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Pressure anisotropy can strongly influence the dynamics of weakly collisional, high-beta
plasmas, but its effects are missed by standard magnetohydrodynamics (MHD). Small
changes to the magnetic-field strength generate large pressure-anisotropy forces, heating
the plasma, driving instabilities and rearranging flows, even on scales far above the
particles’ gyroscales where kinetic effects are traditionally considered most important.
Here, we study the influence of pressure anisotropy on turbulent plasmas threaded
by a mean magnetic field (Alfvénic turbulence). Extending previous results that were
concerned with Braginskii MHD, we consider a wide range of regimes and parameters
using a simplified fluid model based on drift kinetics with heat fluxes calculated using
a Landau-fluid closure. We show that viscous (pressure-anisotropy) heating dissipates
between a quarter (in collisionless regimes) and half (in collisional regimes) of the
turbulent-cascade power injected at large scales; this does not depend strongly on either
plasma beta or the ion-to-electron temperature ratio. This will in turn influence the
plasma’s thermodynamics by regulating energy partition between different dissipation
channels (e.g. electron and ion heat). Due to the pressure anisotropy’s rapid dynamic
feedback onto the flows that create it – an effect we term ‘magneto-immutability’ – the
viscous heating is confined to a narrow range of scales near the forcing scale, supporting
a nearly conservative, MHD-like inertial-range cascade, via which the rest of the energy
is transferred to small scales. Despite the simplified model, our results – including the
viscous heating rate, distributions and turbulent spectra – compare favourably with recent
hybrid-kinetic simulations. This is promising for the more general use of extended-fluid
(or even MHD) approaches to model weakly collisional plasmas such as the intracluster
medium, hot accretion flows and the solar wind.

Keywords: astrophysical plasmas, plasma simulation, plasma nonlinear phenomena

† Email address for correspondence: jonathan.squire@otago.ac.nz

https://doi.org/10.1017/S0022377823000727 Published online by Cambridge University Press

http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-8479-962X
https://orcid.org/0000-0003-1676-6126
https://orcid.org/0000-0002-8656-8160
https://orcid.org/0000-0003-4421-1128
mailto:jonathan.squire@otago.ac.nz
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0022377823000727&domain=pdf
https://doi.org/10.1017/S0022377823000727


2 J. Squire and others

1. Introduction

Many hot, diffuse plasmas in astrophysical environments are weakly collisional, with
Coulomb mean free paths that are comparable to relevant macroscopic scales in the
system. Canonical examples include the intracluster medium (ICM) in galaxy clusters (e.g.
Fabian 1994; Peterson & Fabian 2006; Kunz, Jones & Zhuravleva 2022), hot accretion
flows such as those observed by the Event Horizon Telescope (Quataert 2001; EHT
Collaboration et al. 2019), the hotter phases of the interstellar and circumgalactic media
(Cox 2005; Tumlinson, Peeples & Werk 2017) and the solar wind and magnetosphere
(Marsch 2006; Borovsky & Valdivia 2018). In all of these examples, the plasma is
extremely well magnetised, in that the system scales are much larger than the ion
gyroradius ρi. Coupled with the plasmas’ large Coulomb mean free paths, this implies that
magnetic fields are crucial in providing the plasma with an internal cohesion that allows it
to behave more or less like a collisional fluid (Kulsrud 1983). However, despite the particle
motion’s allegiance to the local magnetic field, in many environments the magnetic fields
are energetically subdominant as measured by β = 8πp/B2, where p is a thermal pressure
and B2/8π is the magnetic energy density. Under such conditions, small relative changes
to the magnetic field can easily cause particle distributions to become unstable, suggesting
that non-equilibrium kinetic physics should play a key role in the dynamics.

Nonetheless, such conditions are commonly modelled using collisional magneto-
hydrodynamics (MHD), usually for reasons of expediency, although with rigorous
justification in some circumstances (e.g. Kulsrud 1983; Schekochihin et al. 2009; Kunz
et al. 2015). It is the first purpose of this article to explain why this is usually not
appropriate, as a result of the aforementioned kinetic physics; it is the second purpose to
explain why, in the end, it is not so bad after all. The physics we explore is that of ‘pressure
anisotropy’ (equivalently, temperature anisotropy), which is the difference between the
thermal pressures in the directions perpendicular and parallel to the local magnetic field.
The relevance of pressure anisotropy stems from it being the only non-isotropic piece of
the pressure tensor that can survive on scales arbitrarily far above the particles’ gyroradii
(Braginskii 1965), making it a key physical ingredient in the momentum balance of
weakly collisional plasmas (compared with collisional MHD; Chew, Goldberger & Low
1956; Kulsrud 1983). At β � 1, a very small relative pressure anisotropy can lead to
large bulk forces on the plasma. Furthermore, whenever the magnetic-field strength B
changes in time, �p is generated as a result of the conservation of single-particle adiabatic
invariants. Put together, these two properties suggest that pressure-anisotropy stresses can
vastly overwhelm the forces from the magnetic field or Reynolds stress in many high-β
environments.

Our study focuses on the role of pressure anisotropy in turbulence, specifically, in
turbulence of the ‘Alfvénic’ variety that occurs when the system is threaded by a
large-scale mean magnetic field. A particularly important example of such a system is the
solar wind, which is our best natural laboratory for the study of Alfvénic turbulence under
weakly collisional conditions. Such turbulence may also be relevant quasi-universally at
smaller scales in systems without a mean magnetic field (Brandenburg & Subramanian
2005; Schekochihin 2022). We explore the structure and dynamics of weakly collisional
Alfvénic turbulence, with a particular focus on their comparison with MHD and the
implications for turbulent plasma heating. Pressure anisotropy provides another channel
– effectively a viscosity – for damping injected mechanical energy into heat near the
outer scales (e.g. Kunz et al. 2010; Yang et al. 2017). (Although this energy transfer
can be reversible in some regimes, we will often refer to it as ‘viscous heating’
because at higher collisionalities the pressure-anisotropy stress increasingly resembles a
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parallel viscosity, with an associated heating rate that is positive definitive.) Because the
pressure-anisotropy stress can easily overwhelm the magnetic tension and Reynolds stress
in the high-β limit (Squire, Quataert & Schekochihin 2016), simple estimates suggest
that this viscous heating should completely dominate over other heating mechanisms.
However, we show that, because of the dynamic feedback of the pressure anisotropy on
the plasma flow, such heating is confined to a narrow range of scales near the forcing
scales, with a sizeable fraction (typically, the majority) of the energy making it through
to participate in a nearly conservative turbulent cascade. This phenomenon, which was
termed ‘magneto-immutability’ by Squire et al. (2019) (hereafter S+19) who studied
the effect in the context of the simplified ‘Braginskii MHD’ model (see also Kempski
et al. 2019; St-Onge et al. 2020), involves the force from the pressure anisotropy acting
to rearrange the turbulence in order to reduce the influence of itself. This rearrangement
constrains the global variation of B, hence the term ‘magneto-immutability’ to describe
the effect. Its physics is analogous to that of incompressibility, in which the pressure
force that results from a fluid compression rapidly drives a flow that counters the
compression, thereby eliminating such motions and minimising variations in the density.
This explains our flippant declaration above about the article’s purpose: simple estimates
suggest pressure anisotropy should dominate the force balance and heating, modifying the
dynamics compared with MHD; however, the effect of this modification is to minimise
the pressure anisotropy’s own influence, thus allowing a turbulent dynamics that looks
broadly similar to MHD below the outer scales (albeit with a few important differences).

