CAPACITIES OF BORELIAN SETS AND THE
CONTINUITY OF POTENTIALS

MASANORI KISHI

Introduction

One of the most important problems in the potential theory is the one
of capacitability, that is, whether the inner capacity of an arbitrary borelian
subset B is equal to the outer capacity of B. As for the capacities induced
by the Newtonian potentials and other classical potentials, Choquet [5] has
shown that every borelian and, more generally, every analytic set are capaci-
table. He goes on as follows: first he shows that, for the Newtonian capacity

f, the inequality of strong subadditivity holds, that is,
JAUB)+f(ANB) £f(A)+f(B),

and then, using this inequality, he shows that the outer capacity /' has the
analogous property to one of the outer measure, more precisely, if an in-
creasing sequence {A,} of arbitrary subsets converges to A, then f"(A)
=limf*(A4,). This property plays an important role in his proof.

Recently it tends to investigate the general potentials in a locally compact
Hausdorff space. As for the problem of capacitability, anything more than
the results of Choquet has not yet been stated. In this paper we deal with
this problem and we shall prove that every K-borelian subset and, more
generally, every K-analytic subset, contained in a compact set, are capacitable
under the two assumptions that every compact subset is metrisable and there
exists en equilibrium measure of every compact subset. A K-borelian subset
is a subset belonging to the K-borelian field, which is the smallest borelian
field which contains each compact subset. As every compact set is metrisable
in our case, every classical borelian subset contained in a compact set is
K-borelian. A K-analytic subset is the continuous image of a K.; set contained
in a compact space. It is known that every K-borelian subset is K-analytic.

First, in §1, we consider the quasi continuity principle, which is a gener-
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alisation of the continuity principle and we shall prove that the quasi conti-
nuity principle follows from the assumption that there exists an equilibrium
measure of every compact subset. In the following section we shall prove
that, if a sequence {u.} of positive measures on a compact subset converges
vaguely to a measure p and if the potentials U™ are uniformly bounded,
then we have U*=1lim U"* quasi everywhere. This fact is very important
to assert that the out"er capacity, induced by our potentials, has the following
property : the sequence of the outer capacities of arbitrary subsets A, in a
compact subset converges increasingly to the outer capacity of A, whenever
{A,} increases to A. From this property follows the capacitability of all
analytic subsets in a compact set.

In the last section, we associate a function m*(P, U*) with each potential
U". Using this function, first we shall investigate the continuity of potentials,
and then we shall discuss an equilibrium potential of an open set G which
is constantly equal to 1 in G.

§1. Quasi continuity principle

1. Let 2 be a locally compact Hausdorff space. In the sections 1, 2 and
3 we shall assume that every compact subset of £ is metrisable. In this
paper we always consider positive measures” x in @ with compact carriers
denoted by S.. We denote by (1) the total mass of a positive measure .
A sequence {u,} of positive measures is called to converge vaguely to p, when

we have
§7du = tim [,

for every continuous function f with compact carrier.

The following theorem is important in the potential theory.

TueoreM 1.12  Suppose that positive measures pn (n=1,2,...) satisfy
the following conditions:

1° S, (n=1,2,...) are contained in a fixed compact subset K,

2° wil) (n=1,2,...) are uniformly bounded from above.

D For the theory of measures in a locally compact Hausdorff space, see, for example,

Bourbaki [2].
2* Cf. Frostman [8].
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Then, from a given {y.), we can take out a subsequence {u»} which converges

vaguely lo a posilive measure p.

Since K is metrisable, this theorem can be proved using the following

theorem. We shall omit the proof of Theorem 1.1.

Tueorem.” Suppose that a compact set K is metrisable. Then the space
C(K) of all continuous functions in K with the uniform convergence topology

is separable.
Conversely we can prove
TaeoreM 1.2. If C(K) is separable, then the compact set K is metrisable.

Proof. Let F be a countable subset of €(K) which is dense in €(K)
with respect to the uniform convergence topology. For each point P, of K

we define a new base of neighborhoods N(F,) as follows:
N(P) ={PEK; |fi(P)~filP)| <, >0, FE€F; j=1,2, ..., m}h

Let us denote by K the set K with this topology. It is easily seen that K
is a Hausdorff space. In fact, for any two points P, and P. of K, there exists
a continuous function f(P) of €(K) such that f(P)=0 and f(F)=1. Then
we can choose a function fj, of F such that [f(P)-fj(P)|< 411 at every
point P of K. Put

NUP) ={P; 1/l P~ )| < ||
and

N(P) ={ P 113l P) - fid PI < | }-
Then we see that V(P)) N N(P,) =¢. It is easy to verify that K and K are
homeomorphic, and that by our topology X satisfies the first axiom of counta-
bility, and so does K.

Now we shall show that K is separable. For the purpose, first we show
that, for any neighborhood U of an arbitrary point P, of K, there exists a con-
tinuous function f(P) of €(K) such that 0= f(P) €1 in K, f(P) =1, f(P)=0
at every point P of K— U and f(P) <1 at each point Px P,. In fact, since K
satisfies the first axiom of countability, there exists a sequence {U,} (n=1,

% Cf. Kryloff and Bogoliouboff {12].
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2, . ..) of neighborhoods of P, such that
U>D UnDUn»H D Uy+1 and nUn=<Po}-

Since K is normal by the compactness of K, we can find a continuous function
f2(P) of G(K) for each » such that /,(Py)) =1, f»(P)=0 at every point P of
K—-U, and 0= f,(P)=1 in K. Then we see that the continuous function
f(P)= 2‘:217 fa(P) satisfies our requirements. Now, for every function f; € F

and for every integer k2, we choose a point Pj such that 1-— —»l];< (P <1

+ v}{, when such a point exists. To verify that K is separable, it is sufficient
to show that Pjr (4, k=1,2,...) is dense in K. For any point P, of K, by
our above observation, there exists a continuous function f(P) such that
0=/(P)=1 in K, f(P) =1, f(P)=0 in the complement of a neighborhood U
of P, and at each point P=x P, f(P) <1. By our assumption there exists a
sequence {f(P)} of § such that f(P) is a uniform convergence limit of f(P).
Let {Py} be a subsequence of {Pjr} such that

