

V ′(Ci , Cj ) = V ′(x, y) for all (x, y) ∈ Ci × Cj . (10)

Consequently, we give a lemma which is a rewriting of Lemma 4.2 of [11].

Lemma 6. For all x ∈ S, there exists a j ∈ {1, . . . , τ } such that

V ′(x, y) = 0 for all y ∈ Kj .

Proof. By applying Lemma 3, and by construction of the sets Kj , j = 1, . . . , τ (see
Subsection 3.3), the proof of this lemma is obvious.

We define the virtual energy of an attractor in the same way as Freidlin and Wentzell [11,
p. 185].

Definition 5. W(Ci ) = minG∈G(i)

∑
m→n∈G V ′(Cm, Cn).

By applying (10), we find that

W(Ci ) = W(x) for all x ∈ Ci .

Consequently, we give a lemma which is a rewriting of point (c) of Lemma 4.3 of [11], and
which has a similar proof.

Lemma 7. If x ∈ S \ K then W(x) = miny∈K(W(y) + V ′(y, x)).
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5.3. W ∗ ⊆ K

In this subsection we will prove that any population which realizes the maximal value of
the virtual energy W belongs to the set K . (Recall that the set K is composed of the stable
attractors.) First we will prove that each such population belongs to the set S, which is composed
of all the attractors. Let τ � be the first entrance time of the chain (X�

n) into S:

τ � = min{n > 0 : X�
n ∈ S}.

Also, let
s� = min

x∈Eµ

∑
{y∈Eµ : [y]⊆ ˆU(x)}

P(X�
n+1 = y | X�

n = x).

Then, for all x ∈ Eµ and all n ∈ N,

P(X�
n+1 ∈ S | X�

n = x) ≥
∑

{y∈Eµ : [y]⊆ ˆU(x)}
P(X�

n+1 = y | X�
n = x) ≥ s�,

and we remark that, for all x ∈ Eµ,

lim
�→∞ s� =

∑
{y∈Eµ : [y]⊆ ˆU(x)}

P(X+∞
n+1 = y | X+∞

n = x) = 1.

From these equations, by applying the same reasoning as in [3, pp. 51–53], we deduce that

lim
�→∞ µ�(S) = 1,

lim
�→∞ µ�(E

µ \ S) = 0.
(11)

We denote by µ+∞ the limit measure, i.e. such that

µ+∞(x) = lim
�→∞µ�(x) for all x ∈ Eµ.

By translating the reasoning described in [3, pp. 62–63], to our Markov chain (X�
n), we can

show that

µ+∞(x)

{
> 0 for all x ∈ W∗,

= 0 for all x �∈ W∗.

By using the result in (11), we find that W∗ ⊆ S. From this result, if we apply Lemma 7 and
(9), we deduce that

W∗ ⊆ K. (12)

6. Convergence to the global maxima of f

Combined with (12), Theorem 1 means that if we choose the series (�(n))n≥0 carefully,
then the inhomogeneous Markov chain (X

�(n)
n ) converges to the set W∗ ⊆ K . In this case our

mutation–selection algorithm converges to the set of local maxima. However, we would prefer
to obtain an algorithm which converges to the global maxima. We remark that there exists a
group, K∗, of stable attractors which are composed only of global maxima. We denote by τ ∗
the smallest integer such that

f̂ (Kj ) = max
e∈E

f (e) for all j ≥ τ ∗.

https://doi.org/10.1239/aap/1175266473 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1175266473


A new mutation–selection algorithm 155

Thus, we have K∗ = ⋃τ
j=τ∗ Kj . In this section we will prove our main result, namely that

W∗ ⊆ K∗ when the number of parents µ is greater than a critical value µ∗. To do so we
study the communication cost between attractors. Lemma 5 demonstrates that the cost of bad
transitions (transitions from x to y with (x, y) ∈ K∗ × (K \ K∗)) increases linearly with µ.
We prove that, as a consequence of Lemma 8, below, the cost of good transitions (transitions
from x to y with (x, y) ∈ (K \ K∗) × K∗) remains bounded.

Lemma 8. For all sets Kj1 ⊆ K and Kj2 ⊆ K∗, for all x ∈ Kj1 , and for all y ∈ Kj2 ,
V ′(x, y) has an upper bound that does not depend on µ.

Proof. See Appendix B.

We are now in position to establish the main result of the paper.

Theorem 2. There exists a critical value µ∗, depending on the space E, the fitness function f ,
and the matrix transition αE , such that

µ ≥ µ∗ �⇒ W∗ ⊆ K∗.