These ideas complicate the already complex story of turbulent heating in weakly
collisional plasmas (e.g. Quataert & Gruzinov 1999; Howes 2010; Kunz et al. 2010;
Kawazura et al. 2020; Meyrand et al. 2021; Yang et al. 2022; Arzamasskiy et al. 2023). A
useful concept is the ‘cascade efficiency’: the fraction of energy available to cascade down
to small scales and heat the plasma via different collisionless mechanisms (Schekochihin
et al. 2009; Chandran et al. 2010; Arzamasskiy et al. 2019). In our simulations, between
�20 % and �45 % of the energy is lost through pressure-anisotropy heating at large scales
(giving a cascade efficiency of �55 % for our choice of large-scale forcing), independently
of β and the electron-to-ion temperature ratio. Magneto-immutability ensures that the
remainder of the energy cascades nearly conservatively, presumably eventually heating
at small scales in the way predicted by gyrokinetics (Howes et al. 2008; Schekochihin
et al. 2009; Kunz et al. 2018). With different heating processes implying a different
partition of turbulent energy between electron and ion heat, or between perpendicular
and parallel heat, these apparently esoteric details of the turbulent structure can strongly
influence the basic thermodynamics of the plasma. For instance, while it is well known
that small-scale collisionless processes in high-β plasmas generically heat ions more than
electrons (Howes 2010; Parashar, Matthaeus & Shay 2018; Kawazura et al. 2020; Roy
et al. 2022), large-scale pressure anisotropy can also heat collisionless electrons (Sharma
et al. 2007), meaning that the cascade efficiency – and thus magneto-immutability – could
directly control the ion-to-electron heating ratio. While we do not explicitly study electron
physics, our study provides a useful foundation for distilling and quantifying the important
physics, particularly through the idea that pressure-anisotropy heating is confined to a
small range of large scales.

Our approach to the study of pressure anisotropy here is computational and simplified.
We use the so-called Chew-Goldberger-Low-Landau-fluid (hereafter CGL-LF) model
(Chew et al. 1956; Snyder, Hammett & Dorland 1997), which attempts to approximate
collisionless heat fluxes in order to obtain a closed, simplified fluid model for the plasma
dynamics on scales well above ρi. This model, which is implemented using new numerical
methods into the ATHENA++ framework (White, Stone & Gammie 2016; Stone et al.
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2020), is then used to explore a range of conditions as the key parameters of the problem
are varied. Detailed comparisons with otherwise equivalent MHD simulations are used
to diagnose the influence of the pressure anisotropy on the turbulence and heating. A
downside of the simplified-fluid-model approach is that various ad hoc, loosely justified
approximations are necessary. These approximations include those made to derive the fluid
closure and its numerical realisation, and perhaps more importantly, the methods used to
cope with the fast-growing ρi-scale firehose and mirror instabilities that will inevitably
arise in real systems (Schekochihin et al. 2005; Bale et al. 2009; Kunz, Schekochihin &
Stone 2014), but which cannot be captured correctly by drift kinetics (e.g. Rosin et al. 2011;
Rincon, Schekochihin & Cowley 2015). The upside of the approach, by contrast, is that the
model effectively assumes infinite scale separation between the outer scale and ρi, which
is clearly not possible in kinetic models that explicitly resolve ρi, but is the appropriate
limit for most astrophysical systems. With this in mind, a useful subsidiary purpose of the
article is to assess the successes of this simplified model in reproducing the physics seen
in the hybrid-kinetic simulations of Arzamasskiy et al. (2023) (hereafter A+22), which
explicitly resolve ρi and the associated chaos of kinetic-scale instabilities at the expense of
a much reduced inertial range. We find relatively good agreement in general, despite the
ad hoc nature of the fluid model and the interpretative difficulties associated with limited
scale separation in the hybrid-kinetic simulations. In particular, we find similar cascade
efficiencies (with a similar forcing scheme) and similar pressure-anisotropy distributions
compared with A+22, with some caveats. Accordingly, the results of this work are quite
promising for the use of CGL-LF approaches in modelling weakly collisional plasmas.

1.1. Outline
Although most of the basic theoretical concepts presented here have appeared in previous
literature, we feel it is helpful to keep the majority of the discussion and notation
self-contained to clarify the approximations and key concepts. Thus, § 2 presents an
overview of the physics of pressure anisotropy and magneto-immutability, starting from
the drift-kinetic model of Kulsrud (1983). Lacking any quantitative theory of the important
effects, we focus on qualitative explanations for the behaviour and effect of the pressure
anisotropy and heat fluxes in different regimes. We also define the ‘interruption number’
I, which quantifies the expected strength of pressure-anisotropic effects in Alfvénic
turbulence, analogously to the Reynolds number or Mach number in fluids. In § 3
we then outline the numerical methods and diagnostics, before presenting detailed
simulation results in § 4. Leveraging the versatility of the simplified fluid model, a
focus of the results is the direct comparison with ‘passive-�p’ simulations. These are
identical to the standard simulations but with the anisotropic pressure force artificially
removed, thereby affording a direct comparison with a counterfactual situation where
magneto-immutability does not exist. The comparison clearly demonstrates both the
similarities and differences between our pressure-anisotropic Landau-fluid model and
MHD in spectra, distributions and scale-dependent heating functions. We follow with
discussions of the key uncertainties related to kinetic instabilities (§ 5.1) and of the
distinction between magneto-immutability and the so-called ‘spherically polarised’ states
measured in the solar wind (a complicating factor for interpreting spacecraft observations).
We also summarise most salient differences between magneto-immutable and MHD
turbulence (§ 5.2). A full list of the simulations with their important parameters is given
in table 1. We conclude in § 6. An appendix presents various technical results related to
the numerical finite-volume implementation in the ATHENA++ code (White et al. 2016;
Stone et al. 2020), including linear-wave convergence tests and a new Riemann solver for
the CGL system (albeit one that we ultimately did not use in the simulations).
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2. Theoretical and phenomenological background
2.1. The evolution and effect of pressure anisotropy

In this section, we introduce the basic concepts necessary to understand the numerical
results presented in § 4. The goal is to provide some intuitive understanding of the effects
of pressure anisotropy in different plasma regimes, starting from the basic equations for a
collisionless plasma on large scales. We begin by assuming that the plasma pressure tensor
is gyrotropic but anisotropic – it is invariant under rotations about the magnetic field, but
can differ in the directions perpendicular and parallel to the field. This is justified for
‘MHD-range’ scales, viz. those larger than the ion gyroscale in space and slower than the
ion gyrofrequency in time. We also assume a single ion species and isothermal electrons,
which allows us to drop the anisotropic component of the electron pressure and obtain
single-fluid equations for the dynamics of the ions. Although this can be formally justified
in the moderately collisional limit using the electron’s larger collision frequency and fast
thermal speed (Rosin et al. 2011), here the choice is primarily one of simplicity, since we
wish to focus on the dynamical effects of pressure anisotropy on fluid motions. Most of our
simulations in this work will assume cold electrons anyway, in order to better understand
and diagnose the basic processes at play.

With these assumptions, the first three moments of the ion distribution function satisfy
(Chew et al. 1956; Kulsrud 1983)

∂tρ + ∇ · (ρu) = 0, (2.1)

ρ (∂tu + u · ∇u) = −∇
(

Teρ + p⊥ + B2

8π

)
+ ∇ ·

[
b̂b̂
(

�p + B2

4π

)]
, (2.2)

∂tB = ∇ × (u × B), (2.3)

∂tp⊥ + ∇ · ( p⊥u) + p⊥∇ · u + ∇ · (q⊥b̂) + q⊥∇ · b̂ = p⊥b̂b̂ : ∇u − 1
3νc�p, (2.4)

∂tp‖ + ∇ · ( p‖u) + ∇ · (q‖b̂) − 2q⊥∇ · b̂ = −2p‖b̂b̂ : ∇u + 2
3νc�p. (2.5)

We use Gaussian-CGS units, B and u are the magnetic field and ion flow velocity
(also approximately equal to the electron flow velocity for scales well above the ion
gyroscale), B .= |B| and b̂ = B/B denote the magnetic-field strength and direction, ρ is
the mass density, νc is the ion–ion collision frequency,1 p⊥ and p‖ are the components
of the ion-pressure tensor perpendicular and parallel to the magnetic field and q⊥ and
q‖ are fluxes of perpendicular and parallel ion heat in the direction parallel to the
magnetic field. The electron temperature Te is constant in time and space, because
electrons are assumed isothermal (their pressure is pe = Teρ/mi, related to the ion density
by quasi-neutrality assuming a single-ion-species plasma, and we neglect ion–electron
collisions). Equations (2.1)–(2.5) are solved numerically in the conservative form given
in Appendix A. Importantly, this avoids explicitly computing the parallel rate of strain
b̂b̂ : ∇u, which can introduce serious numerical errors in some situations (Sharma &
Hammett (2011); S+19). We also define the Alfvén speed vA = B/

√
4πρ, the total

pressure p0
.= 2p⊥/3 + p‖/3, the parallel sound speed cs‖

.= √p‖/ρ, the plasma beta
β

.= 8πp0/B2 (similarly β‖
.= 8πp‖/B2), the pressure anisotropy �p .= p⊥ − p‖, the

1The relevant terms in (2.4) and (2.5) are derived from a simple BGK collision operator (Gross & Krook 1956;
Snyder et al. 1997).
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normalised pressure anisotropy Δ
.= �p/p0 and the ‘anisotropy parameter’

Θ
.= 1 + 4π�p

B2
, (2.6)

which measures the relative change in the propagation speed of linear Alfvén waves (viz.
vA) due to the contribution from the pressure-anisotropy stress (see § 2.1.2).