1- ]1, <fy(Py) <1+ Jl,

Then we see that limfy(Py) =1. Let P be an accumulation point of {Py}.
Since K satisfies th; first axiom of countability, there exists a subsequence
{Pj"} of {Py} which tends to P. It is easy to verify that f(P) = lim f(Py) =1,
and that P = P, that is, {P;,x} is dense in K. ’

Finally, we shall prove that K satisfies the second axiom of countability.
For the purpose we shall show that, for any neighborhood U of an arbitrary
point P, of K, there exist a finite family {f;} (I=1, 2, ..., m) of continuous
functions of ¥, and a finite family {g} (I=1, 2, ..., m) of positive numbers
and a point P, belonging to the family {P;,+} chosen above, such that an open
set

N(Pn,,; fl, €1)=<P; Ifl(P)"'fl(Pna)l<5h l=1: 2: « .y mo)

is a neighborhood of P, which is contained in U. In fact, there exist a finite
family {f;} (I=1, 2, ..., m) of continuous functions of ¥ and a finite family

{gy (I=1,2,..., m) of positive numbers'such that an open neighborhood

N(Py; f1, 2e) ={P; [fuP)=fi(P)| <2¢,1=1,2, ..., mo}
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is contained in U. Since {Fjr} (j, k=1,2,...) is dense in K, we can choose
a point P, of { P} such that
P =il PY <2 for 1=1,2,..., m.
We put
N(Ppys f1, ¢) ={P; [fiUP)=fil Pi) | <e, 1=1,2, ..., m},

then we obtain that Py & N(Py,; f1, g) and N(Py,; f1, &) CTN(Py; f1, 2¢) CU.

This shows that the family (N(Pjr; /1, &)} (ieg; 1=1,2,...,m; j, k
=1, 2, ...) of neighborhoods is a base of neighborhoods of an arbitrary point

of K, and hence K satisfies the second axiom of countability. Thus we conclude

that K is metrisable.

2. Now let #(P, @) be a continuous real-valued function defined on the
product space 2 x 2, which satisfies the following conditions :

1° 0<D(P, Q) £ + o,

2° @(P, Q) is finite except at most at the points of the diagonal set of
2x 2"

3° @(P, @) is symmetric, that is, #(P, @) = 0(Q, P). The potential U*(P)
of a positive measure z is defined by

UP) = [0(P, @) du(@).

Then U*{P) is lower semi-continuous in £ and continuous in ¥ - S,. By the
condition 3°, we have always the reciprocal law, jU“dv 2.( U"dp, for any two
positive measures x and ». In this paper, x will be called admissible on a
compact set K, if S, C K and U"(P) £1 everywhere in 2. The family of all
admissible measures on X is denoted by A(K). We associate every compact
subset K with the number ¢(K) defined by sup (1) for all z€ A(K). By this

set-function ¢(K) we define the inner and the outer capacities of an arbi-
trary subset A of £ as follows: the imner capacity cap; (A) is equal to sup

c¢(K) for all compact sets K C A, and the outer capacity cap.(A) is equal to
inf cap; (G) for all open sets G O A. It follows immediately that we have cap;(K)
=¢(K) for every compact set K, cap;(A) < cap.(A) for an arbitrary subset

O If o(P, Py=-+co at every point of the diagonal set, every compact subset of L is
necessarily metrisable.
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A and cap; (G) =cap:(G) for every open set G. When the inner capacity
cap; (A) of A is equal to the outer capacity cap.(A), we shall say that A is
capacitable and we shall denote the common value of these two capacities by
cap (A), which we shall call the capacity of A. Every open set is capacitable
and as we shall show later, every compact G;s set is capacitable. It may happen
that an open set G is of capacity zero; only in §4 we assume that every open
set is of positive capacity.

We say that a property holds nearly everywhere (resp. quasi everywhere)
in a subset A, when the property holds at each point of A except at the points
of a set of inner (resp. outer) capacity zero.

3. The following theorems are well-known.

TheoreM 1.3. If B, (n=1, 2, ...) are borelian sets, then we have

cap; (U B,) £ > capi (B,).
n=1 n=1
TueoreM 1.4. For any sequence {A») (n=1, 2, ...) of arbitrary subsets

of @, it holds that
cape (U A,) = Dlcape (An).
1

n= n=1

TreoreMm 1.5. If a sequence {un) (n=1, 2, ...) of positive measures con-

verges vaguely to u, then we have
U*(P) € lim U**(P)
at every point P of 2.

4. Derinition 1.1. We say that O satisfies Frostman's maximum principle,
if, for every potential U" such that U"(P) <1 at every point P of S., we have

the same inequality everywhere in 2.

DeriniTION 1.2. A positive measure px associated with a compact set K is

called an equilibrium measure of K, if it holds the following properties:
Suy CK, U"(P) £1 everywhere in 2 and U"X(P)=1
nearly everywhere on K.

It is known that the equality, ux(1) =cap; (K), holds for an equilibrium

measure s of a compact set K. (See, for example, Theorem 3.5.)
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We call the potential U"¥ of an equilibrium measure ,, the equilibrium
potential of K. For a compact set K of inner capacity zero, we have s, =0
as an equilibrium measure.

DeriniTioN 1.3, We shall say that a potential U* is quasi continuous in
9, if, for any ¢> 0, there exists an open set G: such that cap (G:) £ ¢ and the
restriction of U™ to 2 — G: is continuous.

DeriniTioN 1.45 We say that ® satisfies the quasi continuity principle, if
the continuily of the restriction of any potential U" to S, implies the quasi
continuity of U" in Q.

