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Introduction

One of the most important problems in the potential theory is the one

of capacitability, that is, whether the inner capacity of an arbitrary borelian

subset B is equal to the outer capacity of B. As for the capacities induced

by the Newtonian potentials and other classical potentials, Choquet [5] has

shown that every borelian and, more generally, every analytic set are capaci-

table. He goes on as follows: first he shows that, for the Newtonian capacity

/, the inequality of strong subadditivity holds, that is,

f(AUB)+f(AΠB) *=f(A)+f(B)t

and then, using this inequality, he shows that the outer capacity / has the

analogous property to one of the outer measure, more precisely, if an in-

creasing sequence {An} of arbitrary subsets converges to A, then f*(A)

= limf*(An)- This property plays an important role in his proof.

Recently it tends to investigate the general potentials in a locally compact

Hausdorff space. As for the problem of capacitability, anything more than

the results of Choquet has not yet been stated. In this paper we deal with

this problem and we shall prove that every /ί-borelian subset and, more

generally, every if-analytic subset, contained in a compact set, are capacitable

under the two assumptions that every compact subset is metrisable and there

exists en equilibrium measure of every compact subset. A /i-borelian subset

is a subset belonging to the /f-borelian field, which is the smallest borelian

field which contains each compact subset. As every compact set is metrisable

in our case, every classical borelian subset contained in a compact set is

if-borelian. A /f-analytic subset is the continuous image of a Kns set contained

in a compact space. It is known that every if-borelian subset is if-analytic.

First, in § 1, we consider the quasi continuity principle, which is a gener-
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alisation of the continuity principle and we shall prove that the quasi conti-

nuity principle follows from the assumption that there exists an equilibrium

measure of every compact subset. In the following section we shall prove

that, if a sequence {μn} of positive measures on a compact subset converges

vaguely to a measure μ and if the potentials U'1*"* are uniformly bounded,

then we have C7μ = lim Uμn quasi everywhere. This fact is very important

to assert that the outer capacity, induced by our potentials, has the following

property: the sequence of the outer capacities of arbitrary subsets An in a

compact subset converges increasingly to the outer capacity of A, whenever

{An} increases to A. From this property follows the capacitability of all

analytic subsets in a compact set.

In the last section, we associate a function m*(P> Uμ) with each potential

Uμ. Using this function, first we shall investigate the continuity of potentials,

and then we shall discuss an equilibrium potential of an open set G which

is constantly equal to 1 in G.

§ 1. Quasi continuity principle

1. Let Ω be a locally compact Hausdorff space. In the sections 1, 2 and

3 we shall assume that every compact subset of Ω is metrisable. In this

paper we always consider positive measures1' μ in Ω with compact carriers

denoted by Sμ. We denote by μil) the total mass of a positive measure μ.

A sequence {μn} of positive measures is called to converge vaguely to μ, when

we have

\fdμ = lim \fdμn

for every continuous function / with compact carrier.

The following theorem is important in the potential theory.

THEOREM 1.1.2) Suppose that positive measures μn < n = 1, 2, . . . ) satisfy

the following conditions:

1° Sμr, (w = l, 2, . . . ) are contained in a fixed compact subset Ky

2υ μn{l) (w = l, 2, . . . ) are uniformly bounded from above.

1] For the theory of measures in a locally compact Hausdorff space, see, for example,
Bourbaki [2].

21 Cf. Frostman [8].
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Then, from a given {/hi}, tve can take out a subsequence {μn'} which converges

vaguely to a positive measure μ.

Since K is metrisable, this theorem can be proved using the following

theorem. We shall omit the proof of Theorem 1.1.

THEOREM.3* Suppose that a compact set K is metrisable. Then the space

ϋ{K) of all continuous functions in K with the uniform convergence topology

is separable.

Conversely we can prove

THEOREM 1.2. If ί(K) is separable, then the compact set K is metrisable.

Proof. Let # be a countable subset of £(/Π which is dense in &(K)

with respect to the uniform convergence topology. For each point Po of K

we define a new base of neighborhoods N(R) as follows:

<e>, e; > 0 , / y e 8 ; i = l, 2, . . . , m).

Let us denote by K the set K with this topology. It is easily seen that K

is a Hausdorff space. In fact, for any two points Pi and P2 of K, there exists

a continuous function f(P) of &(/Π such that /(Pi) =0 and /(P2) = 1. Then

we can choose a function fj0 of 3 such that ί/(P) -/yo(P)i < ^ at every

point P of if. Put

and

Then we see that JVXΛ) Π JVXΛ) = 0. It is easy to verify that K and K are

homeomorphic, and that by our topology K satisfies the first axiom of counta-

bility, and so does K.

Now we shall show that K is separable. For the purpose, first we show

that, for any neighborhood U of an arbitrary point Po of K, there exists a con-

tinuous function /(P) of 5(/Π such that 0 £f(P) ^ 1 in Ky f(P0) = 1, /(P) = 0

at every point P of K- U and / ( P ) < 1 at each point P * Po. In fact, since ϋC

satisfies the first axiom of countability, there exists a sequence {Un} (n = l>

*> Cf. Kryloff and Bogoliouboff [12].
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2, . . . ) of neighborhoods of P o such that

UZ>UnZ> ϋn+i D U»+ι and Γ\Un = {Po}.

Since K is normal by the compactness of K, we can find a continuous function

fn(P) of S(ΛL) for each w such that/«(P0) = 1, /«(P)=0 at every point P of

K-Un and 0*=/n(P) = 1 in K. Then we see that the continuous function

f(P) -*Σiκnfn(P) satisfies our requirements. Now, for every function / / G $

and for every integer k, we choose a point Pj,k such that 1 - j - <fj(Pj,k) < 1

-f ••,-, when such a point exists. To verify that K is separable, it is sufficient

to show that Pj,k (j, k = 1, 2, . . .) is dense in /£ For any point Po of ϋΓ, by

our above observation, there exists a continuous function /(P) such that

0 -£f(P) £ 1 in if, /(Po) = 1, /(P) = 0 in the complement of a neighborhood £7

of Po and at each point P # Po, /(P) < 1. By our assumption there exists a

sequence {//(P)} of # such that/IP) is a uniform convergence limit of//(P).

Let {P/} be a subsequence of {P/,A>} such that

i-y<fAPr)<i+γ

Then we see that lim//(P/) = l. Let P be an accumulation point of {P/}.