In order to avoid solving a kinetic equation for the heat fluxes, we close (2.1)–(2.5) with
the expressions

q⊥ = − 2c2
s‖√

2πcs‖|k‖| + νc

[
ρ∇‖

(
p⊥
ρ

)
− p⊥

(
1 − p⊥

p‖

) ∇‖B
B

]
, (2.7)

q‖ = − 8c2
s‖√

8πcs‖|k‖| + (3π − 8)νc

ρ∇‖

(
p‖
ρ

)
. (2.8)

These forms, which are known as a ‘Landau-fluid’ closure, were devised by Snyder et al.
(1997), in order to match the linear behaviour of the true kinetic system as closely as
possible (Hammett & Perkins (1990); see also Passot, Sulem & Hunana 2012). The k‖ and
∇‖ = b̂ · ∇ in (2.7)–(2.8) are the parallel wavenumber and gradient operator, respectively,
with the non-local gradient-like operator ∇‖/|k‖| arising as a result of approximating the
effects of collisionless damping within the fluid model (see § 3.1.1 for further discussion).
We will use the form (2.7)–(2.8) both computationally and as a useful intuitive guide for
understanding the physical effect of the heat fluxes.

2.1.1. Energy conservation
With Te = 0, (2.1)–(2.5) conserve the total energy EK + EM + Eth, where

EK
.= 1

2

∫
dx ρ|u|2, EM

.= 1
8π

∫
dx |B|2, Eth

.=
∫

dx
(

p⊥ + p‖
2

)
. (2.9a–c)

The rate of change of the thermal energy is

dEth

dt
=
∫

dx(−p⊥∇ · u + �p b̂b̂ : ∇u) =
∫

dx
(

p‖
1
ρ

dρ

dt
+ �p

1
B

dB
dt

)
, (2.10)

where d/dt = ∂t + u · ∇ is the Lagrangian derivative and we used the continuity and
induction equations to derive the second expression (see (2.13)). We see that a positive
correlation between �p and dB/dt drives net heating of the plasma. This is not necessarily
guaranteed: in essence, the term is similar to the compressive term p‖d ln ρ/dt and can
mediate oscillatory transfer between mechanical and thermal energy through pressure
anisotropy. However, when collisions dominate the evolution of �p, its effect becomes
that of a parallel viscosity and �p d ln B/dt is guaranteed to be positive (see (2.16) and
discussion below). For this reason, we will often refer to this term as ‘viscous heating’,
even in the collisionless regime where it is more general. Note that, because ion-ion
scattering must conserve energy, collisions only indirectly influence the thermal-energy
evolution by changing the correlation between �p and dB/dt.

The case with Te �= 0 is addressed in Appendix A.1.

2.1.2. Wave behaviour
Equations (2.1)–(2.5) admit five types of linear-wave solutions: shear-Alfvén waves,

two modified magnetosonic-like waves and two types of non-propagating entropy modes.
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These are discussed in more detail in Appendix A.1.2 (see also Hunana et al. 2019;
Majeski, Kunz & Squire 2023), where we give the relevant ideal dispersion relations
(computed from (2.1)–(2.5) with q⊥ = q‖ = 0 and νc = 0) and use their non-ideal
properties as a test of the numerical solvers. Here, we simply note that heat fluxes
and/or collisions strongly damp all modes except for Alfvén waves, which, so long as
4π�p > −B2, propagate undamped with the modified speed

vA,eff =
√

1 + 4π�p
B2

vA =
√

Θ vA. (2.11)

Linear Alfvénic modes are undamped because they do not involve any perturbation of B2

and, therefore, do not create any pressure anisotropy. We see that for 4π�p < −B2, vA,eff
becomes imaginary, which is the fluid manifestation of the firehose instability.

2.1.3. The collisionless, weakly collisional and Braginskii-MHD regimes
It is helpful to examine the equation for the evolution of the pressure anisotropy, which

may be obtained from (2.4) and (2.5)

d
dt

�p = ( p⊥ + 2p‖)b̂b̂ : ∇u − (2p⊥ − p‖)∇ · u

− {∇ · [(q⊥ − q‖)b̂] + 3q⊥∇ · b̂} − νc�p. (2.12)

Each term on the right-hand side is grouped according to its physical effect, which we
discuss in turn below.

(i) Changing field strength – the first term on the right-hand side of (2.12) captures the
creation of pressure anisotropy through the parallel rate of strain b̂b̂ : ∇u, which is
related to changes in the magnetic-field strength through

1
B

dB
dt

= b̂b̂ : ∇u − ∇ · u (2.13)

(this equation is obtained from (2.3) after dotting it with b̂ and rearranging). Due to
conservation of the collisionless adiabatic invariants p⊥/ρB and p‖B2/ρ3, positive
�p is created in regions of increasing field strength, while negative �p is created in
regions of decreasing field strength.

(ii) Compressions – the second term is similar to the first but relates to changes in the
plasma density. It is less important here, because of our focus on high-β plasmas
with low compressibility.

(iii) Heat fluxes – the third term involves the heat fluxes, which, although neglected in the
so-called double-adiabatic model, are always large in the β � 1 regime where �p
has a dynamically important effect (e.g. Hunana et al. 2019). The effect of this term
can be understood by examining the ‘Landau fluid’ form of the heat fluxes given
in (2.7)–(2.8). When �p � p0 and the spatial variation of density and b̂ is small
compared with that of the temperature, these take the approximate forms

−∇ · (q⊥b̂) ≈ −b̂ · ∇q⊥ ≈
√

2
π

∇‖

[
c2

s‖
cs‖|k‖| + a⊥νc

∇‖p⊥

]
, (2.14)

−∇ · (q‖b̂) ≈ −b̂ · ∇q‖ ≈
√

8
π

∇‖

[
c2

s‖
cs‖|k‖| + a‖νc

∇‖p‖

]
, (2.15)
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where a⊥ and a‖ are order-unity numerical factors (see (2.7) and (2.8)). We see that,
broadly speaking, the heat fluxes act like a parallel diffusion operator on p⊥ and p‖
(albeit a nonlocal one if cs‖|k‖| � νc), thus reducing the spatial variation of �p along
the magnetic field.

(iv) Collisions – the final term in (2.12) reduces the pressure anisotropy due to collisions,
and, if large enough, causes (2.1)–(2.5) to reduce to standard, adiabatic MHD.

From this discussion, we see that the first two terms on the right-hand side of (2.12)
are responsible for creating a pressure anisotropy from the motions of the plasma.
By comparing the relative sizes of the other terms – d�p/dt, the heat fluxes and the
collisional term – one finds three regimes each with qualitatively different �p evolution.
To distinguish these, it is helpful to consider �p structures of parallel scale k−1

‖ and assume
that ∇‖p⊥ ∼ ∇‖p‖ ∼ ∇‖�p, viz. that the relative variation in p⊥, p‖ and �p is of similar
magnitudes (but note that it is not true that p⊥ ∼ p‖ ∼ �p because the variation in p⊥ and
p‖ is small compared with their mean). Assuming Alfvénic motions, the time derivative
scales as d�p/dt ∼ ωA�p where ωA = k‖vA is the Alfvén frequency, the heat-flux term
scales as ∼[(k‖cs)

2/(|k‖|cs + νc)]�p ∼ [βωA/(β
1/2 + νc/ωA)]�p, and the collisional term

is just νc�p. Restricting our discussion to β � 1, the three regimes are:

(i) Collisionless, νc � ωA – if νc � ωA, the collisional term cannot compete with
d�p/dt ∼ ωA�p to reduce |�p| significantly and so can be neglected. Because
νc/ωA � 1, the heat-flux term scales as ∼β1/2ωA�p, implying that heat fluxes are
always important in this regime, smoothing �p in space rapidly compared with the
Alfvénic motions that drive it.