Derinttion 1.5, We say that @ satisfies the continuity principle, if the
continuity of the restriction of any potential U* to S. implies the continuity of
U in 2.

For the continuity principle, see Ohtsuka [15, 16, 171, Kishi [10], Choquet
(6] and Ninomiya {14]. The quasi continuity principle follows immediately
from the continuity principle, but the latter does not follow from the former.

5. If every open set is of positive capacity, the existence of an equilibrium
measure of every compact set X implies Frostman’s maximum principle.” and
then it assures us the continuity principle.” In our case, since there may exist
an open set of capacity zero, we can only assert the following

TueoreM 1.65  Suppose that we have an equilibrium measure of every
compact set. Then O satisfics the quasi continuity principle.

To prove this theorem we shall use the following

Turorem 1.7. There exists the largest open set Gy of capacity zero, that is,
cap (Gy) =0 and, when 2 is of positive capacity, it holds that cap(G) >0 for
any open set G= Gy.

Proof. Let & be the family of all open sets of capacity zero. Then the
open set Gy =\ G is the largest open set of capacity zero. In fact, for any

cel

compact set K C G,, we have cap; (K) =0, since K is covered by a finite number

5 Cf. Kishi [11].

§) Cf. Ninomiya [13].

71 See, for example, Ugaheri [19] or Ohtsuka [16].

§ We can construct a kernel function & in a suitable locally compact space Q such
that ¢ does not satis{y the continuity principle, but, for any compact set K, there exists
an equilibrium measure ug. This example also shows that the continuity principle does
not necessarily follow from the quasi continuity principle.
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of open sets of (9, and hence cap(G,) =0. It follows immediately that, when
2 s of positive capacity, it holds that cap (G) > 0 for any open set G = G..

Now we shall give the proof of Theorem 1.6. Let the restriction of U" to
S. be continuous. Without loss of generality, we may assume that (2-S.) - Gy
is not empty. It is sufficient to prove that the restriction of IU* to Fy= 2 — Gu
is continuous. - Let P, be a point of S, N F,. If ®(P, P,) is finite, U*(P) is
obviously continuous at P, considered as a function in 2. Hence we suppose
that 2(P, P)) = + <. Let u» be the restriction of x to B,={P; O(P, P,)> n}
tn=1,2,...). Then each potential U** is continuous on S, and it decreases
uniformly to zeroon S, as n > . Weput &, = sup U*(P), then {e,} decreases
monotonously to zero. As U*MP)<£¢, on S, C g,, it holds that U*(P) £ e,
everywhere in Fi, since G, is the largest open set in Q.

Consequently we have

lim UMP) £ lim U*(P)+ lim U* *(P)

Fo3P->Py FoP->Py Fy3P>P,

Len+ UH(P) £ en+ U"(R),
and hence

lim U“(P) € UMP,).

Ko P->Py

This shows that the restriction of U* to F, is upper semi-continuous at
Pe FNS,.

§ 2. Sequences of potentials

1. In the sections 2.1 and 2.2 we assume the quasi continuity principle
and we consider a sequence {U"} of potentials of positive measures u. con-
verging vaguely to u.

First we shall prove
Tuaeorem 2.1." Every potential U" is quasi continuous in £.

Proof. Since the set of points P such that U*(P)= 4+ « is a G; set of
outer capacity zero, there is no loss of generality in assuming that /" is finite
in 2. For any <> 0 and for auy positive integer #, by Lusin’s theorem, there

exists a compact set A, such that x(2—- K,) < and U" is finite and con-

2.4"
tinuous on K,. Then the potential U"" of the restriction u. of , to K, is

% For the Newtonian potentials this has been proved by Cartan [4], Proposition 5,
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continuous on K, and hence, by our quasi continuity principle, U** is quasi

continuous in 2. Therefore, we have an open set G, such that the restriction

Ut to 2 — G, is continuous and cap (G,) = 2:;1 . Put

By={PE2~Gu; UM(P) ~ U"(P)> |-
Then B, is open in 2 - G, and B,U G, is open in 2. Hence

cap (B, \U Gp) £ cap;i (B,) + cap (G,) £ cap; (By) + '25;1 .

We shall show the inequality cap; (B,) = ¢ .. Forany compact subset e C By,

= onet

let y be admissible on e. Then

_1__ o n —_ [ T —_ _._Ek,
srr) < [ U“)dr—SQ_K"Uduéﬂ(Q Kn) < 55

€

whence we have (1) < 2—,—f+1~ and capi(e) £ 5577+ Thus we have seen that
¢, where G:= U (B, U Gy). Then it follows that the restriction of U" to

capi (B,) £ r2f+l and so cap(B.,UG,) £ Hence we see that cap (G:)

£ — G: is continuous, because it holds that 0 £ U*(P) - U"*(P) £ 21,, at every
point P of 2 — G: and U**(P) is continuous in 2 — G:.

TreoreM 2.2.”  Suppose that u, (n=1, 2, .. .) are positive measures on a
compact set such that U (P) £ M < + © in Q and that {u,} converges vaguely
to i.  Then we have, for any potential U* < 1, limXU“"du = SU“dy.

Proof. By Theorems 1.5 we have U*(P) < lim U**(P) everywhere in 2.

Hence we have

We shall show I_iEXU“”dy = fU“du. Since U” is quasi continuous in 2 by
Theorem 2.1, we can find, for any ¢ > 0, an open set G: such that cap (G:) € ¢

and the restriction of U’ to 2 — G. is continuous. Put

I U on 2-0G:
f= \ .
0 in G-.