Proof. For all y ∈ K \ K∗ and all x ∈ K∗, by applying Lemma 5 we have

V ∗(p) ≥ µ(ln(f̂ (x)) − ln(f̂ (y))) for all p ∈ Dµ(x, y).

Thus,

W(y) = inf
G∈G(y)

V ∗(G) ≥ µ
(

ln
(

max
e∈E

f (e)
)

− ln(f̂ (y))
)
.

We will prove that, for all y ∈ K∗, there is a G ∈ G(y) such that V ′(G) = ∑
(z,z′)∈G V ′(z, z′)

is independent of the value of µ. According to Lemma 6, for all x ∈ Eµ \ K there exists an
integer j (x) ∈ {1, . . . , τ } such that

V ′(x, z) = 0 for all z ∈ Kj (x). (13)

For all j ∈ {1, . . . , τ }, we choose a uniform population zj = (ej , . . . , ej ) which belongs to
the stable attractor Kj . For all y ∈ Kj∗ and any j∗ ∈ {τ ∗, . . . , τ }, we build the y-graph G as
follows:

x → zj (x) ∈ G, for all x ∈ Eµ \ K

x → zj ∈ G, for all x ∈ Kj \ {zj , y}
zj → zj∗ ∈ G, zj∗ → y ∈ G for all j ∈ {1, . . . , τ } \ {j∗}.

Then

V ′(G) =
∑

x∈Eµ\K
V ′(x, zj (x)) +

∑
j∈{1,...,τ }

∑
x∈Kj \{zj ,y}

V ′(x, zj )

+
∑

j∈{1,...,τ }\{j∗}
V ′(zj , zj∗) + V ′(zj∗ , y)

and, by (13), we have ∑
x∈Eµ\K

V ′(x, zj (x)) = 0.
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Property 1 yields ∑
j∈{1,...,τ }

∑
x∈Kj \{zj ,y}

V ′(x, zj ) = 0, V ′(zj∗ , y) = 0.

Thus,
V ′(G) =

∑
j∈{1,...,τ }\{j∗}

V ′(zj , zj∗). (14)

Using Lemma 8, we conclude that the cost V ′(G) is independent of the value of µ. Then, from
Proposition 1, we have

W(y) ≤ V ′(G) for all y ∈ K∗.

The proof of this theorem allows us to remark that, for all y ∈ K \ K∗,

W(y) ≥ µ
(

ln
(

max
e∈E

f (e)
)

− ln(f̂ (K))
)
.

If we use the fact that |p| ≤ L + 2 in (20) (stated in the proof of Lemma 8, below), we find
that, for all y ∈ K∗ and all x ∈ K \ K∗,

V ′(x, y) ≤ L ln
(

max
e∈E

f (e)
)
.

From (14), we deduce that

W(y) ≤ τL ln
(

max
e∈E

f (e)
)
.

Thus, an upper bound for µ∗ is

τL ln(maxe∈E f (e))

ln(maxe∈E f (e)) − ln(max{K : K∩K∗=∅} f̂ (K))
.

If we use our mutation–selection algorithm with µ ≥ τL/ε, we obtain an approximate algorithm
with a logarithmic relative error ε, defined by

ε = ln(maxe∈E f (e)) − ln(max{K : K∩K∗=∅} f̂ (K))

ln(maxe∈E f (e))
.

This logarithmic relative error tells us how close the approximate solutions for the ‘final’
population are to the optimal solution.

7. The particular case µ = 1

Even though Theorem 2, the main result on convergence established in the previous section,
is very important, it could be difficult, and sometimes impossible, to use it to solve particular
real problems. Indeed, for some real problems, the value of the upper bound for µ∗ found
above could be very large. Therefore, our genetic algorithm will not be efficient in solving
these real problems, because of computation time. To obtain a genetic algorithm which is more
easy to apply to real problems, in this section we will prove the convergence of our genetic
algorithm to the global maxima of the fitness function for the specific case in which µ = 1.
This convergence is illustrated by the following theorem.
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Theorem 3. If µ = 1 then W∗ ⊆ K∗.