(ii) Weakly collisional, ωA � νc � β1/2ωA – for νc � ωA, we can neglect d�p/dt in
the balance of terms because collisions isotropise the pressure faster than �p
can be created. However, if νc also satisfies νc � β1/2ωA, the heat fluxes remain
collisionless: they retain a similar form to the collisionless regime and thus have a
similar effect on the dynamics, scaling as ∼β1/2ωA�p, which remains larger than
the collisional draining of �p (unless the parallel scales self-adjust; see Squire,
Schekochihin & Quataert 2017b). This weakly collisional regime is thus a hybrid
collisional–collisionless one: although motions in the plasma are slower than the
collision time scales, heat fluxes remain strong and are governed by collisionless
physics (Mikhailovskii & Tsypin 1971).

(iii) Braginskii MHD, β1/2ωA � νc – once νc � β1/2ωA, in addition to neglecting
d�p/dt compared with νc�p, we see that the heat fluxes take the collisional form,
scaling as ∼(βω2

A/νc)�p. Further, unlike in the weakly collisional regime, the heat
fluxes become subdominant to νc�p, since νc � βω2

A/νc for νc � β1/2ωA. Thus
at the same point that the heat fluxes take their collisional form, they become
subdominant overall. In this regime, assuming incompressibility and �p � p⊥ ∼
p‖, (2.12) takes the simple form

�p ≈ 3p0

νc
b̂b̂ : ∇u, (2.16)

which, when inserted into (2.2), yields a parallel viscous stress. Given this is
effectively the parallel viscosity of Braginskii (1965), we refer to this regime as
‘Braginskii MHD’.

In previous work (S+19), we explored the effect of pressure anisotropy in the
Braginskii-MHD regime, because of the simplicity of its physics and computational
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implementation. However, when combined with the condition that the pressure anisotropy
has a dynamically important influence on the turbulence, νc/ωA � βδB2

⊥/B2
0 (see § 2.2),

the constraint νc/ωA � β1/2 requires β to be very large in order for there to be sufficient
range between β1/2 and βδB2

⊥/B2
0. Thus, for application to the solar wind and other hot

astrophysical plasmas with β � 100, the collisionless and weakly collisional regimes are
more relevant.

A detailed derivation of the effects described above for a single shear-Alfvén wave,
including simplified asymptotic equations valid in each regime, is given in Squire et al.
(2017b).

2.2. Magneto-immutability
In previous work (Squire et al. 2016, 2017a,b), we explored the idea that Alfvénically
polarised magnetic fields or flow perturbations are ‘interrupted’ if their amplitude satisfies

δu⊥
vA

∼ δB⊥
B0

� 2β−1/2

{
1, ωA � νc√

νc/ωA, ωA � νc
(2.17)

(the first limit applies in the collisionless regime; the second applies in the weakly
collisional and Braginskii-MHD regimes). The origin of the effect is straightforward:
above the limit (2.17), the (nonlinear) perturbation of the magnetic-field strength drives the
pressure anisotropy to the fluid firehose limit, �p = −B2/4π, or Δ = −2/β. As can be
seen from the final term of (2.2), this nullifies the plasma’s magnetic tension (indeed this
is the cause of the firehose instability), which thus robs the Alfvén wave of its restoring
force (see (2.11)). The consequence, for a single linearly polarised Alfvén wave, is that
the perturbation dumps most of its energy into plasma heating and/or magnetic-field
perturbations that cease to evolve in time, rather than oscillating in the usual way (Squire
et al. 2016, 2017a). Below the limit (2.17), waves slowly damp due to nonlinear Landau
damping (e.g. Hollweg 1971) and/or nonlinear viscous damping (Nocera, Priest & Hollweg
1986; Russell 2023).

2.2.1. Alfvénic turbulence
Given that Alfvénic motions underlie magnetised plasma turbulence (Chen 2016;

Schekochihin 2022), a natural question that arises is: what happens when large-scale
random perturbations to the plasma are driven past the interruption limit (2.17)? Naïvely,
one might expect that only motions below the limit (2.17) would be allowed, which would
imply that the large-scale fluctuation energy would be limited to less than δu2

⊥ ∼ v2
A/β,

with the remainder of the energy injected at large scales directly heating the plasma
without creating smaller-scale motions and a turbulent cascade. Instead, we showed in
S+19 that the turbulence rearranges itself mostly to avoid the motions that would create
large pressure anisotropies in the first place, allowing the turbulent cascade to proceed
in a way rather similar to MHD. It does this by reducing the variations in B that would
have driven large �p, creating a turbulence in which B varies significantly less than in
turbulence where the pressure anisotropy does not back react on the plasma motions. This
reduces the spread of �p produced by the turbulence, thus reducing the plasma heating
done by these motions and increasing the ‘cascade efficiency’ (the proportion of energy
that cascades to small scales).

That the plasma does this is not altogether surprising. Indeed, it is well known
that collisionless effects damp out motions that involve variations in the magnetic-field
strength, and that this damping is fast compared with Alfvénic time scales at high β
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(Barnes 1966; Foote & Kulsrud 1979)2. However, the effect does not simply involve a
selective damping of those motions that involve variations in B, thereby leaving behind
those motions that do not. Rather, there is a direct force on the plasma due to the final term
∇ · (b̂b̂�p) in (2.2), and this force opposes motions that would be strongly damped (those
involving variation in B). The heating is thus significantly reduced compared with what
would occur in the absence of this force. The origin of this behaviour is best understood by
analogy to compressive motions and density fluctuations. It is well known that isotropic
pressure forces in a fluid resist compressional flows with ∇ · u �= 0: such a flow will
generate a local pressure perturbation, which then (through the −∇p term) generates a
force on the fluid that opposes the compressional motion. In a fluid where the thermal
energy is large compared with other energies (such as a plasma at high β), this process
is rapid compared with the time scales on which the flow or magnetic-field change, thus
rendering the system effectively incompressible. Magneto-immutability involves a similar
process, but with ‘magneto-dilational’ flows that have b̂b̂ : ∇u �= 0. Such flows generate
a local pressure-anisotropy perturbation (see (2.12)), the feedback of which – through the
pressure-anisotropy force ∇ · (b̂b̂�p) – opposes the motion that created b̂b̂ : ∇u in the
first place. If the generation of pressure anisotropy is fast compared with the Alfvénic time
scales of the turbulence, these forces will render the system ‘magneto-immutable’, since
motions with small b̂b̂ : ∇u are those that minimise changes to the magnetic-field strength
(see (2.13)).3

2.2.2. A reduced model for magneto-immutable turbulence?
The analogies between incompressibility and magneto-immutability lead one to

speculate whether there could exist a reduced model – similar to incompressible
hydrodynamics – that describes magneto-immutable turbulence. Incompressible fluid
models are formulated by stipulating that, because the compressible back reaction happens
so rapidly, the pressure force is just what it needs to be in order to enforce ∂t(∇ · u) = 0.
This lets one solve for ∇2p in terms of u, thus closing the system. By analogy, for a
magneto-immutable fluid model, we should solve for the �p in ∇ · (b̂b̂�p) that enforces
∂t(b̂b̂ : ∇u) = 0, which will ensure that the flow cannot generate magneto-dilations as
it evolves. This immediately reveals a technical problem: while ∇· is a simple operator,
thus enabling straightforward solution of p, the combination b̂b̂ : ∇ is complicated, and
solving for �p (which must be achieved at every time step for a numerical algorithm)
becomes complex and expensive.

More generally, there is another key difference with incompressibility that argues
against the utility of formulating a magneto-immutable fluid model: regions with large
pressure anisotropies become unstable. The strong back-reaction force needed to suppress
a large |b̂b̂ : ∇u| in some region will require a large |�p|, which will then grow small-scale

2An exception is the gyrokinetic (k‖ � k⊥) ‘non-propagating’ mode, which is damped more slowly than the Alfvén
frequency at high β. Its structure requires a specific �p perturbation with δp⊥ > δp‖, meaning it is also strongly damped
in the presence of modest collisions (Schekochihin et al. 2009; Majeski et al. 2023).