Since if satisfies the first axiom of countability, there exists a subsequence

{P/'} of {P/} which tends to P. It is easy to verify that f{P) = lim/yΊP/') = 1,
3"

and that P = Po, that is, {Pj,k} is dense in K.

Finally, we shall prove that K satisfies the second axiom of countability.

For the purpose we shall show that, for any neighborhood U of an arbitrary

point Po of Ky there exist a finite family {//} (7= 1, 2, . . . , τw0) of continuous

functions of 3, and a finite family {e/} (7= 1, 2, . . . , wio) of positive numbers

and a point PWo belonging to the family {Pj,k) chosen above, such that an open

set

N(Pnti; fu eι) = {P; \fι(P)-fι(Pno)\<eh 1 = 1, 2, . . . , m0}

is a neighborhood of Po which is contained in U. In fact, there exist a finite

family {//} (7= 1, 2, . . . , m0) of continuous functions of $ and a finite family

{ε/} (7 = 1, 2, . . . , wo) of positive numbers'such that an open neighborhood

<2ε / } 7 = 1, 2
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is contained in U. Since {Pj,kϊ <Λ k - 1 , 2, . . . ) is dense in K, we can choose

a point PΛo of {Pjtύ such that

\fλP>^-fλP^\ <v for / = lf 2 wio.

We put

M A 0 ; /*/, s/) = {P; |/,(P) -//(P,,βM <ε,, / = i, 2, . . . , «ι0},

then we obtain that P, G NKPn* I //, β/) and iV(PMo ί //, «/) C N(P0 //, 2ez) C £7.

This shows that the family {MPj.kl //, e/)} ( / / G j ; /= 1, 2, . . . , wi; /, &

— 1, 2, . . . ) of neighborhoods is a base of neighborhoods of an arbitrary point

of K, and hence K satisfies the second axiom of countability. Thus we conclude

that K is metrisable.

2. Now let Φ(P, Q) be a continuous real-valued function defined on the

product space Q x J2, which satisfies the following conditions:

1° 0 < Φ(P, Q) <= + OD,

2° Φ(Py Q) is finite except at most at the points of the diagonal set of

Ω x Ω;U

3° Φ(P,Q) is symmetric, that is, Φ(P, Q) - <#(©, P). The potential Uμ(P)

of a positive measure μ is defined by

(Pt Q)dμ(Q).

Then ί/μ(P) is lower semi-continuous in £ and continuous in ^ - Sμ. By the

condition 3°, we have always the reciprocal law, j U'^dv = j 6TV/A for any two

positive measures μ and v. In this paper, μ will be called admissible on a

compact set if, if Sμ C /f and UμΛP) ̂  1 everywhere in Ω. The family of all

admissible measures on K is denoted by %(K). We associate every compact

subset K with the number ciK) defined by sup /ill) for all /J e 9l(ϋΓ). By this

set-function c(/Π we define the inner and the outer capacities of an arbi-

trary subset A of Ω as follows: the inner capacity cap/ (A) is equal to sup

cίK) for all compact sets K C A, and the cwfer capacity capeί^Π is equal to

inf cap/ (G) for all open sets G D A It follows immediately that we have cap/ (K)

-c(K) for every compact set Ky cap/ {A) ^cap^A) for an arbitrary subset

4) If ΨίP, P)--i-co at every point of the diagonal set, every compact subset of iϊ is
necessarily metrisable.
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A and cap/ (G) = cap<> (G) for every open set G. When the inner capacity

cap/(A) of A is equal to the outer capacity cap^(Λ), we shall say that A is

capacitable and we shall denote the common value of these two capacities by

cap (A), which we shall call the capacity of A. Every open set is capacitable

and as we shall show later, every compact Gs set is capacitable. It may happen

that an open set G is of capacity zero only in § 4 we assume that every open

set is of positive capacity.

We say that a property holds nearly everywhere (resp. quasi everywhere)

in a subset A, when the property holds at each point of A except at the points

of a set of inner (resp. outer) capacity zero.

3. The following theorems are well-known.

THEOREM 1.3. If Bn (n = 1, 2, . . . ) are borelian sets, then we have

THEOREM 1.4. For any sequence {An) (n = 1, 2, . . . ) of arbitrary subsets

of Ω, it holds that

THEOREM 1.5. If a sequence {μn} (n — ly 2, . . . ) of positive measures con-

verges vaguely to μ, then we have

Uμ(P) ^ \im U'n(P)
n

at every point P of Ω.

4. DEFINITION 1.1. We say that Φ satisfies Frostmaris maximum principle,

ify for every potential Uμ such that Uμ(P) ^ 1 at every point P of Sμ, we have

the same inequality everywhere in Ω.

DEFINITION 1.2. A positive measure βK associated with a compact set K is

called an equilibrium measure of K, if it holds the following properties:

Sμ χ C Ky [f^'iP) ^ 1 everywhere in Ω and U^HP) = 1

nearly everywhere on K.

It is known that the equality, μ& d ) = cap/ (iί), holds for an equilibrium

measure μκ of a compact set K. (See, for example, Theorem 3.5.)
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We call the potential U*κ of an equilibrium measure μκ the equilibrium

potential of K. For a compact set K of inner capacity zero, we have μκ = 0

as an equilibrium measure.

DEFINITION 1.3. We shall say that a potential Uμ is quasi continuous in

Ω, if, for any ε > 0, there exists an open set G: such that cap (Gε) i= ε and the

restriction of Uμ to Ω - Gε is continuous.

DEFINITION 1. 4.5) We say that Φ satisfies the quasi continuity principle, if

the continuity of the restriction of any potential Uμ to Sμ implies the quasi

continuity of Uμ in Ω.

DEFINITION 1.5. We say that Φ satisfies the continuity principle, if the

continuity of the restriction of any potential Uμ to Sμ implies the continuity of

C7μ in Ω.

For the continuity principle, see Ohtsuka [15, 16, 17], Kishi [10], Choquet

[63 and Ninomiya 0t4j The quasi continuity principle follows immediately

from the continuity principle, but the latter does not follow from the former.

5, If every open set is of positive capacity, the existence of an equilibrium

measure of every compact set K implies Frostman's maximum principle.^ and

then it assures us the continuity principle.'* In our case, since there may exist

an open set of capacity zero, we can only assert the following

THEOREM 1.6.8) Suppose that we have an equilibrium measure of every

compact set. Then Φ satisfies the quasi continuity principle.