100 Cf. Brelot [3], Lemma 5.
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Then f is upper semi-continuous. Hence we have a continuous function g such
that

g=7f and 5gd,ué‘fdn+s=‘ U’dp + .
“ v Q-Ge
Then we see

lim |

Jo-

U dptw = lim | fdpun < tim [ gdn = (g
5 o o
é_“ Udp+ e “U\’d,u—!—s.
Jo-ae V

On the other hand it is easily seen that u,(Ge) € Me and j Uldun £ Me. In
Ge

fact, for any compact set ¢ C G:, the measure - 1%4 1y is admissible on e. where
un is the restriction of x4, to e. Hence

1 _ _

M,un(l) £ cap (Ge) £ e.
Therefore we have

im {0 dpn < [0+ (M1 1)

Consequently we obtain

tim | v dy = fim [ U"dyen = [ 0ds = [ 0 a.

2. The following theorem plays an important role in §3.

m

Tueorem 2.3. Let un (n=1, 2, ...) be measures on a compact set such

that the potentials U"* are uniformly bounded in 2. If {un) converges vaguely
to 1, we have
lim U= U*

quasi everywhere in Q.

Proof. By Theorem 1.5 we have U”(P) < lim U**(P) everywhere in £.
Hence it is sufficient to prove that U*(P) = lim U**(P) quasi everywhere in 2.
We put

Viu,m( P) =min (U*(P), ..., U"(P)) for ma=n,

' Cf. Kishi [117.
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and
Va(P) =inf (U*(P), U (P), ...).

Then the sequence { Vy m(P)} (m=n, n+1, ...) decreases to V,(P) as m -» =«
and the sequence {V.(P)} (n=1,2,...) increases to V(P)=lim U"(P) as

"

n - . For any ¢ >0, we have an open set G: such that cap (G:.) = ¢ and
each U"(P) and U"(P) are continuous on 2 — G. by Theorem 2.1. For any

positive number ¢, we put

E71,711(5)=<P; Vn,m‘P)"‘Uu(P)>€‘?
and
Eym(e) ={PE 2—Ge; Vam P)—U"(P)>ce}

Then it is obvious that each Ej m(¢) is open in 2 —G. and Ei n(e) UG is

open in 2. Hence we easily obtain the inequalities

(D cape (En mie)) = cap (E5 mle) U Ge)
= capi (Ey m(e)) + cap (G:) = capi (Ej m\s)) + ¢

We shall prove that limcap; (Ey m(¢))=0. We can see immediately that

E?zl,mn(i) C E;I’,Nl(s) and E;’,mn(i) C Eijl,m( (;) ) ln {aCt, lf P‘A’) e bﬂ' 'll~l(5’
tends to F, as k » <o, then it follows that P, € 2 — G and that lim V,,,,,,,,(P"*')
A

= Vymer(P) and lim UX(P®) = U7 (P). I lim cap; (Ey m(e)) —a > 0, we have,
k

m

for any m = », an admissible measure 7,,,» on a compact subset ¢, of Ej5 mlz)

such that Tn,m(en,m) = Since cap, (Eiz,, mle)) = cap, ( Eill. nlzt) > o, m €y, m),

¢4
1) *

the total masses of ru,n are uniformly bounded, and by Theorem 1.1, we can

take out a subsequence {7u,m} Of {yn m! such that {7, .-} converges vaguely to

.. . . @
a positive measure 7,, whose total mass is obviously not smaller than | .

€

,)) for every sufficiently large m; otherwise there

S,, is contained in EZ',m(

would be a point P.€ S, - E3, m,,( ) for some w»n, and hence we could find a

2
neighborhood N of P, such that NN E% m,.1e) = 4. Then 7,(N) 2> 0 and 7, (N)
=0 for every m' = my+ 1, which is absurd. Since S:, C E;’,m( :, ) we have

- -

Tn(l) = \ (Vn,m - U'u)dTn = J (Ut — Uu)d‘fn

:

2) as
(2 4

«

N »

fore very sufficiently large m. On the other hand, we have lim ‘ Ui'ndyy = \ Uldrn

mov
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by Theorem 2.2. This contradicts (2). Consequently, we see that
limcap; (E% m(e)) =0. Therefore, from (1), we can conclude that
lim cape (En m(c)) £¢. Thus we obtain lim cape (Ex,m(e)) = 0.

Now we choose a sequence {sx)} of positive numbers such that & > e > ..
> e > er+er1> ... » 0 and we put

En(er) ={P; ValP)—U"(P) > e}
E(er) ={P; V(P)-U"(P)> &}
and
E={P; V(P)-U*(P) >0}

Then, since it is immediately seen that E.(ex) C Ey m(cr) and E(e) = U En(er),

we have cape (Ex(er)) =0 and cape (E(er)) =0. Then, from E= U E(e), we get
k

cape (E) =0, that is, U*(P) = V(P) quasi everywhere in 2.

3. Tueorem 2.4. Suppose that there exists an equilibrium measure of every
compact set and that pun (n=1,2,...) are measures on a compact set such

that the potentials U** <1 in Q. If {un} converges vaguely to n, we have

Lim ¥ =U*

quasi everywhere in 2.

Proof. This follows immediately from Theorem 1.6 and 2.3.

4. When @ satisfies the continuity principle, the uniform boundedness of
U“ (n=1,2,...) is dispensable to assert that U" =lim U*" quasi everywhere
in 2.

For the purpose, first we shall show the following

LemMma 2.1.%° Let up (n=1,2,...) be measures on a compact set such

that {u,) converges vaguely to p. Then, it holds that

UV- = L@ Ulln

n
nearly everywhere in 8.

Proof. We put

E={P; V(P)-U“P) >0},

12) Cf. Brelot [3] and Ohtsuka- [18].
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where V=1lim U*". If cap; (E) > a > 0, then we can find an admissible measure

y on a compact set in E such that 7(1) = a. By Lusin’s theorem, we have a
restriction ' of r to a suitable compact subset of Sy such that 7(1) = g— and
U™ is continuous on Sy. Then, by the continuity principle, U is continuous

in 2. For this potential U™, we get

which is impossible. Thus our lemma is established.