Proof. To prove the theorem, we study the cost between two solutions, e1 and e2, to the
optimization problem, where e2 is a neighbor of e1. Thus, the two solutions e1 and e2 differ by
only one bit, i.e. α(e1, e2) > 0. The cost V ∗ between e1 and e2 is

V ∗(e1, e2) =
{

ln(f (e1)) − ln(f (e2)) if f (e1) > f (e2),

0 if f (e1) ≤ f (e2).
(15)

We will say that a path p ∈ D1 is ‘decreasing’ if and only if

f̂ (pk+1) ≤ f̂ (pk) for all k ∈ {1, . . . , |p| − 1}.
On the contrary we will say that a path p ∈ D1 is ‘increasing’ if and only if

f̂ (pk+1) ≥ f̂ (pk) for all k ∈ {1, . . . , |p| − 1}.
We consider a path p = (p1 → p2 → p3 → · · · → p|p|) which belongs to D1. We study the
case in which p is either a decreasing path or an increasing path. Using (15), we easily deduce
the following result on the cost of the path p: if p is an increasing path then V ∗(p) = 0, while
if p is a decreasing path then V ∗(p) = ln(f (p|p|)) − ln(f (p1)).

We consider a path p = (p1 → p2 → p3 → · · · → p|p|) which joins a global maximum
y and a local maximum x. That is, p ∈ D1(y, x) with x ∈ K \ K∗ and y ∈ K∗. We remark
that α(pi, pi+1) > 0 if and only if α(pi+1, pi) > 0. Thus, the path p′ = (p|p| → p|p|−1 →
p|p|−2 → · · · → p1) belongs to the set D1(x, y). We call p′ the ‘inverse’ path of p.

In the way described in Appendix A, below, we divide the path p into m paths denoted by
c1, . . . , cm. Each path ci is an increasing path or a decreasing path. Obviously we have

V ∗(p) =
m∑

j=1

V ∗(cj ). (16)

Thus, the path p′ is divided into m paths c′
m, . . . , c′

1, where c′
i is the inverse path of ci , and we

have

V ∗(p′) =
m∑

j=1

V ∗(c′
j ). (17)

Using (16), (17), the result on the cost of an increasing or a decreasing path, and the fact
that f (x) < f (y), we remark that

V ∗(p) > V ∗(p′).

Consequently, we have demonstrated the following result.

Lemma 9. For all x ∈ K \ K∗ and all y ∈ K∗,

p ∈ D1(y, x) �⇒ p′ ∈ D1(x, y) and V ∗(p) > V ∗(p′).

We consider a local maximum x and a global maximum y, i.e. x ∈ K \ K∗ and y ∈ K∗.
The set G is an x-graph. We know that there exists a path p ∈ D1(y, x) such that, for all i

with 1 ≤ i ≤ |p| − 1, pi → pi+1 belongs to G. Thus, we build the y-graph

G′ = (G \ {pi → pi+1 : 1 ≤ i ≤ |p| − 1}) ∪ {pi+1 → pi : 1 ≤ i ≤ |p| − 1}.
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We denote by p′ the inverse path of p, and observe that, for all i with 1 ≤ i ≤ |p′| − 1,
p′i → p′i+1 belongs to G′. Lemma 9 yields V ∗(p) > V ∗(p′), and we thus deduce that

V ∗(G′) = V ∗(G) + V ∗(p′) − V ∗(p) < V ∗(G).

Consequently, we have proven that, for all x ∈ K \ K∗ and all y ∈ K∗, if G is an x-graph
then there exists a G′ which is a y-graph such that

V ∗(G′) < V ∗(G).

Finally, we have demonstrated that

W(y) < W(x) for all x ∈ K \ K∗ and all y ∈ K∗.

Thus, W∗ ⊆ K∗.

8. Conclusion

In this paper we have proven that our new genetic algorithm converges to the maxima of
the fitness function for a sufficiently large population (see Theorem 2) or for a population of
size µ = 1. Consequently, it would be interesting to make further theoretical studies in order
to determine precisely the value of µ∗, which could, for some functions f , be conjectured to
equal 1.

Appendix A. Proof of Lemma 5

For all (x′, y′) ∈ Eµ × Eµ, we will say that a path p ∈ Dµ(x′, y′) is ‘decreasing’ if and
only if

f̂ (pk+1) ≤ f̂ (pk) for all k ∈ {1, . . . , |p| − 1},
and we will say that a path p ∈ Dµ(x′, y′) is ‘increasing’ if and only if

f̂ (pk+1) ≥ f̂ (pk) for all k ∈ {1, . . . , |p| − 1}.
We choose a pair of populations (x′, y′) ∈ Eµ × Eµ such that f̂ (x′) ≤ f̂ (y′). According to
Lemma 4, the cost of an increasing path p that joins the population x′ and the population y′
has the property that

V ∗(p) =
|p|−1∑
k=1

V ∗(pk, pk+1)

≥
|p|−1∑
k=1

µ(ln(f̂ (pk)) − ln(f̂ (pk+1)))

= µ(ln(f̂ (x′)) − ln(f̂ (y′))). (18)