3A complication to this story involves the difference between a dissipative reaction, such as a Braginskii viscosity
∝∇ · [b̂b̂(b̂b̂ : ∇u)] or a bulk viscosity ∝∇(∇ · u), and a non-dissipative one, such as an isothermal pressure response
∝∇ρ. The pressure-anisotropy response in weakly collisional plasmas spans both regimes: in the Braginskii-MHD
regime, it is purely dissipative; in pure CGL without heat fluxes, it is non-dissipative; and in the collisionless and weakly
collisional regimes, it lies between these two extremes. But, these different regimes seem to make less difference than
one might expect. Although this is rarely studied, standard neutral fluids are rendered incompressible by a large bulk
viscosity (Pan & Johnsen 2017), even in the absence of pressure forces. Similarly, we find little obvious dependence of
magneto-immutability on the collisionality regime, which controls both the level of dissipation caused by different types
of motions, and the phase offset between �p fluctuations and magneto-dilations b̂b̂ : ∇u (see (2.12)). Fundamentally, all
that is needed is a large back-reaction force that inhibits motions of a particular form (compressions or magneto-dilations).
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instabilities, presumably tempering its influence. This effect is unavoidable because such
instabilities are always triggered when |�p| � B2/4π (see § 2.3), which is also the
pressure anisotropy needed to start feeding back significantly on the flow. In contrast,
in a large compression or rarefaction, the distribution function can remain isotropic and
thus stable, so there is no similar effect for incompressibility. This subtle, but important,
difference between incompressibility and magneto-immutability is discussed in more
detail in §§ 2.4 and 5.1.

2.2.3. Interruption number
It will prove helpful to have a simple dimensionless number that can be used to quantify

the expected influence of the pressure anisotropy on the flow. To construct this, we return to
the idea that individual shear-Alfvén waves are ‘interrupted’ – meaning that they dissipate
a large fraction of their energy into thermal energy within �τA – if their amplitude satisfies
(2.17), or

δB⊥
B0

∼ δu⊥
vA

� Mint
A

.=
[

max
(

1,
νc

ωA

)
1
β

]1/2

. (2.18)

Applying this limit to a random turbulent collection of fluctuations with root-mean-square
(rms) amplitudes MA

.= 〈δu2
⊥〉1/2/vA0 ≈ 〈δB2

⊥〉1/2/B0, we define the ‘interruption number’
to be

I .=
(Mint

A

MA

)2

=
max

(
1,

νc

ωA

)
βM2

A
. (2.19)

If I � 1, the turbulence (unless otherwise restricted) should be of sufficiently large
amplitude to generate |Δ| � 2/β, which would be naïvely expected to damp out the energy
faster than it cascades to small scales. In this sense, I can be interpreted similarly to the
Reynolds number, capturing viscous-like effects due to the pressure anisotropy, with I � 1
suggesting they dominate over the Alfvénic forces in the flow.

However, as described above, this expression ignores the feedback of the pressure
anisotropy (magneto-immutability), which reduces the production of �p below the
estimate used to derive (2.19). Thus, as shown by S+19, the turbulent cascade can
in general proceed when I � 1, meaning I is better thought of as an estimate of
the importance of pressure-anisotropy effects, rather than whether the viscous damping
dominates the dynamics (in other words, when I � 1, the flow can rearrange itself so as
to avoid the motions that would be strongly viscously damped). The purpose of our study
is to understand the properties of turbulence in this I � 1 regime and characterise how it
heats the plasma.

Another way to think of the interruption number is by analogy to the Mach number of
a compressible neutral fluid. Start by considering pressure-anisotropy production with the
balance ωA�p ∼ p0ωAδB2

⊥/B2 + νc�p obtained from (2.12) (ignoring the heat fluxes) and
giving the estimate �p ∼ p0M2

A/ max(1, νc/ωA) for the size of �p fluctuations that result
from Alfvénic magnetic-field fluctuations. Because pressure anisotropy will feedback
strongly on the plasma once �p � B2, and the estimate above gives �p/B2 ∼ I−1,
we see that I−1 is the ratio between the �p that is driven and the �p that would
substantially change the flow. Analogously, in compressible hydrodynamics, isotropic
pressure fluctuations δp are related to density fluctuations δρ by δp ∼ c2

sδρ, where cs is
the sound speed. Pressure fluctuations will feed back strongly on the flow once they are
comparable to the ram pressure δp ∼ ρu2. Therefore, the ratio of the naturally generated
pressure fluctuations to those needed to feed back on the flow is δp/ρu2 ∼ M−2δρ/ρ,
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where M = u/cs is the Mach number. Thus, the isotropic hydrodynamic equivalent of I is
M2/(δρ/ρ). However, in a completely unrestricted flow, δρ/ρ ∼ 1 (because the turnover
rate ∼ku at scale k scales in the same way as ∇ · u), showing that M2 itself provides the
relevant analogy with I. This makes intuitive sense: M ∼ 1 marks the boundary between
supersonic turbulence, which approaches the limit of the pressure-free Burgers equation,
and incompressible turbulence, where ∇ · u and δρ/ρ become strongly restricted by the
feedback of the pressure force on the flow.

We can also define a local interruption number with respect to the scale-dependent
amplitude of the eddies, assuming that the turbulence follows a standard Goldreich–Sridhar
cascade (Goldreich & Sridhar 1995). This assumption is clearly highly questionable if the
effects of pressure anisotropy are strong, but our simulations will show it to be nevertheless
reasonable and it serves a useful purpose for basic estimates. Turbulent amplitudes scale
as δB2

⊥ ∝ δu2
⊥ ∝ k−2/3

⊥ , where k⊥ is the inverse scale of an eddy perpendicular to the local
magnetic field. This implies that, in the collisionless regime where ωAΔ ∝ ωAδB2

⊥/B2
0 (see

(2.12) and (2.13)), the interruption number should be smallest at the outer scale and grow
as I ∝ k2/3

⊥ . By contrast, in the Braginskii regime where νcΔ ∝ ωAδB2
⊥, the critical balance

scaling ωA ∝ k‖ ∝ k2/3
⊥ implies that the interruption number is effectively constant across

all scales above the collisionless transition where ωA � νc.

2.3. Microinstabilities, limiters and the choice of collisionality
A key physical effect that has been omitted in the discussion above is the influence of
kinetic microinstabilities. Most important at high β are the firehose and mirror instabilities
(Rosenbluth 1956; Chandrasekhar, Kaufman & Watson 1958; Parker 1958; Vedenov &
Sagdeev 1958; Hasegawa 1969), which are thought to be the fastest growing with the
strongest back reaction on the large-scale plasma dynamics. In their simplest forms, they
are triggered for Δ � −2/β (firehose) or Δ � 1/β (mirror), with minor modifications
to these limits from fundamentally kinetic effects (resonances and finite-Larmor-radius
physics), particularly at moderate β (Yoon, Wu & de Assis 1993; Hellinger et al. 2006).
Although most features of the linear instability thresholds and growth rates are captured
by (3.1a,b) and (2.5) with the Landau-fluid heat fluxes (2.7) and (2.8) (see Snyder et al.
1997), the detailed nonlinear saturation mechanisms, which involve particle scattering
and trapping (Schekochihin et al. 2008; Kunz et al. 2014; Rincon et al. 2015; Melville,
Schekochihin & Kunz 2016), are certainly not. Even more important is the separation of
time scales that is inherent in how the microinstabilities feed back on the plasma: they
grow and evolve on time scales comparable to the ion gyro-frequency, which is far faster
than any motions related to the outer scale for any astrophysical system of interest. Thus,
as far as the large-scale (� � ρi) plasma dynamics is concerned, microinstabilities should
saturate and feed back on the plasma effectively instantaneously. This poses an extreme
difficulty for fully kinetic simulations, which must attempt to determine which observed
features are dependent on the necessarily modest scale separation, and which are robust to
asymptotically large scale separations (e.g. Kunz et al. (2020); A+22).