By our lemma, we have immediately

LEMMaA 2.2. Let u. be measures on a compact set. If {un} converges vaguely
to n and a potential UT €1 in 9, then it holds that SU"dr——- S Vdy, where
V =lim U"",

n

TueoreM 2.5  Suppose that @ satisfies the continuity principle. "If i
(n=1, 2, ...) are wmeasures on a compa-t set and {u»} converges vaguely to s,

then we have

U* =lim U*»
o
quasi everywhere in 2.

Proof. We proceed in the same way as in the proof of Theorem 2.3. If

lim cap; (Ey m(¢)) = a > 0, then there exists an admissible measure 7., for which

m

the inequality
‘zi = s ( Vn,m“ U“)d}’n
holds for every sufficiently large m. Here, letting = tend to infinity, we have

(3) © 2 {(Va-Udre s [(V-U" dra.
The last integral of (3) is equal to zero by Lemma 2.2, which is absurd.

Consequently, we have lim cap; (E}, m(¢)) =0. Then, we can prove, by the same

m

argument as in the proof of Theorem 2.3, that V'=U" quasi everywhere in 2.

13) See also Choquet [7].
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§ 3. Capacitability

1. In this section we shall prove that every borelian and analytic set
contained in a compact set are capacitable. We assume first that any compact
set K is metrisable. Then K is a compact G: set and it can be concluded that
any compact set K is capacitable. We also assume that there exists an equi-
librium measure ux of any compact set K. By our assumption we conclude
that, for any open set G contained in a compact set, there exists an equilibrium
measure u; such that pe(1) = cap (G), U*¢(P) = 1 everywhere in 2 and U"(P)
=1 quasi everywhere in G. By this fact we can prove that, if a sequence {Xn}
of arbitrary subsets contained in a fixed compact set K increases monotously
to X, then it holds that lim cape (Xn) =cap.(X). Using Choquet’s method, we
can see that every boreli;n and analytic set contained in a compact set are

capacitable.

2. We assume the following two conditions:

1° Any compact subset K is metrisable.

2° There always exists an equilibrium measure ux of any compact subset
K, that is, there exists a positive measure zx on K such that ux(1) = cap; (K),
U*K(P) £ 1 everywhere in £ and U"K(P) =1 nearly everywhere on K.

TueoreMm 3.1.  If a decreasing sequence K. of compact subsets converges to

K, then we have lim cap; (K,) = cap; (K).

Proof. This theorem is proved without our two assumptions. For any
¢> 0 and for each », there exists an admissible measure on K, such that
cap; (K») —e = us(1). As the total masses un(1) of u, are uniformly bounded,
we can take out a subsequence {u.} of {u»! which converges vaguely to uo.
We see that S,, is contained in K. In fact, if there exists a point P, € S,, - K,
then we can find a relatively compact neighborhood w(P,) such that olP) NK
= @. As K is contained in £ - a;('Po), there exists a sufficiently large #, such
that, for all # = n,, Q—:u(—m D Ky DO K. Now let f be a continuous function
in 2 such that 0 =/(P) £1, f(P)=1in o(F) and f(P)=0 on K,. Then we

see that

0< jfd/x\» = llur/n yfa’u,,. =0,

which is impossible. Hence s, is admissible on K and (1) £ cap; (X). Thus
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we have seen that lim cap; (K,) — ¢ = cap; (K), and hence lim cap; (K») < cap; (K).

To prove the capacitability of compact set we prove the following

LemMma 3.1. If a compact set K is a Gs set, that is, K= QG;" then there

exists a sequence {Ga} of open sets such that GnD Gn, Gn D Gni1 D Gnsr - - .,
G, are compact and K= OlGn.

Proof. There is no loss of generality in assuming that each G, is relatively
compact. For each G), there exists a continuous function f, in £ such that
0<f,21in @, fu(P)=0o0n K and f2(P)=1 on 2 -G, We put

w1
f(P) =3+

n=1 2"

ffl(P):

then f is continuous in 2 and 0=/ =<1 and K= {P; f(P)=0}. The open sets

G71=<P; f(P)<_2'"1‘_T

lemma. In fact, K= N Gn and Ga C{P; 1(P) <

} (n=1, 2, ...) satisfy the conditions required in our
2,,1_]} and hence Gn.iC G

In 2 — G, it holds that fm(P) =1 forall m = » and hence /(P) = 51 1 = 1

m=n 2”‘ 2"—1

Consequently we have G, D Gn.
LemMma 3.2. Every compact Gs set K is capacitable.

Proof. By Lemma 3.1, we can choose a sequence {G.} of open sets such
that Gn D Gus1 D Grr1D . .., each G, is compact and K= N G,. Then we
have by Theorem 3.1 that

cap; (K) = lim cap; (G») = lim cap; (G») = cape (K).

TueoREM 3.2. Ewvery compact set is capacitable.

Proof. Since, by our assumption 1°, every compact set is a G; set, this
follows immediately from Lemma 3.2.

THEOREM 3.3. An equilibrium potential U'® of a compact set K has the
following properties: px(1) =cap (K), U*S(P) £1 in 2 and U*5(P) =1 quasi

everywhere on K.

Proof. It is sufficient to show that U"X(P) =] quasi everywhere on K.

We put
E={Pe K; U*s(P) <1}
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and

E.={PEK; U(P) 21~ -} (n=1,2...)

S

Then each E, is compact and E= UE,. Since cap;(E) =0, we have cap;(E,) =0
and hence, by Theorem 3.2,

°

cape (E) £ Dlcape (E») =0.
1

"=

The following theorem is very useful to estimate the outer capacity of a subset
of 2.

TaeOREM 3.4. Suppose that U*(P) £1 in 2 and U(P) =1 quasi everywhere
in X. Then we have cap. (X) = p(1).