To prove this theorem we shall use the following

THEOREM 1.7. There exists the largest open set Go of capacity zero, that is,

cap (Go") =0 and, when Ω is of positive capacity, it holds that cap(G) > 0 for

any open set GWGQ.

Proof. Let @ be the family of all open sets of capacity zero. Then the

open set Go = U G is the largest open set of capacity zero. In fact, for any

compact set K C Go, we have cap/ (ϋf) = 0, since K is covered by a finite number

5> Cf. Kishi [11].
6> Cf. Ninomiya [13].
7> See, for example, Ugaheri [19] or Ohtsuka [16].
*] We can construct a kernel function Φ in a suitable locally compact space ίl such

that Φ does not satisfy the continuity principle, but, for any compact set K, there exists
an equilibrium measure μκ. This example also shows that the continuity principle does
not necessarily follow from the quasi continuity principle.
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of open sets of iΆ, and hence cap (Go) = 0. It follows immediately that, when

i? -is of positive capacity, it holds that cap (G) > 0 for any open set GmGo

Now we shall give the proof of Theorem 1.6. Let the restriction of Uμ to

Sμ be continuous. Without loss of generality, we may assume that (i? — Sμ) - Go

is not empty. It is sufficient to prove that the restriction of Uμ to Fo = Ω - Go

is continuous. Let P o be a point of S μ Λ F 0 . If 0(Po, A ) is finite, Uμ(P) is

obviously continuous at Po, considered as a function in Ω. Hence we suppose

that Ω(P0, Po) = + «>. Let μn be the restriction of μ to Bn - {P; Φ(P} Po)>n)

\n = 1, 2, . . . ). Then each potential £/μ" is continuous on Sμ and it decreases

uniformly to zero on Sμ as ^ -> α>. We put ε* = sup Uμ"(P), then {en} decreases
pe.s μ

monotonously to zero. As £/μΉP) ^ εrt on Sμτι C Sμ, it holds that Uμ»(P) ^ εrt

everywhere in Fo, since Go is the largest open set in Ω.

Consequently we have

lim tF-{P)*k ίim U*»(P) + lim ί/μ"
Fo3P-*Po FQ3P^>P0 F0^P-+P0

£ ε«+ ί/μ"μ"(P0) ^ εw-h Z7μ(Po),
and hence

ίϊm ί/μ(P) ^ ί/μ(P0).

This shows that the restriction of Uμ to Fo is upper semi-continuous at

PoGFoΠSμ..

§ 2. Sequences of potentials

1. In the sections 2.1 and 2.2 we assume the quasi continuity principle

and we consider a sequence {Uμ"} of potentials of positive measures μn con-

verging vaguely to μ.

First we shall prove

THEOREM 2.1.91 Every potential Uμ is Quasi continuous in Ω.

Proof. Since the set of points P such that Uμ(P) = -f oo is a Gδ set of

outer capacity zero, there is no loss of generality in assuming that Z7μ is finite

in Ω. For any ε > 0 and for any positive integer n, by Lusin's theorem, there

exists a compact set Kn such that μ(Ω-Kn) < <>•*„ and U]L is finite and con-

tinuous on Kru Then the potential UVn of the restriction μn of ft to Kn is

qi For the Newtonian potentials this has been proved by Cartan [4], Proposition 5.
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continuous on Kn, and hence, by our quasi continuity principle, UUa is quasi

continuous in Ω. Therefore, we have an open set Gn such that the restriction

Uμn to Ω-Gn is continuous and caρ(G,z) ^ ?Ύi ' P u t

-Gn Uμ(P)-UμHP)> - -

Then Bn is open in Ω - Gn and Bn U Gn is open in Ω. Hence

cap (Bn U Gn) ^ cap/ (Bn) + cap (Gw) ^ cap/ (£ w ) 4-

εWe shall show the inequality cap/ (Z?rt) = r>n+1 For any compact subset eCBn,

let γ be admissible on e. Then

~r(D< f(ί/μ-ί/μ")^r

whence we have γ(l) < ^ e

+ 1 and c a p / ( ^ ) ^ 9~τv Thus we have seen that

cap/ (Bn) = 9n+ι a n ^ s o cap (,BW U Gn) =-^f Hence we see that cap(G ε )

^ ε, where G ε = U ( f t t U G n ) . Then it follows that the restriction of U'1 to

Ω-G* is continuous, because it holds that 0 ^ Uμ{P) - Uμ'ι(P) *= ̂ n at every

point P of i?-Gc and Uμ"(P) is continuous in Ω - G>.

THEOREM 2.2.10) Suppose that μn (n = 1, 2, . . . ) tfr£ positive measures on a

compact set such that Uμn(P) ^ M < -f °° m i ? αwd f/iαί {^n} converges vaguely

to μ. Then ive have, for any potential U" f= 1, lim i Uμndv = I Uμdv.

Proof. By Theorems 1.5 we have Uμ(P) ^ lim Uμn(P) everywhere in Ω.

Hence we have

^Uμdp^ Jlim U'Xndv ^ Xϊm^U^dv.

We shall show limj Uμndv ^ | UιL dp. Since ί/v is quasi continuous in Ω by

Theorem 2.1, we can find, for any e > 0, an open set Gε such that cap (G?) ^ ε

and the restriction of W to i? - G? is continuous. Put

j Z7V on i? - Gε

~~ I 0 in Gs. '

10) Cf. Brelot [3], Lemma 5.
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Then / is upper semi-continuous. Hence we have a continuous function g such

that

and \gdμέ\fd;ι + e=\ ί /V

Then we see

lim I W dμn = Hm \fdμn = lim I gdμn = \gdμ

On the other hand it is easily seen that μn(Gε) ?= Me and 1 lΓdμn = Mε. In

fact, for any compact set eC GSi the measure yr dn is admissible on e* where

μn is the restriction of μn to e. Hence

Therefore we have

Um^U'dμn ^ Jί7 vέ&ι+(M+l)e.

Consequently we obtain

lim j ϋ^rf* = ϊϊm J ί/^w ^ j Z7V^ = [ Uμdp.