While the details of firehose and mirror saturation are rather complex (Hellinger &
Trávníček 2008; Schekochihin et al. 2008; Kunz et al. 2014; Riquelme, Quataert &
Verscharen 2015; Sironi & Narayan 2015; Melville et al. 2016), roughly, the process
involves the instabilities’ magnetic fluctuations scattering particles at the rate needed to
maintain �p at its marginal level.4 This implies an additional microinstability-induced

4Scattering from the mirror instability seems to reach this level only after a macroscopic shear time once δB/B ∼ 1,
with particle trapping alone able to maintain marginality over shorter times. However, for the purposes of this discussion,
the exact mechanism through which �p is limited is actually not of great importance, so we refer the reader to
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collisionality, νc ∼ Sβ, where S ∼ B−1 dB/dt ≈ b̂b̂ : ∇u is the shearing rate, which
operates in regions where �p is being driven beyond the mirror or firehose thresholds.
Broadly speaking, such a picture has been commonly invoked to understand the solar-wind
‘Brazil plots’ (Kasper, Lazarus & Gary 2002; Hellinger et al. 2006; Bale et al. 2009),
which show how the measured �p appears to be limited between the instability threshold
values (|Δ| � 1/β; see figure 1): plasma that strays beyond the boundaries will be rapidly
pushed back via scattering, thus maintaining only a small deviation from �p ≈ 0 at
high β.5 Since the nominal effect of this scattering is simply to maintain �p at marginality,
a simple phenomenological method to capture such effects in a fluid simulation is via
the inclusion of ‘limiters’, which halt the growth of �p locally in space whenever it
is driven past the firehose or mirror thresholds (Sharma et al. 2006). Physically, the
approach assumes that (i) microinstabilities act quasi-instantaneously to return the plasma
to marginal stability6 , and (ii) that the microinstabilities do not directly influence the
plasma’s evolution outside of the regions that are being driven unstable, either in space
or time. Despite its clear shortcomings, which will be discussed in detail in § 5.1 after we
present our computational results, the method is at least simple and well controlled, and
we will use it throughout this work.

2.4. The expected impacts of magneto-immutability
In this subsection we summarise the basic impact of pressure-anisotropy feedback
(magneto-immutability) by comparison with the counterfactual situation where it does
not exist. Because these effects tend to cause the plasma to revert to behaviour that more
closely resembles the collisional (MHD) limit, they can be somewhat subtle and not easily
diagnosed. Nonetheless, their influence on the heating processes and turbulent statistics
can be strong and appreciation of it is needed to understand the behaviour of turbulent
collisional high-β plasmas.

As explained in § 2.2, the basic picture involves the plasma rapidly reacting to suppress
‘magneto-dilational’ flows with large b̂b̂ : ∇u, which are those that would create large
pressure anisotropies. The effect is very similar to incompressibility, if we substitute ∇ · u
with b̂b̂ : ∇u, isotropic pressure p with �p and the −∇p force with that from ∇ · (b̂b̂�p).
As a consequence:

(i) The standard deviation of �p will be suppressed, viz. it will be lower than if �p were
driven by a turbulent flow with similar MA but that did not feel the force ∇ · (b̂b̂�p)
(e.g. MHD turbulence).

(ii) The standard deviation of B = |B| will be suppressed in the same way as (i) (e.g.
compared with a similar-amplitude MHD case). This is because suppressing b̂b̂ : ∇u
also suppresses changes of B (fundamentally, it is the changing B that drives �p).

(iii) The primary influence on the flow statistics will be the suppression of
magneto-dilations (b̂b̂ : ∇u) compared with MHD.

(iv) As a consequence, the net viscous-like heating of the plasma through pressure
anisotropy will be suppressed by magneto-immutability (compared with the

Schekochihin et al. (2008), Kunz et al. (2014), Rincon et al. (2015) and Melville et al. (2016) for details, rather than
discussing these issues here.

5In its simplest form, this idea suggests that plasma should end up clustered near the firehose threshold, where it is
driven by expansion. Instead, it is observed to have a rather broad distribution centred near �p = 0. There are a number of
plausible explanations for this difference, including anisotropic heating, Coulomb collisions (Bale et al. 2009), scattering
with a ‘memory’ (scattering sites that persist even as the plasma becomes stable; see § 5.1), compressive oscillations that
carry the plasma beyond the thresholds and back (Verscharen et al. 2016) and, indeed, magneto-immutability (see § 2.4).

6This assumption is easy to relax via the implementation of a limiter collisionality; see § 3.1.2.
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(a) (b)

FIGURE 1. ‘Brazil plots’ – histograms of (local) β versus p⊥/p‖ – formed by combining the data
from all runs that have both active-�p and passive-�p simulations with the same parameters,
as indicated by the ‘Passive?’ column of table 1 (for passive-�p simulations, the ∇ · (b̂b̂ : ∇u)
force in (2.2) was artificially removed). The left panel combines all such active-�p simulations;
the right panel combines all such passive-�p simulations. The colour (probability) scale is
normalised differently for each β to better show the main features, but is done so identically
for the left and right panels. The insets zoom in on the right-hand regions of each plot. The
clear differences between the active- and passive-�p simulations highlight the effect of the
pressure-anisotropy feedback on the turbulence: active-�p cases maintain themselves primarily
within the microinstability boundaries with small |�p|, while passive-�p simulations (which
have identical parameters otherwise, and similar turbulence amplitudes) have most of their
volume artificially constrained by the hard-wall limiters. The basic conclusion is that the plasma
employs dynamical pressure-anisotropy feedback, in addition to particle scattering (as more
commonly discussed; Kasper et al. 2002; Hellinger et al. 2006; Bale et al. 2009), in order to
limit its deviations from local thermodynamic equilibrium and stay within the kinetically stable
region of parameter space.

counterfactual situation where �p did not influence the flow). Since such heating
is dominated by the outer scales in Alfvénic turbulence (see § 2.2.3), there will
thus be more vigorous turbulence with a larger cascade efficiency, and therefore
a larger fraction of heating will occur via kinetic processes at the smallest scales
(Schekochihin et al. 2009). This may influence bulk thermodynamical properties
such as the ion-to-electron heating ratio or parallel-to-perpendicular heating ratios
(cf. Sharma et al. 2007; Howes et al. 2008; Kawazura, Barnes & Schekochihin 2019;
Kawazura et al. 2020) or even the plasma’s thermal stability (Kunz et al. 2010).

While we provide solid numerical evidence in support of each of these points (i)–(iv)
in § 4, it is worth clarifying that these effects can never dominate all other dynamics,
because there is no physical limit in which any of the aforementioned ‘suppressions’
becomes complete. The reason for this is discussed in § 2.3, with more detail to arrive
in § 5.1: when pressure anisotropies become large, they cause plasma microinstabilities,
which act to limit �p through scattering, trapping and/or microscale fields. Such effects
always occur together with the direct ∇ · (b̂b̂�p) feedback of �p on the flow.7 This
implies that even in the limit of extremely high β and large amplitudes (small I), b̂b̂ : ∇u

7One exception to this is when there exists a mean pressure anisotropy, which can be driven, e.g. by plasma expansion
(Hellinger & Trávníček 2008; Bott et al. 2021) or turbulent heating (A+22). In this case, there are microinstabilities
without a corresponding bulk force because there are no turbulent pressure-anisotropy gradients.
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can never be arbitrarily strongly suppressed, because the ∇ · (b̂b̂�p) force that causes
this suppression is also attenuated by the microinstabilities. This is the most important
difference between magneto-immutability and incompressibility; the latter does not suffer
the same fate because isotropic pressure changes (driven by ∇ · u) are neither kinetically
unstable nor attenuated by particle scattering (see § 2.2.2). Similarly, related to point
(iv) above, we still expect (and measure) significant viscous heating at the outer scale
(a cascade efficiency below unity); but, the cascade efficiency is independent of I and
larger than what would be expected without the �p feedback (in which case it would
decrease continuously with I, with turbulence amplitudes limited to �Mint

A ; see (2.17)).
A simple, familiar visual illustration of the effects of magneto-immutability is shown

in figure 1, where we combine most of the simulations run as part of this work into two
‘Brazil’ plots. These are two-dimensional (2-D) probability distribution functions (PDFs)
of β and temperature (pressure) anisotropy, illustrating the approximate magnitude of the
deviation from pressure isotropy as a function of β. As mentioned earlier, its eponymous
shape has usually been attributed to the action of microinstabilities scattering particles
once |Δ| � β−1 (the mirror and firehose thresholds; Kasper et al. 2002; Hellinger et al.
2006; Bale et al. 2009). The purpose of figure 1 is to compare simulations of (2.1)–(2.5)
(a) with equivalent simulations where the dynamic feedback of �p has been artificially
eliminated by removing ∇ · (b̂b̂�p) in (2.2) and assuming an isothermal ion-pressure
response (‘passive-�p’ simulations; see § 3.1.3). Both sets of simulations include the
effect of microinstabilities via hard-wall limiters at the firehose and mirror boundaries,
which prevent �p from straying beyond the relevant instability thresholds. We see a clear
difference between the two cases, with �p distributions strongly dominated by regions at
the microinstability boundaries (the artificial limiters) in the passive cases, but not when
�p feeds back on the flow. This demonstrates that, in its efforts to remain close to local
thermodynamic equilibrium, the plasma has two separate methods at its disposal. The
first – particle scattering through microinstabilities – has been discussed by Kasper et al.
(2002), Hellinger et al. (2006), Bale et al. (2009) and other subsequent works. The second
– the dynamic feedback from the pressure anisotropy – should be of similar importance for
maintaining near isotropy in most plasmas (see § 5.1), but has been largely ignored thus
far.