Proof. Putting

Y ={(P; U*P)=1}
and
E={Pe X; U~P)<1},

we have cap. (E) =0 and X=(XNY)UE, and hence
cap: (X) = cape (XNY) + cape (E) = cape (XUY) = cape (V).

Thus it is sufficient to show that cap. (Y) = x(1). We put
Ya={P; UNP)>1- =} (n=2,3...)
n \ ’ n y Dy e s o)y

then each Y, is open and NY,=Y, hence limcap (Y») = cap. (Y). For any

¢ > 0 and each 7, there exists an admissible measure u, on a compact subset
of Y, such that cap (Y») —¢ = u,(1). Here it follows that

(1= %) unD) < [0 dun = [ U2 = ),
Consequently we have
n
cap; (Yn)—e= 'n'_":l‘,u(l)

and hence lim cap (Y») = #(1) and cape (V) = u(1).

Analogously to Theorem 3.4, we have

THEOREM 3.5. Suppose that U*(P) £1 in 2 and U*(P) =1 nearly every-
where in X. Then the inequality cap; (X) < p(1) holds.
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Tueorem 3.6, For any relatively compact set G, there exists an equilibrium
measure i; such that p:(1) =cap (G), U*(P) £ 1 everviwhere in 2 and U™ (P)

=1 quasi everywhere in G.

Proof. We can find an increasing sequence {K,} of compact sets such that
U K, =G. For each K., there exists an equilibrium potential U** which is, by
Theorem 3.3, equal to 1 quasi everywhere on K,. We can choose a subsequence
{#w} of {;t»} which converges vaguely to ‘u, because u.(1) £ cap(G) < + <.
It is seen that s, is an equilibrium measure of G. In fact, by Theorem 1.5,
U*(P) £ limU*'(P) £ 1 everywhere in 2 and (1) = lim . (1) = lim cap (K»)
= cap (G). We shall show that U*(P)=1 quasi everywhere in G. Since for
any n' = m, U/**(P) =1 quasi everywhere on K., we have that lim U*"(P) =1
quasi everywhere on K, and hence, by Theorem 2.4, {/**(P) =1 quasi every-
where on K,;, and U"(P) =1 quasi everywhere in G. Consequently, by Theorem

3.4, we get cap (G) = (1),

THEOREM 3.7. For an arbitrary subset X contained in a compact set, there
exists an equilibrium measure py such that px(1) =cap. (X), U*N(P) €1 every-

where in 2 and U'x(P) =1 quasi everywhere in X.

Proof. For a given X, there exists a sequence {G,} of open sets such that
G, D X and cap. (X) =lim cap (G,), where we may suppose that each G, is
relatively compact. Forneach Gn, there exists an equilibriumm measure u. by
Theorem 3.6. The total masses u.(1) being uniformly bounded, a subsequence
{un'} of {un} converges vaguely to u,. Obviously it follows that U*(P) =1
everywhere in 2 and, by Theorem 2. 4, we see that U*(P) =1 quasi everywhere

in X. We have also
(1) = lim pp (1) = lim cap (G,) = cap. (X).
n’ ”n

TuroreM 3.8. If an increasing sequence {X,) of arbitrary subsets converges

to a relatively compact subset X, then we have lim cap. (X») = cape (X).

Proof. By Theorem 3.7, there exists an equilibrium measure u. of each
X.. We can choose a subsequence {u.} of {uz.} which converges vaguely to
po.  Obviously U™(P) £ 1 everywhere in 2. Since, by Theorem 2.4, U"(P)

in X. Hence, by Theorem 3.1, we obtain that
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cape (X) £ po(1) = lim s, (1) = lim cape (X,) = cape (X).

3.2 Now we consider a product space E x F of a compact subset E of 2
and a compact auxiliary space F. We define a capacity ¢(K) of a compact
subset K C Ex F by ¢(K) = cap (pr. K), where pr. K means the canonical pro-
jection of K on E. The definitions of the inner capacity ¢;(X) and the outer

capacity c.(X) of an arbitrary subset X C E x F are evident.

THEOREM 3.9.

1° For any subset X C E X F, cap; (pr. X) = ¢i(X).
2° For an open set G C E x F, cap (pr. G) =¢(G).
3° For any subset X C E x E, cape (pr. X) = ce(X).

These assertions are easily verified. See also Benzécri [1].
Tueorem 3.10. If a subset X C E X F is capacitable, then pr. X is capacitable.
Proof. By Theorem 3.9, we have
cap; (pr. X) = ¢i(X) = ce(X) = cape (pr. X).
TueoreM 3.11. Every compact subset K of E X F is capacitable.
Proof. This follows from the definition of ¢(K) and Theorems 3.2 and 3.9.

TueoreM 3.12. If a decreasing sequence {K,} of compact subsets of E X F

converges to K, then we have lim c(K,) = c(K).

Proof. This follows immediately from the equalities ¢(K,) = cap (pr. K»)
and Theorem 3.1.

Tureorem 3.13. If an increasing sequence {Xn} of subsets of E X F converges
to X, then we have lim c.(X,) = c.( X).

Proof. This is an immediate consequence of Theorems 3.8 and 3.9.
By Theorems 3.11, 12 and 13, we can prove

Tueorem 3.14. Every K. set of E X F is capacitable.

This theorem can be proved in the same way as in [1].

4. Tueorem 3.15. Every K-borelian and more generally K-analytic set in

a compact set of 2 are capacitable.

1 In this section 3.3 we apply Choquet-Benzecri’'s method [1] and [5].
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Proof. This follows from Theorems 3.10 and 3.14 and the fact that every
K-borelian subset and K-analytic subset in a compact set of a Hausdorff space
E are the canonical projection on E of a K,; of the product space of E and a

compact auxiliary space.”

THEOREM 3.16. If a K-analytic set, contained in a K, sel, is of inner

capacily zero, then it is of outer capacity zero.

Proof. This is an immediate consequence of Theorems 1.4 and 3.15.