2. The following theorem plays an important role in §3.

THEOREM 2.3.Π) Let μn (n = 1, 2, . . . ) be measures on a compact set such

that the potentials Uμn are uniformly bounded in Ω. If {μn) converges vaguely

to /ι, we have

lim £/μ» = IF

quasi everywhere in Ω.

Proof. By Theorem 1.5 we have Uμ(P) £ lim Uμn(P) everywhere in Ω.

Hence it is sufficient to prove that Uμ(P) ^ lim Uμ"{P) quasi everywhere in Ω.

We put

Vn,m(P) = min (U'J»(P), . . . , UμmiP)) for m ^ w,

111 Cf. Kishi fill.
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and

Vn(P)--inί (IF"(P), UJ"-ι(P), . . . ).

Then the sequence { Vn,m(P)) (m = n, n-\-1, . . . ) decreases to Vn(P) as m -> °°

and the sequence {Vnί/*)} (w = l, 2, . . . ) increases to F(P) = lim Uμn(P) as

/z -> oo. For any ε' > 0, we have an open set Gv such that cap <G;>) ^ ε' and

each U:x>t(P) and UμΛP) are continuous on Ω — Gζ by Theorem 2.1. For any

positive number ε, we put

and

; ^ G » ; F«.m(P) -uμ(P)

Then it is obvious that each En,m(ε) is open in Ω — G^ and K'/κ(e)UG=/ is

open in i2. Hence we easily obtain the inequalities

(1) cape (En,»λ ε)) ?= cap (£«, w ( s ) U & )

*s cap/ ( ^ ί, w( e)) + cap 1 Gε/) = cap/ (£*«, /w(£)) + £'.

We shall prove that lim cap/ {Elim(ε)) = 0. We can see immediately that

£ M I + I ( S ) C £ » , / « ( S ) and isw./nt-iU) C i£w'>«( ^ )• In fact, if P'k) E: En,m-\^)

tends to Po as k -* » , then it follows that ftε ί? - G > and that lim Vn.m-APik^

- F w > m + 1 (P) and lim Uμ(P{k)) - Z7-i(JR,). If lim cap/ (£«,,;/UV) - α > 0, we have,
A: J H

for any w ^ n, an admissible measure 7*Wf/// on a compact subset e,,,m of E][,,Λι^

such that γn,nλen,m) ^ ^ Since cap, (^«,mis)) ^cap/(£«,».»,<£») ^r«.///Us,,/i),

the total masses of γn,m are uniformly bounded, and by Theorem 1.1, we can

take out a subsequence {γn,m') of {γn,m} such that {γn,m') converges vaguely to

a positive measure γny whose total mass is obviously not smaller than t>

SΎn is contained in En, m ( ^ ) ί ° r every sufficiently large m otherwise there

would be a point P., e S--M -£•?!,///,( 9 ) for some ;;/,,, and hence we could find a

neighborhood Λrof Pύ such that NΓ\En>m^i{ε) - ip. Then γn{N) > 0 and rn,mΛN)

— 0 for every mf ^ wo-H 1, which is absurd. Since S-u C £"«,m ( ^ J we have

fore very sufficiently large ;;/. On the other hand, we have lim I U'>ι'"dγn - \ Uμdγn
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by Theorem 2.2. This contradicts (2). Consequently, we see that

lim cap; (En,m(ε)) = 0. Therefore, from (1), we can conclude that
m

lim cap* (En,m(ε)) ^ ε'. Thus we obtain lim cap* (En,m(ε)) = 0.
tn m

N o w w e c h o o s e a s e q u e n c e { ε * } o f p o s i t i v e n u m b e r s s u c h t h a t εi > e 2 > . . .

> sk > εk+ι > . . . - » 0 a n d w e p u t

= IP', VΛP) - Uμ(P) > εk}

= {P; V(P)-U»(P)>εk)

and

E={P; V(P)-Uμ(P)>0}.

Then, since it is immediately seen that EnUk) C En,m(εk) and E(εk) - U En(εk),
n

we have cap* (En(εk)) = 0 and cap* (E(εk)) = 0. Then, from £ = U £(εife), we get
k

=0, that is, Uμ(P) ̂  Vli3) quasi everywhere in i?.

3. THEOREM 2.4. Suppose that there exists an equilibrium measure of every

compact set and that μn (Λ = 1, 2, . . . ) <zr£ measures on a compact set such

that the potentials CΓ*"' ̂  1 in i?. If {#«} converges vaguely to μ, we have

l im Uμ» = Z7U

n

<7«αsί everywhere in Ω.

Proof. This follows immediately from Theorem 1.6 and 2.3.

4. When Φ satisfies the continuity principle, the uniform boundedness of

Uμn (n = 1, 2, . . . ) is dispensable to assert that Uμ = lim Uμn quasi everywhere
n

in Ω.

For the purpose, first we shall show the following

LEMMA 2.1.12 Let μn (n-1, 2, . . . ) be measures on a compact set such

that {βn} converges vaguely to μ. Then, it holds that

Uμ = lim Uμn

n

nearly everywhere in Ω.

Proof. We put

E={P; V(P)-Uμ(P)>0},

12> Cf. Brelot [3] and Ohtsuka [18].
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where V=\im Uμn. If cap/ (E) > a > 0, then we can find an admissible measure

γ on a compact set in E such that γ(l) ^ a. By Lusin's theorem, we have a

restriction f of γ to a suitable compact subset of Sτ such that γ'(l) ^ -£-• and

£/τ' is continuous on Sv. Then, by the continuity principle, Ux' is continuous

in Ω. For this potential Ur, we get

- Uμ) df ^ lim j £/μ»</r' - J tfμ<fr' = 0,0

which is impossible. Thus our lemma is established.

By our lemma, we have immediately

LEMMA 2.2. Let μn be measures on a compact set. If {μn) converges vaguely

to μ and a potential Ur *= 1 in Ω, then it holds that \ Uμdγ = I Vdγ> where

THEOREM 2.5.13) Suppose that Φ satisfies the continuity principle. If μn

{n = 1, 2, . . . ) are measures on a compart set and {μn) converges vaguely to μ,

then ive have

C7μ = l i m Σ 7 μ Λ

n

quasi everywhere in Ω.

Proof. We proceed in the same way as in the proof of Theorem 2.3. If

lim cap, (En,m(ε)) = oc > 0, then there exists an admissible measure γnt for which

the inequality

holds for every sufficiently large m. Here, letting m tend to infinity, we have

(3) * ε έ j (Vn - Uμ)drn έ f ( F - Uμ)dTn.