3. Methods
3.1. The CGL Landau-fluid model

Our computational study is based on the ‘CGL-LF’ model of Snyder et al. (1997). This
allows us to probe the effects discussed above without the complications of a true kinetic
model (see § 2.3). The model solves (2.1)–(2.5) supplemented by the Landau-fluid closure
for heat fluxes (described in § 3.1.1) and simple ‘hard-wall’ limiters on �p to approximate
the effect of kinetic microinstabilities (§ 3.1.2).

We use the finite-volume ATHENA++ code (White et al. 2016; Stone et al. 2020),
modified to solve (2.1)–(2.5) in the conservative form detailed in Appendix A. Briefly,
this uses the total energy E = p⊥ + p‖/2 + B2/8π + ρ|u|2/2 and the ‘anisotropy’ A .=
ρ ln( p⊥ρ2/p‖B3) as conserved variables, the latter following Santos-Lima et al. (2014).
We found through extensive numerical tests that using A leads to a solver that is more
numerically robust than if p⊥/B or p‖B2/ρ2 is used as the second conserved variable,
particularly when there exists significant variation in B. Given that A, and the equations
themselves, become ill defined for B → 0, we implement a numerical floor on B, below
which the equations revert to standard adiabatic MHD. We use the piecewise parabolic
method with an HLL Riemann solver (Toro 2009); although we developed and tested
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various other HLLD-inspired solvers (Miyoshi & Kusano 2005; Mignone 2007), these
were found to be insufficiently robust for this study (see Appendix A.3.1).

The Riemann solver solves only the conservative part of (2.1)–(2.5), viz. that with
q⊥ = q‖ = 0 and νc = 0. We evaluate the heat fluxes in the form described below (see
(3.2a,b)) using operator splitting with slope limiters to ensure numerical stability and
monotonicity of the solutions (Sharma & Hammett 2007; Dong & Stone 2009). We
use the RKL1 super-time-stepping algorithm of Meyer, Balsara & Aslam (2014) to
allow for much larger time steps by stepping over the Courant–Friedrichs–Lewy (CFL)
condition that results from the small-scale diffusive form of the computational heat fluxes
(although heat-flux-related time-step constraints are still relatively severe at high β and
high resolution). Collisional terms are evaluated at the end of each global time step
δt from the exact solution of ∂tp⊥ = −νc�p/3, ∂tp‖ = 2νc�p/3 from t to t + δt (see
(A4)). This method is implicit and numerically stable for any time step, and so has the
property that adiabatic MHD can be easily recovered from the CGL-LF system by setting
νc � δt−1 (which also causes the heat fluxes to become negligible). Similarly, if we choose
νc � β1/2ωA (see § 2.1.3), the method becomes a convenient, stable and computationally
efficient way to include a Braginskii-viscous stress in the standard MHD system.

Turbulence is driven via a large-scale incompressible forcing term F added to the
right-hand side of (2.2). This applies only in the directions perpendicular to the mean
magnetic field in order to drive primarily Alfvénically polarised fluctuations, and consists
of the eight largest-scale modes in the box evolved in time as an Ornstein–Uhlenbeck
process with correlation time tcorr = τA (where τA is the box-scale Alfvén time). At each
time step, its amplitude is adjusted to enforce a constant energy-injection rate ε = 〈ρu · F 〉
(see, e.g. Lynn et al. 2012).

3.1.1. Heat fluxes
In the ‘Landau-fluid’ heat fluxes (2.7)–(2.8), the k‖ and ∇‖ = b̂ · ∇ terms

contain b̂, which varies in space along with c2
s‖ = p‖/ρ. This implies that

that 2c2
s‖(

√
2πcs‖|k‖| + νc)

−1 and 8c2
s‖[

√
8πcs‖|k‖| + (3π − 8)νc]−1 should rightly be

considered operators that are not diagonal in either Fourier space or in real space, making
them complex and computationally expensive to evaluate (see Snyder et al. 1997). For
this reason, we use a simplified form, motivated by Sharma et al. (2006), in which |k‖|
in the denominators of (2.7) and (2.8) is replaced by a constant kL, which we take to
be 2 × 2π/L‖ to approximate k‖ of larger-scale motions.8 However, this substitution also
leads to the undesirable property that, due to large parallel gradients at small scales, the
heat flux, which is now diffusive, can become �ρc3

s‖, the maximum possible heat flux
(Hollweg 1974a; Cowie & McKee 1977). To mitigate this, we additionally limit q⊥ and q‖
to their maximum possible value deduced from (2.7) and (2.8), viz.

q⊥,max
.=
√

2
π

cs‖p⊥, q‖,max
.=
√

8
π

cs‖p‖ (3.1a,b)

(the second term in (2.7) is ∼�δB‖/B � 1 times smaller than the first, so we ignore its
contribution). The heat fluxes are thus computed as

q̃⊥ = q⊥L
q⊥,max

q⊥,max + |q⊥L| , q̃‖ = q‖L
q‖,max

q‖,max + |q‖L| , (3.2a,b)

8This choice is justified by the fact that, in all cases considered, pressure anisotropy has the strongest influence on the
largest scales in the system (due to magneto-immutability in weakly collisional and Braginskii-MHD cases; see § 2.2.3).
We have tested the dependence on kL in lower-resolution simulations and noticed no significant differences for reasonable
choices.
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where q⊥L and q‖L are evaluated using (2.7) and (2.8) with |k‖| = kL. We note that
this approach effectively generalises the practice of limiting an MHD heat flux to be
|q| ≤ 5φρc3

s with φ ≈ 0.3 (Cowie & McKee 1977),9 which is commonly used in MHD
simulations (e.g. Vaidya et al. 2017).

The method (3.2a,b) is somewhat ad hoc, which led us to explore various other
approaches in some detail. One possibility for some regimes is to evaluate |k‖| along
the constant mean field using Fourier transforms (Passot et al. 2014; Finelli et al. 2021),
thus effectively approximating |k‖| = |b̂0 · ∇|, rather than |k‖| = kL, in (2.7) and (2.8).
However, with extensive testing, we found this approach to be more prone to numerical
instability and more computationally expensive than the simpler method described above,
when the fluctuations are large compared with the background magnetic field (as is
explored here). In any case, because heat fluxes will be strongly modified by scattering
from microinstabilities (see § 3.1.2 below), an exact evaluation of the Landau-fluid form
(2.7)–(2.8) is likely irrelevant for detailed agreement to nonlinear collisionless physics, so
long as the method captures their general influence on the flow (see § 2.1.3).

3.1.2. Microinstability limiters
As discussed in § 2.3, although aspects of the firehose and mirror instabilities are

captured by (2.1)–(2.5) with the closure (2.7)–(3.2a,b), their nonlinear saturation, which
involves particle scattering and trapping, is not. We therefore artificially limit the pressure
anisotropy to

− ΛFH
B2

8π
< �p < ΛM

B2

8π
, (3.3)

where ΛFH and ΛFH define the firehose and mirror instability thresholds, respectively.10

By default, we set ΛFH = 2 and ΛM = 1, which describe the canonical versions of these
instabilities, but our results do not depend strongly on this choice.11 Computationally,
the limiters work by applying a large scattering rate (ν lim

c = 1010τ−1
A in all simulations)

to any region outside of (3.3), which quickly (within one time step) reduces �p to lie
on the relevant instability boundary (see Appendix A.1.1). We also apply this enhanced
collisionality to the heat fluxes (2.7)–(2.8), thus strongly suppressing them in limited
regions. This may be appropriate for mirror-limited regions, which show strong heat-flux
suppression in simulations (Kunz et al. 2020), but it is likely much too strong in
firehose-limited regions, which seem to be well described by the Braginskii estimate (Kunz
et al. 2020), meaning it might be more appropriate to take ν lim

c ∼ βb̂b̂ : ∇u (though this
would be numerically complicated).