§4. Function m*(P, U"*)

1. In this section we assume that every open set is of positive capacity.
We associate the function m* (P, U*) with every potential U* of positive measure
# and consider the behavior of this function. We shall say that a constant %
is an E-lower bound of U" in an open set w, if a set of points P& w such that
U"(P) <k is of inner capacity zero. It is easily seen that, for any open-set o,
there exists the maximum of E-lower bounds of U* in w, which we denote by
m*(U", »). Then the function m* (P, U*) is defined as follows:

m*(P, U*) =sup m*(U*, w(P)) for all open neighborhoods of P.

It is well-known' that »*(P, UU*) is lower semi-continuous in 2 and U‘(P)
=m*(P, U") everywhere in 2, as U* is lower semi-continuous. When m*(P, U")

is continuous in an open set w, U" is called E-continmous in .

Tueorem 4.1.  If U" is E-continuous in o, then the equality m™(P, U*)

=M(P, U") holds evervwhere in o, where M(P, U") means the upper limit
Junction of U*.

Proof. We put ¢(P)=m*(P, U*), then ¢(P) is continuous in o, and hence
¢(P) = M(P, ¢) everywhere in w. Since it holds that ¢(P) = U*(P) everywhere
in w, we have

¢(P)=M(P, ¢) = M(P, U") = m*™(P, U*) = ¢(P)
everywhere in w. Consequently we get »:*(P, U*) = M(P, U*).
THEOREM 4.2. Suppose that there exists a continuous function ¢ in an open

15 Cf. Choquet [5].
15, Cf. Hahn [9].
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set o which differs from U™ at most at a set of points of inner capacity zero.

Then U* is E-continuous in o.

Proof. Let P, be a point of w. We shall show that, for every neighborhood
w(Py) Cw, the equality m*(U*, v(F)) =PEi‘£1(£o\¢(P) holds. Put k= m™(U", w(P)),
then the set of points P& w(P,) such that U*(P) < k is of inner capacity zero,
hence ¢(P) = k at every point P of w(P,), because every open set is of positive
capacity. Therefore, W'e’obtainpeiﬁgo)y’)(P) = m*(U*, o(B)).

Now let 2 be a constant which is smaller thanp ,:u:(fp )gb(P ). Then, since
¢ = U" nearly everywhere in w(P), k2 is an E-lower nbound, and we get
k= m*(U* w(Py)). This shows thatp Em£ 0)¢'(P) £ m*(U" w(P)). Consequently

we have that m*(P, U*)=¢(F,) at every point P,E w, and that U* is E-
continuous in .

Conversely we can prove

THEOREM 4.3. If U* is E-continuous in 2, then there exists a continuous

Sunction ¢ in 2 which coincides with U" nearly everywhere in 2.

To prove this theorem, we shall prove

TueorREM 4.4. If U* is E-continuous in 2, then m™(P, U*) = U*(P) nearly

evervwhere in £.

Proof. We put

En={P; m' (B, UM > 0P + L} =120

and
E.={P; m*(P, U*) > U“P)}.

Then E. = U E,. It is sufficient to show that cap; (E,) =0. We can easily see
that £, CS,. For each P, € S,, we can take a neighborhood wn(Py) such that

1

m*(P, U*) + S

> m*(P, U*) at every point P& wn(P)
and a neighborhood w»(P,) such that
m (U, o (PY) + > m(Po, U%),

hence we have
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MU, onl P)) + 711 ont(P, IJ*)  at every point
PE on(P) = on(P) Nanl P).
As m*(U* w.(P)) is an E-llower bound of U* in w.(P)), we get U*(P)
= m(U* o.(P)) nearly everywhere in w,(F%). Consequently, U*(P)+ 711
= m (P, U") nearly everywhere in ,(F), and hence cap; (E, N onl P = 0.
Since S, is compact, we have cap; (E,) =0 and cap; (E.) =0, that is, m* (P, U")
< [J"(P) nearly everywhere in 0.

Here we shall give the proof of Theorem 4.3

By Theorem 4.4, we can take a continuous function ¢(P)=m"(P, U"),
which coincides with U* nearly everywhere in 2.

We shall say that @ is equal to zero at infinity, if, for any fixed point
Pe 2, (P, Q) tends to zero as @ tends to w”, where o™ is the Alexandroff’s
point of 2.

If a point P& S, has such a property that, for any neighborhood ‘w( P)
of Py, cap, (w(P) N'S,) > 0, then we say that P, belongs to S,.

THEOREM 4.5. Suppose that © is equal to zero at infinity, and the restriction
of U* to S, is continuous at P& S,. If U* coincides with a continuous function

,

¢ mearly everywhere in a neighborhood ow(FPy) of Py, thern U" is continuous at Ph.

Proof. Since U" coincides with ¢ nearly everywhere in w(F,), the function
m*(P, U") is continuous in «(P,) by Theorem 4.2, and U* is bounded in a
neighborhood o'(P,) of P; such that o'(P) C o'(P) Cw(P). We assert that
Py belongs to S,. In fact, if & S, — S,, then we have a neighborhood o' (%)
Cw"(P) Cw'(P,) such that cap; (0”(P)NS,) =0. On the other hand, the
potential U* of the restriction 2/ of 12 to ' (P) is bounded in @, because U*
= U* and U" is bounded in o'(P) and © is equal to zero at infinity. Conse-
quently, we have ;' =0, which contradicts the assumption that P, & S,.

Now, for any ¢>> 0, there exist two neighborhoods w;( P) and w.,(P) of P,
such that

m (P, U") = 2 5" (U* oi(P))
and
U(P) <. U"(P)+: at every point Pof wm(P)NS..

7. When S. is separable, this has been proved in Hahn [9]. p. 175,
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Then, in #(Py) N S,, where 3(Py) = wi( Py) N 02 P), we have

m Py, U*) = = = m™(U", ()
and
U*(P) < U*(Py) + =.