The last integral of (3) is equal to zero by Lemma 2.2, which is absurd.

Consequently, we have lim cap/ (Elί,m(ε)) = 0. Then, we can prove, by the same
VI

argument as in the proof of Theorem 2.3, that V= Uμ quasi everywhere in Ω.

1 3 ) See also Choquet [7].
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§3. Capacitability

1. In this section we shall prove that every borelian and analytic set

contained in a compact set are capacitable. We assume first that any compact

set K is metrisable. Then K is a compact Go set and it can be concluded that

any compact set K is capacitable. We also assume that there exists an equi-

librium measure μκ of any compact set K. By our assumption we conclude

that, for any open set G contained in a compact set, there exists an equilibrium

measure μn such that μa(l) = cap (G), UμG(P) ^ 1 everywhere in Ω and Uμ°(P)

= 1 quasi everywhere in G. By this fact we can prove that, if a sequence {Xn}

of arbitrary subsets contained in a fixed compact set K increases monotously

to X, then it holds that limcape(Xι) -cap^(Z). Using Choquet's method, we
u

can see that every borelian and analytic set contained in a compact set are

capacitable.

2. We assume the following two conditions:

1° Any compact subset K is metrisable.

2° There always exists an equilibrium measure μκ of any compact subset

K, that is, there exists a positive measure μκ on K such that μκ(l) = cap, (if),

Uμκ{P) ^ 1 everywhere in Ω and Uμκ(P) = 1 nearly everywhere on K.

THEOREM 3.1. If a decreasing sequence Kn of compact subsets converges to

K, then ive have limcap; {Kn) — cap/ (K).
n

Proof. This theorem is proved without our two assumptions. For any

ε > 0 and for each w, there exists an admissible measure on Kn such that

cap/ (Kn) ~ ε <= μn(X). As the total masses μn(l) of μn are uniformly bounded,

we can take out a subsequence {μn>) of {μn) which converges vaguely to μ0.

We see that Sμo is contained in K. In fact, if there exists a point Pυ E: Sμo - K>

then we can find a relatively compact neighborhood ω(Pu) such that ω(P0) Γ\ K

= 0. As ϋC is contained in Ω-ωiPϋ), there exists a sufficiently large ?2o such

that, for all n ^ n0, Ω - ω{P0) ~D Kno D K. Now let / be a continuous function

in Ω such that 0 ^f(P) £ 1, f(P) = 1 in ω(P0) and f{P) ^Oon iiΓrto. Then we

see that

0 < §fdμ* - lim \fdμw - 0,

which is impossible. Hence μυ is admissible on K and /jt)(l) s= cap/(/f). Thus
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we have seen that lim cap/ (Kn) - e ̂  cap/ (10, and hence lim cap/ (Kn) ̂  cap/

To prove the capacitability of compact set we prove the following
33

LEMMA 3.1. If a compact set K is a Gs set, that is, if = ΠGί,, then there

exists a sequence {Gn} of open sets such that G'n D Gn, Gn D Gn+i D G*+i - . ,
00

Gn are compact and if = Γ\Gn-

Proof. There is no loss of generality in assuming that each Gn is relatively

compact. For each G\h there exists a continuous function fn in Ω such that

0 ^fn ^ 1 in Ωy fn(P) = 0 on if and /«(P) = 1 on 42 - G'w. We put

AP) = Έ^rfn(P),

then / is continuous in Ω and 0 ̂ / ^ 1 and ϋΓ= {P; f(P) = 0}. The open sets

G«= | P ; /(P) < -ψ^ϊ\ (w = l, 2, . . .) satisfy the conditions required in our

lemma. In fact, K^ C\Gn and Gn C {p; /(P) ^ ^ j } and hence Gwϊi C Gn.

In i? - Gή it holds that/ w (P) - 1 for all m^n and hence /(P) ^ Σ Λ, - * -

Consequently we have G'; D Gn

LEMMA 3.2. Every compact Go set K is capacitable.

Proof. By Lemma 3.1, we can choose a sequence {Gn} of open sets such

that Gn D Gn+i D G»nD - . - , each Gw is compact and 7f= Π Gw. Then we

have by Theorem 3.1 that

cap; (K) = lim cap/ (Grt) ^ lim cap; (G«) ^ cape (if).

THEOREM 3.2. Every compact set is capacitable.

Proof. Since, by our assumption 1°, every compact set is a Gδ set, this

follows immediately from Lemma 3.2.

THEOREM 3.3. An equilibrium potential U*κ of a compact set K has the

following properties: μΛl) = cap (if), Uμκ(P) £ 1 in Ω and Uμκ(P) = 1 quasi

everywhere on if.

Proof. It is sufficient to show that Uμκ(P) = l quasi everywhere on if.

We put
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and

; t/μ*(JP) ^ 1 - 1 } (/ι = l, 2, . . . ) .

Then each En is compact and E- U£«. Since cap;(£) = 0, we have cap; (En) - 0

and hence, by Theorem 3.2,

cap* (E) £ Σ c a p e (£„) - 0.
n=l

The following theorem is very useful to estimate the outer capacity of a subset

of Ω.

THEOREM 3.4. Suppose that Uμ(P) *== 1 in Ω and U(P) = 1 ήffαzsέ everywhere

in X. Then ive have cap* (X) *= μ(l).

Proof. Putting

and

we have cap* (E) = 0 and Z = U Π 7 ) U ί and hence

cap,, (X) έ cape U/ΊY) + cape (E) = cape ( 1 U 7 ) ^ cap,

Thus it is sufficient to show that capδ (Y) ^ μ(l). We put

Yn={Pl Uμ(P)>l- --} (w = 2, 3, . . . ) ,

then each Y« is open and Γ)Yn = Y, hence l imcap(F M ) ^ cape (Y). For any
n

ε > 0 and each w, there exists an admissible measure μn on a compact subset

of Yn such that cap (Yn) - e *= μn{l). Here it follows that

( l - - ) A I I (

Consequently we have

and hence limcap (Yn) = Λ«(1) and cape (Y) *= μ{l).
n

Analogously to Theorem 3.4, we have

THEOREM 3.5. Suppose that Uμ(P) £1 in Ω and Uμ(P) = 1 nearly every-

where in X. Then the inequality cap/(X) ^ μ(l) holds.
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THEOREM 3.6, For any relatively compact set G, there exists an equilibrium

measure /ta such that μs(l) -cap(G), UM:iP) Φ. 1 everywhere in Ω and UMl{P)

— 1 quasi everywhere in G.