For (x, y) ∈ Cj1 × Cj2 such that f̂ (Cj1) > f̂ (Cj2), and for all p ∈ Dµ(x, y), we divide
the path p into m paths denoted by c1, . . . , cm. To represent the m paths, we define m + 1
integers k1, . . . , km+1. These integers kj allow us to choose a population pkj which belongs
to the path p = (p1 → · · · → p|p|). The integer kj+1 allows us to determine the first
population of the path cj+1 which is equal to the last population of the path cj . Thus, the path
cj is pkj → pkj +1 → pkj +2 → · · · → pkj+1 and the path cj+1 is pkj+1 → pkj+1+1 →
pkj+1+2 → · · · → pkj+2 , and so on.
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Then, to determine all the paths cj , j = 1, . . . , m, we consider the following procedure.

1. Let k1 = 1; thus, x = p1 is the first population of the path c1.

2. Assume that ci has been constructed for i ≤ j and then construct cj+1 by determining
the integer kj + 1 as follows.

• If f̂ (pkj ) ≥ f̂ (pkj +1) then choose the integer kj+1 such that pkj → · · · → pkj+1

is the decreasing path of maximum length.

• If f̂ (pkj ) < f̂ (pkj +1) then choose the integer kj+1 such that pkj → · · · → pkj+1

is the increasing path of maximum length.

The procedure ends when the population pkj+1 is equal to p|p| = y.

Thus, the path p is divided into m′ decreasing paths, cj1 , . . . , cjm′ , and m−m′ increasing paths.
Because the cost of a path is a positive real number, we have

V ∗(p) =
m∑

j=1

V ∗(cj ) ≥
m′∑
i=1

V ∗(cji
).

Applying (18), we have

V ∗(p) ≥
∑

j∈{1,...,m}\{j1,...,jm′ }
V ∗(cj ) ≥

∑
j∈{1,...,m}\{j1,...,jm′ }

µ(ln(f̂ (pkj
)) − ln(f̂ (pkj+1))).

If j ∈ {1, . . . , m} \ {j1, . . . , jm′ } then cj is an increasing path and, thus,

ln(f̂ (pkj+1)) − ln(f̂ (pkj
)) ≥ 0.

By adding the terms ln(f̂ (pkj+1)) − ln(f̂ (pkj
)) if cj corresponds to an increasing path, we

obtain

V ∗(p) ≥
m∑

j=1

µ(ln(f̂ (pkj
)) − ln(f̂ (pkj+1)))

+
∑

j∈{1,...,m}\{j1,...,jm′ }
µ(ln(f̂ (pkj+1)) − ln(f̂ (pkj

)))

≥
m∑

j=1

µ(ln(f̂ (pkj
)) − ln(f̂ (pkj+1)))

= µ(ln(f̂ (x)) − ln(f̂ (y))).

Appendix B. Proof of Lemma 8

For all (x, y) ∈ Kj1 × Kj2 , by applying Lemma 3 we have

V ∗((x1, x2, . . . , xµ), (x1, x1, . . . , x1)) = 0,

V ∗((y1, y2, . . . , yµ), (y1, y1, . . . , y1)) = 0.
(19)
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From (1), there exists a (e1, . . . , er ) ∈ Er with e1 = x1, er = y1, and∏
1≤k≤r−1

αE(ek, ek+1) > 0.

We build the following path p of length r + 2, which joins the populations x and y:

p1 = (x1, x2, . . . , xµ),

p2 = (x1, x1, . . . , x1),

pk =
{

(ek−1, ek−1, . . . , ek−1) if f (ek−1) ≥ f (pk−1
2 ),

(ek−1, pk−1
2 , . . . , pk−1

µ ) if f (ek−1) < f (pk−1
2 ),

k ∈ {3, . . . , r},

pr+1 = (y1, y1, . . . , y1),

pr+2 = (y1, y2, . . . , yµ).

From (19), we deduce that

V ∗(p) =
|p|−2∑
k=2

V ∗(pk, pk+1).

We remark that if pk+1 = (ek, . . . , ek) then V ∗(pk, pk+1) = 0 because αE(ek−1, ek) > 0, and
that if pk+1 = (ek, pk

2, . . . , p
k
µ) then V ∗(pk, pk+1) = ln(f (pk

2)) − ln(f (ek)). Thus,

V ∗(p) =
|p|−2∑
k=2

V ∗(pk, pk+1) =
|p|−2∑
k=2

max(0, ln(f (pk
2)) − ln(f (ek))). (20)

Hence, V ∗(p) is independent of µ and V ′(x, y) ≤ V ∗(p), as required.
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