It follows that m*(U*, &(Py)) £ U*(P) +¢ In fact, if ™ (U¥, a(P)) > U*(Py)
+¢, then S,N&(P,) is contained in the set {PEa(Py) ; U*(P)<m*(U*, &(Py))},
which contradicts the fact P,€ S,. Thus we have seen that

m*(Py, U") — e = m™(U*, 5(PR)) £ U Py) +5¢,

and hence m*( P, U*) = U*(Py).
Since m*(P,, U*) is continuous at P, there exists a neighborhood w'(P)
of P, such that

m(Py, U*) +¢>m*(P, U*) at every point P& o'( ).

Hence U*(P) +¢> m* (P, U*) = U*(P) at every point PE '(P,). This means
that U"*(P) is upper semi-continuous at P,.

CorOLLARY. Suppose that O is equal to zero at infinity, and the restriction
of U* to S. is continuous. If there exists a continuous function & in 2 such

that ¢ = U" nearly everywhere in 2, then U" is continuous in L.

2. Now we consider a potential U*(P), which coincides with m™( P, U*)

everywhere in 2.

THEOREM 4.6. A potential U*(P) coincides with m*(P, U") everywhere in

2 if and only if it has the following property: at every point PoE 2,
capi {PE w(P); UXP)£h})>0
for any neighborhood w(Py)) and h > U*(Py)).>

Proof. Suppose that U*(FPy) < m™(F,, U"), then there exist a neighborhood
w(P) of P, and a positive number ¢ such that

U(P) < m™(U*, ol P)) —e = m* (U o(P)) £m’ (P, U").

Then theset {P& wl( Py ; UP) = in’(U* o\ P)) —¢} is of inner capacity zero.

18 Choquet [7] assumes this condition to state the result that if UYi=U"’ nearly
everywhere in Q, we have U'1=UV: everywhere in .
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Now suppose that U*(Py) = m* (P, U*). Then, for any neighborhood (F,)
of P, we have m*(U* w(P)) < U*(P,). Therefore, for any h > U*(P,), the
set {P€ w(P); U*(P) < h}) must be of inner capacity positive.

Hereafter, we assume that every compact set is separable.

THEOREM 4.7. Suppose that there exists an equilibrium wmeasure of every
compact set. If, for any potential U*, U*(P) = m*(P, U") evervwhere in 2, then
there exists an equilibrium potential UYE for any open set contained in a compact
set such that ps(1) = cap (G), U**(P) £ 1 everywhere in 2 and U*¢(P) =1 every-

where in G.

Proof. Let G be an open set contained in a compact set. There exists an
increasing sequence {K,} of compact sets such that K, CG and U K,=G. Let
#» be an equilibrium measure of K,, then a subsequence {u..} of {u.} converges
vaguely to u,. It is easily seen by Theorems 1.5, 2.4 and 3.5 that U"" =1
everywhere in @, U" =1 nearly everywhere in G and /(1) = cap (G). Suppose
that there exists a point P,€ G such that U*(F) <1. Then there exist a
neighborhood w(P,) C G and a positive number § such that

U(P) =m™ (P, U™) < m™ (U™, w(F))+6<1.
Hence the set
{PE w(P); U™P) £m™ (U™, o(P))+6}
is of inner capacity positive by Theorem 4.7, which contradicts the fact that

U™(P) =1 nearly everywhere in G. Thus we have seen that U*(P) =1 every-

where in G.

TueoreM 4.8. Suppose that O satisfies Cartan’s maximum principle’™ and
that there exists a potential UG, for any open set G, such that U'S(P) =1 every-
where in G, and U*(P) =1 nearly everywhere on S,. G. Then, for any

potential U™, we have U*(P) = m*(P, U") evervwhere in 2.

Proof. Suppose that there exist a constant 2 and a neighborhood w(P,) of
P, such that U"(P,) <h and the set

{(Pe w(P); UP)<h}

13 Cartan’s maximum principle means: Let © be a positive measure with finite

energy and » be an arbitrary positive measure. If U £ U* nearly everywhere on S,,
then U+ £ U¥ everywhere in (.
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is of inner capacity zero. Let U" be a potential assured by our assumption
such that U“*(P) =1 everywhere in w(PF,) and U"**(P) =1 nearly everywhere
on S,,Cw(F). Then it holds that U*(P) = rU**(P) nearly everywhere on
w(P) DS,, and hence, by Cartan’s maximum principle, we see that U*(P)

2 hU*( P) everywhere in 2 and U*(PR) = RU**(P,) = h, which is a contradiction.

3. Now we shall state an application of Theorem 4.7.
We shall say that a set E is thin at a point P, if there exists a positive

measure » such that

lim U'(P)> U'(F).

E3T>P,

THEOREM 4.9. Suppose that E is of outer capacity zero. Then E is thin at
each point P, € E, where O(P,, P,) = + .

Proof. Let P, E and @( Py, Py)) = + . Put
B,={(P; 0(P, P)>n} (n=1,2...).

Then E.= (Bn-1—B,) NE (By=2) is of outer capacity zero and there exists

. 1
an open set G» such that E, C Ga, Gn C Bn-1~ By+; and cap (Gn) < nn+1)2%
Let u» be an equilibrium measure of G, and v, =nu,. Then p,(1) < (7,‘4:1’1‘)"2‘;1

and U™ P) =n everywhere in G, by Theorem 4.8. We put »=>)p,. At a
point P& (Buy-1 — Bx+1) NE, we have U (P) 2 U"(P)=#n and U"(BR)
=23U(P) <> (n+ D wa(1) =1, and hence

lim UY(P) > U\ BR).

FP-P,

This shows that E is thin at F,.

Added in proofs: During the proofs of this paper, the author finds that Theorem 1.2
is established by Z. Semadeni and P. Zbijewski: Spaces of continuous functions (1), Studia
Math, 16 (1957), 130-141.
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