Proof. We can find an increasing sequence {Kn) of compact sets such that

U Kn-G. For each Kn, there exists an equilibrium potential Uμ>ι which is, by

Theorem 3.3, equal to 1 quasi everywhere on Kn. We can choose a subsequence

{fin') of {/in) which converges vaguely to 'μ{), because μn(D = cap(G) < -h °°.

It is seen that /*,, is an equilibrium measure of G. In fact, by Theorem 1.5,

£/μo(P) έ YimU^'iP) ί= 1 everywhere in Ω and /Ml) = lim μnAl) = limcap (Kn)

^ cap (G). We shall show that UμHP) = 1 quasi everywhere in G. Since for

any nf ^ #5, Uμ"'(P) = 1 quasi everywhere on /0 v, we have that \imLUμ"'(P) = 1

quasi everywhere on 7Γ,V, and hence, by Theorem 2.4, UM(P) = 1 quasi every-

where on ΛΓΛo/ and £/μo( P) = 1 quasi everywhere in G. Consequently, by Theorem

3. 4, we get cap (G) ;== /ι0U .̂

THEOREM :•{. 7. For β^ arbitrary subset X contained in a compact set, there

exists an equilibrium measure μx such that μx{l) = cape(X), C71J"Λ(P) ^ 1 every-

tvhere in Ω and Uμx( P) - 1 quasi everywhere in X.

Proof. For a given JY", there exists a sequence {Grt} of open sets such that

GnO X and cape (X) = limcap (Gn), where we may suppose that each Gn is
n

relatively compact. For each Gn, there exists an equilibrium measure μn by

Theorem 3.6. The total masses μn(l) being uniformly bounded, a subsequence

{μn>) of {μn) converges vaguely to μ0. Obviously it follows that U'M{P) ̂  1

everywhere in Ω and, by Theorem 2. 4, we see that Uμo(P) = 1 quasi everywhere

in X We have also

Aβo(l) = limμ,,,(l) = limcap (Gn) = cape (X).
n' n

THEOREM 3.8. If an increasing sequence {Xn) of arbitrary subsets converges

to a relatively compact subset X, then ive have lim capβ (Xn) = cap^ (X).

Proof By Theorem 3.7, there exists an equilibrium measure μn of each

Xn. We can choose a subsequence {μ« } of {μn) which converges vaguely to

μύ. Obviously Uμ°(P) £1 everywhere in Ω. Since, by Theorem 2.4, Uy°(P)

= lim U'λH'(P) quasi everywhere in Ω, we see that UμhP) = 1 quasi everywhere

}n X Hence, by Theorem 3.4, we obtain that
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cap* (X) £ /Ml) = lim μn (1) = lim caρe (Xn) = cap* (X).

3.14) Now we consider a product space E x F of a compact subset E oί Ω

and a compact auxiliary space F. We define a capacity c(K) of a compact

subset KC F x F by c(K) = cap (pr. if), where pr. if means the canonical pro-

jection of /f on E. The definitions of the inner capacity a(X) and the outer

capacity ce(X) of an arbitrary subset XC Ex F are evident.

THEOREM 3.9.

1° For any subset X C E x F, cap/ (pr. X) ^ c/(X).

2° For an open set G C E x F, cap (pr. G) =.c(G).

3° For any subset XCExE, cap* (pr. X) = ce(Z).

These assertions are easily verified. See also Benzecri [13.

THEOREM 3.10. If a subset XC E x F is capacitάble, then pr. X is capacitable.

Proof. By Theorem 3.9, we have

cap/ (pr. X) ^ c/(Z) - ce(X) = cap* (pr. X).

THEOREM 3.11. Every compact subset K of Ex F is capacitable.

Proof. This follows from the definition of c{K) and Theorems 3.2 and 3.9.

THEOREM 3.12. If a decreasing sequence {Kn) of compact subsets of E x F

converges to K, then ive have lim c(Kn) = c{K).

Proof. This follows immediately from the equalities c(Kn) = cap (pr. Kn)

and Theorem 3.1.

THEOREM 3.13. If an increasing sequence {Xn) of subsets of Ex F converges

to Xy then we have lim ce(Xn) =ce(X).
n

Proof. This is an immediate consequence of Theorems 3.8 and 3.9.

By Theorems 3.11, 12 and 13, we can prove

THEOREM 3.14. Every Kβδ set of Ex F is capacitable.

This theorem can be proved in the same way as in [1].

4. THEOREM 3. Iδ. Every K-borelian and more generally K-analytic set in

a compact set of Ω are capacitable.

14) In this section 3.3 we apply Choquet-Benzecri's method [1] and [5].
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Proof. This follows from Theorems 3.10 and 3.14 and the fact that every

A'-borelian subset and ΛΓ-analytic subset in a compact set of a Hausdorff space

E are the canonical projection on E of a K^ of the product space of E and a

compact auxiliary space.!a)

THEOREM 3.16. // a K-analytic set, contained in a Ka set, is of inner

capacity zero, then it is of outer capacity zero.

Proof. This is an immediate consequence of Theorems 1.4 and 3.15.

§4. Function m*(P, £/•*)

1. In this section we assume that every open set is of positive capacity.

We associate the function tή*(P, U]L) with every potential Uμ of positive measure

μ and consider the behavior of this function. We shall say that a constant k

is an EΊower bound of Uμ in an open set ω, if a set of points PEίo such that

Uμ(P) < k is of inner capacity zero. It is easily seen that, for any open set ω,

there exists the maximum of is-lower bounds of Uμ in ω> which we denote by

ra*(£/μ, ω). Then the function m*(P, Uμ) is defined as follows:

ra*(P, Uμ) = suρm*(£7μ, ω(P)) for all open neighborhoods of P.

It is well-known16) that rriiP, IF) is lower semi-continuous in Ω and UX(P)

t= m*(P, Uμ) everywhere in Ω, as Uμ is lower semi-continuous. When τn*(P, Uμ)

is continuous in an open set ω, Uμ is called E-continuous in ω.

THEOREM 4.1. // Uμ is E-continuous in ω, then the equality m*(P9 Uμ)

= M(P, IPL) holds everywhere in ω, ivhere M(P, Uμ) means the upper limit

function of Uμ.

Proof. We put <f(P) = m*(P, Uμ), then <f(P) is continuous in ω, and hence

ψ(P) = M(P,<f) everyv/here in ω. Since it holds that <f(P)^U>ι(P) everywhere

in ω, we have

ψ(P) = M(P, ψ) ̂  M{P, Uμ) ^ m*(Pt Uμ) = <f(P)

everywhere in ω. Consequently we get m*:(P, Z7μ) = M(P, Uμ).

THEOREM 4.2. Suppose that there exists a continuous function ψ in an open

1 5 > Cf. Choquet [5].
1 6 ' Cf. Hahn [9].
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set o) ivhich differs from Uμ' at most at a set of points of inner capacity zero.

Then Uμ is E-continuous in ω.

Proof. Let Po be a point of ω. We shall show that, for every neighborhood

ω(Po)Cω, the equality m*(Uμ, «>(P0)) = inf ψ(P) holds. Put k = m*(Uμ, α>(Po))f

then the set of points PG ω(P0) such that Uμ(P) < k is of inner capacity zero,

hence ψ(P) ̂  k at every point P of ω(P0), because every open set is of positive

capacity. Therefore, we obtain inf ψ(P) ̂  m*(Uμ, ω(P0)).

Now let & be a constant which is smaller than inf ψ(P). Then, since
P<==<υ{PQ)

ψ-Uμ nearly everywhere in ω(Po), k is an ZΓ-lower bound, and we get

k ^ w*(ί/μ, ω(P0)). This shows that inf ψ(P) ̂  rriγ(Uμ, ω(P0)). Consequently

we have that w*(P0, Uμ)=ψ{PQ) at every point P 0 Gω, and that Uμ is £*-

continuous in ω.

Conversely we can prove

THEOREM 4.3. If Uμ is E-continuous in Ω, then there exists a continuous

function ψ in Ω which coincides with Uμ nearly everywhere in Ω.

To prove this theorem, we shall prove

THEOREM 4.4. If Uμ is E-continuous in Ω, then m*(P, Uμ) = Uμ(P) nearly

everywhere in Ω.

Proof. We put

En={P; m*(P, Uμ)>Uμ(P)+~) (» = 1, 2, . . .)

and

E» = {P; m*{P, Uμ) > Uμ(P)}.

Then E*= U En. It is sufficient to show that cap/ (En) = 0. We can easily see

that En C Sμ. For each Po GS μ , we can take a neighborhood ωή(P0) such that

m*(Pf Uμ) -f γn~ > ^*(^> ̂ μ ) at every point P<=

and a neighborhood w«(Po) such that

m*(U\ ωϊ(Po))+ 2~>m*(PQ, Uμ),

hence we have
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mHlF. ωΛR))+ l > »f{P, /7μϊ at every point

P e o'W(JP0) = α>'M(Po> Π o>"( Po).

As m'l:(lF, α)Λ(A)) is an Slower bound of £7"" in oi,(ft), we get

^ m"(Uμ\ </>«(P0)) nearly everywhere in ω«(Po). Consequently, £ 7 ί P +

^m'iP, Uμ) nearly everywhere in t»>«(Po), and hence cap/(£ n Π OJ,/(PO)^ = 0.

Since SιL is compact, we have cap/ (Zΐ^ = 0 and cap/ (Zsx) •- 0, that is, ;#'V(P, £/fi)

^ Uμ(P) nearly everywhere in Ω.

Here we shall give the proof of Theorem 4.3.1Tl

By Theorem 4.4, we can take a continuous function ψ(P) = tri'ΛP, Uu),

which coincides with £/μ nearly everywhere in Ω.

We shall say that Φ is equal to zero at infinity, if, for any fixed point

? G i ? , Φ(P, Q) tends to zero as Q tends to o/, where ω': is the Alexandroffs

point of Ω.

If a point PQGSJ. has such a property that, for any neighborhood ω{Po)

of Po, cap* (ω(P0) Π Sμ) > 0, then we say that Po belongs to S μ .

THEOREM 4.5. Suppose that Φ is equal to zero at infinity, and the restriction

of Z7μ to Sμ is continuous at Po e Sμ. 7/" £/α coincides ivith a continuous function

ψ nearly everywhere in a neighborhood ω(P0) o/ Po, then Uμ is continuous at Po.

Proof. Since £/μ coincides with ψ nearly everywhere in oHP0), the function

m*(P, C/μ) is continuous in ωiPo) by Theorem 4.2, and U]i is bounded in a

neighborhood ω'(P,) of Po such that ω'(P0) C~ω\R) C ω ( Λ ) . We assert that

Po belongs to S μ . In fact, if P O E S ; - Sμ, then we have a neighborhood ω"(P0)

Cω"(Pu) Co/fft) such that cap/ (ω"ΓP0) Π S J = 0. On the other hand, the

potential IF' of the restriction // of μ to o/HPo) is bounded in Ω, because IP!

^ Z7μ and IF' is bounded in ω'{P()) and 0 is equal to zero at infinity. Conse-

quently, we have // = 0, which contradicts the assumption that Po e Sμ.

Now, for any ε > 0, there exist two neighborhoods ωi(Po) and o^lPo) of Po

such that

w*(Po, £ΓX) - ε ^ ;/2: (IF. ω,(P0)V
and

f/ J(P) < £Γ(Po) -f ε at every point P of o>:>(P) Π S,.

17 When 5Λ is separable, this has been proved in Hahn [9], p. 175,
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Then, in ω(P0) Π S,, where ώ(P0) = oh(P0) Π OH(P*\ we have

wι*(P0, ί/μ) - ε s w*(*7μ, δ(Po>)

and

It follows that wι*(ί/μ, 5lPo)) ^ LΓμ(P0) + e. In fact, if m*(ί/μ, ω{PΛ) > ί7μ(Po)

.+e, then SμΠαHPo) is contained in the set {Pe£>(P0) £/μ(P) <m*(Uμ, ω(P0))}>

which contradicts the fact P o e S μ . Thus we have seen that

w*(Po, ί7μ) - ε *ϋ w*(C/μ, cδ(Po)) ^ C/μ(Po) + ε,

and hence m*(P0, ί/μ) = Uμ(P0).

Since m^iP^ Uμ) is continuous at P), there exists a neighborhood ω'(P0)

of Po such that

m(POy Uμ) H- ε > nϊ(P, Uμ) at every point P ε ω'(P0).

Hence Uμ(P0) -h e > m*(P, Uμ) ^ C7μ(P) at every point P G ω ;(P0). This means

that Uμ{P) is upper semi-continuous at Po.

COROLLARY. Suppose that Φ is equal to zero at infinity, and the restriction

of Uμ to Sμ, is continuous. If there exists a continuous function ψ in Ω such

that ψ = Uμ nearly everyivhere in Ω, then Uμ is continuous in Ω.

2. Now we consider a potential Uμ(P), which coincides with w*(P, Uμ)

everywhere in Ω.

THEOREM 4.6. A potential Uμ(P) coincides with w*(P, Uμ) everywhere in

Ω if and only if it has the following property: at every point Po ̂  Ωt

cap/({Peω(P0); Uμ(P) ^ h}) > 0

for any neighborhood ω(P0) and h > Z7μ(P0).IS;

Proof. Suppose that f/μ(P0) < m*(Po9 Uμ), then there exist a neighborhood

ωiPv) of Po and a positive number e such that

IP(P,) < m*(U», ω(Po)) - e ̂  m*(Uμ, ω(P0)) ^ m(P*y Uμ).

Then the set { ? £ ω(PQ) Ut>ι(P) ^ m'(lp , oΛP{))) - ε) is of inner capacity zero.

181 Choquet [7] assumes this condition to state the result that if ifv-i^lP? nearly
everywhere in Ω, we have U' Ί = U'μϊ everywhere in C1.

https://doi.org/10.1017/S0027763000022066 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000022066


CAPACITIES OF BORELIAN SETS 217

Now suppose that Uμ(P0) = ra*(P0, Uμ). Then, for any neighborhood ω{P{))

of Po, we have nί[\Uμ, ω(P0)) ^ ί/μ(Po). Therefore, for any h> t/μ(Pu), the

set ( P E ω(jPo) Uμ(P) *= h} must be of inner capacity positive.

Hereafter, we assume that every compact set is separable.

THEOREM 4.7. Suppose that there exists an equilibrium measure of every

compact set. Ij", for any potential Uμ, Uμ{P) = m*(P, Z7μ) everywhere in Ω, then

there exists an equilibrium potential Uμσ for any open set contained in a compact

set such that μQ(l) = cap (G), Uμo(P) £ 1 everywhere in Ω and lfμG(P) = 1 m?ry-

ivhere in G.

Proof. Let G be an open set contained in a compact set. There exists an

increasing sequence {Kn) of compact sets such that KnCG and U Kn-G. Let

μw be an equilibrium measure of Kn, then a subsequence {μn,} of {/ΛW} converges

vaguely to μQ. It is easily seen by Theorems 1.5, 2.4 and 3.5 that ί/μ° ?= 1

everywhere in Ω, Uμ° - 1 nearly everywhere in G and μQ(D - cap (G). Suppose

that there exists a point Po&G such that ί/μo(Po) < 1. Then there exist a

neighborhood ω(P0) C G and a positive number δ such that

£/μo(Po) = ™*(Po, ί/μo) < m*(Uμ\ co(Po)) + 3 < 1.

Hence the set

(Po); Uμ°{P) ^m*{Uμ

is of inner capacity positive by Theorem 4.7, which contradicts the fact that

Uμ(i{P) = 1 nearly everywhere in G. Thus we have seen that Uμo(P) - 1 every-

where in G.

THEOREM 4.8. Suppose that Φ satisfies Cartans maximum principle1^ and

that there exists a potential Uμ°, for any open set G, such that Uμa{ P) = 1 every-

ivhere in G, and UμG(P) = 1 nearly everywhere on SW; C G. Then, for any

potential Uμ, we have Uμ(P) = ?n*(P, Uμ) everywhere in Ω.

Proof Suppose that there exist a constant h and a neighborhood ω(P0) of

Po such that C/μ(P0) < h and the set

{PGαTm); Uμ(P) <h)

19) Cartan's maximum principle means: Let μ be a positive measure with finite
energy and i be an arbitrary positive measure. If U'^'i=Us' nearly everywhere on 5M,
then C/u ί= ί/v everywhere in L>.
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is of inner capacity zero. Let Uμ'° be a potential assured by our assumption

such that UUto(P)-l everywhere in αΛA) and Uμ'υ(P)^l nearly everywhere

on Sμ.,oCω(Pύ). Then it holds that Uμ(P) ^ hUμ'°{P) nearly everywhere on

ωiPa) D SJui and hence, by Cartan's maximum principle, we see that U'L(P)

^ hl/*°( P) everywhere in Ω and £/μ( Po) ^ hUμ'°(P)) = h, which is a contradiction.

3. Now we shall state an application of Theorem 4.7.

We shall say that a set E is thin at a point Po if there exists a positive

measure /; such that

lim £/ v(P)> ί/v(P0).

THEOREM 4.9. Suppose that E is of outer capacity zero. Then E is thin at

each point Po G E, tvhere Φ(Po, Po) = + °°.

Proof. Let P o e £ and Φ(P0, Po) = + °°. Put

P ) > ^ } (Λ = 1, 2, . . . ) .

Then En - (Bn-ι - Bn) Π £" (J?o = i?) is of outer capacity zero and there exists

an open set Gn such that En CG«, GnC Bn~i~ Bn+i and cap (Gn) < ~,—TTT^

Let μn be an equilibrium measure of Gn and pn = nμn Then ρn(l) < -,—TΪTO«

and lPn(P)-n everywhere in Gn by Theorem 4.8. We put v-*Σjvn. At a

point P e (Bn-ι - Bw+i) Π j&, we have W(P) ^ £/v"(P) = n and Z7V(PO)

= Σ y v " ( P ) < Σ ( w + l ) i »(H = l, and hence

lim IΠP) >ί/ v(Po).

This shows that .β1 is thin at Po.

Added in proofs: During the proofs of this paper, the author finds that Theorem 1.2
is established by Z. Semadeni and P. Zbijewski: Spaces of continuous functions (I), Studia
Math, 16 (1957), 130-141.
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