3.1.3. Passive-pressure-anisotropy simulations
For most simulations, in addition to the standard CGL-LF model (termed ‘active-�p’

below), we have run an otherwise equivalent ‘passive-�p’ simulation. The latter is
identical to the former, except that the feedback of the pressure anisotropy into the
momentum equation is artificially removed. Instead, we use an isothermal equation of
state with the sound speed chosen to give the same value of β as in the active-�p run.
Note that these passive-�p runs still evolve the pressure anisotropy and include heat fluxes
in an identical way to the standard CGL-LF model. In this way, the p‖ and p⊥ statistics

9Note that this standard multiplier 5φ ≈ 1.5 is numerically similar to that used here for q‖.
10Another limiter could be used to include the ion-cyclotron instability if desired, but this is only more important

than mirror at lower β (Hellinger et al. 2006) and unimportant for our overall results anyway.
11At high β, the kinetic oblique firehose is destabilised at ΛFH ≈ 1.4, which, for sufficiently slow motions, can

scatter particles fast enough to limit �p (Bott et al. 2021).
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can be compared directly to understand the feedback of the pressure-anisotropy stress on
the flow.

In summary, a ‘passive-�p’ simulation solves (2.1)–(2.5) using the same forcing, initial
conditions and parameters as a standard (‘active-�p’) run, but, in (2.2) we remove the
�p term and set p⊥ = Ti0ρ with 8πρTi0/B2

0 = β (a chosen initial parameter). This implies
that the velocity and magnetic-field evolution in such a simulation is described by the
isothermal MHD equations.

3.2. Study design
All simulations are run in a Lx = L‖ = 2L⊥ aspect ratio box of volume V , which has mean
density ρ = ρ0 and is threaded by a mean magnetic field B0 = B0x̂. The energy-injection
(forcing) level ε is set to ε = 0.16v3

A/L⊥, which is chosen empirically to give MA ∼
δu⊥/vA ∼ δB⊥/B0 ∼ 1/2 in steady state for MHD, as needed for critical balance at the
outer scale (from hereon, vA will refer to the mean-field Alfvén speed vA = B0/

√
4πρ0).

We initialise with isotropic pressure p0, chosen to yield the desired initial β, β0 =
8πp0/B2

0. Recall that, here and throughout, β and p0 refer to the ion contribution, and
most simulations use Te = 0 by default in order to diagnose more easily the influence
of pressure anisotropy. We do not use an explicit isotropic viscosity or resistivity in
any simulations, relying on the grid to dissipate energy that reaches the smallest scales.
Most simulations have a matching passive-�p run, which is set up as explained in
§ 3.1.3. With these default parameters, each simulation is specified by its initial ion β and
collisionality νc (in units of vA/L⊥; these are sometimes omitted for conciseness). These
parameters then fix the expected interruption number from (2.19), assuming MA is not
strongly modified by the effects of pressure anisotropy. The full set of simulations is listed
in table 1.

We focus particularly on three simulations to probe both the collisionless and weakly
collisional regimes with I � 1 (meaning that pressure-anisotropy feedback is a significant
effect). These use β0 = 10, νc = 0 (labelled CL10); β0 = 100, νc = 33vA/L⊥ (B100);
and β0 = 100, νc = 0 (CL100). CL10 and B100, which have a numerical resolution of
1120 × 5602, are chosen to have similar I � 0.4 but explore two different, collisionless
and Braginskii, regimes laid out in § 2.1.3. CL100 (with resolution 560 × 2802) is
chosen to examine a situation with stronger pressure-anisotropy feedback, I ≈ 0.04. The
extremely small time steps required for the stable evaluation of the heat-flux terms make
high-resolution simulations quite costly in wall-clock time, and so CL10 and B100 are
initialised from the saturated state of lower-resolution simulations (see below). We then
run them for only a relatively short time of t ≈ L⊥/vA, which is shorter than the outer-scale
turnover time �2L⊥/vA, but longer than the time, t ≈ 0.1L⊥/vA, that it takes the new
smaller scales to reach turbulent steady state (we observe the evolution of the energy
spectrum to ensure that this is the case). This means that these simulations are useful
for exploring detailed properties of the turbulence (e.g. turbulence structure and energy
transfers), but the largest scales (those above around a quarter of the box scale) are not
properly statistically averaged.

In addition to these simulations, we have a large array of other ones at low resolution
(400 × 2002). These are designed to explore how the physics of magneto-immutability
varies with plasma parameters. ‘lrCL’ simulations are all collisionless, changing β0 from
�1 to ≈100 in order to probe the dependence of the turbulence on the interruption
number from I ≈ 0.04 to I � 1. In simulations with β0 � 1, the plasma is heated,
thus increasing β, rather rapidly, limiting the time they sit near their initial parameters.
The ‘lrB’ simulations probe the collisionless, weakly collisional and Braginskii-MHD
regimes discussed in § 2.1.3 by keeping I � 0.4 approximately constant while changing
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Name β0 νc
L⊥
vA

N‖ × N2
⊥ I �WC

⊥
L⊥

�CL
⊥

L⊥
Passive? Notes

CL10 10 0 1120 × 5602 �0.4 N/A >1 � Refined from lrCL10; run for t ≈ L⊥/vA
B100 100 33 1120 × 5602 �0.4 � 1 � 0.03 � Refined from lrB100; run for t ≈ L⊥/vA
CL100 100 0 560 × 2802 �0.04 N/A >1 �
lrB30 30 10 400 × 2002 �0.4 >1 �0.2 �
lrB100 100 33 400 × 2002 �0.4 � 1 �0.03 �
lrB600 600 200 400 × 2002 �0.4 � 0.2 �0.002 �
lrCL0.2 0.2 0 400 × 2002 �10 N/A >1 �
lrCL1 1 0 400 × 2002 �4 N/A >1 �
lrCL3 3 0 400 × 2002 �1 N/A >1 �
lrCL10 10 0 400 × 2002 �0.4 N/A >1 �
lrCL30 30 0 400 × 2002 �0.1 N/A >1 �
lrCL100 100 0 400 × 2002 �0.04 N/A >1 �
CL10fh1.4 10 0 400 × 2002 �0.4 N/A >1 ✗ Reduced firehose limit ΛFH = 1.4

CL10Te3 10 0 400 × 2002 �0.4 N/A >1 ✗ Isothermal electrons,
Te

Ti0
= 0.6

CL10Te5 10 0 400 × 2002 �0.4 N/A >1 ✗ Isothermal electrons,
Te

Ti0
= 1.0

β16ν0 16 0 400 × 2002 �0.25 N/A >1 ✗

β16ν3 16 3 400 × 2002 �0.25 >1 �1 ✗

β16ν6 16 6 400 × 2002 �0.5 >1 �0.4 ✗

β16ν12 16 12 400 × 2002 �1 �1 �0.13 ✗

β16ν24 16 24 400 × 2002 �2 �0.4 �0.05 ✗

β16ν50 16 50 400 × 2002 �4 �0.13 �0.016 ✗

β16ν100 16 100 400 × 2002 �8 �0.04 �0.006 ✗

β16ν200 16 200 400 × 2002 �16 �0.016 �0.002 ✗

β16ν400 16 400 400 × 2002 �32 �0.006 �0.0007 ✗

TABLE 1. A list of all simulations used in this article. Key input parameters are β0 = 8πp0/B2
0

and L⊥νc/vA, where the subscript ‘0’ refers to an initial value (β decreases as B grows and
the turbulence causes ion heating). The interruption number I is computed from these initial
parameters using (2.19). The collisionality regime is specified via �WC

⊥ and �CL
⊥ , which are

the approximate scales below which motions transition into the weakly collisional regime
and collisionless regime, respectively. These are computed by equating νc/ωA(�⊥) = β1/2

and νc/ωA(�⊥) = 1, where ωA is estimated by (2πvA/L‖)(�⊥/L⊥)−2/3, as for a non-aligned
critically balanced cascade (Goldreich & Sridhar 1995; Schekochihin 2022). A turbulent eddy
of scale �⊥ is in the Braginskii-MHD regime for �⊥ � �WC

⊥ , in the weakly collisional regime
for �WC

⊥ � �⊥ � �CL
⊥ and in the collisionless regime for �⊥ � �CL

⊥ (see § 2.1.3). The ‘Passive?’
column indicates whether an otherwise identical passive-�p simulation was run for comparison
purposes. All simulations have L‖ = 2L⊥ and the energy-injection rate ε = 0.16v3

A/L⊥.

β0 and νc, with β0 ranging from 30 to 600 and νc ≈ 0.33β0L⊥/vA (see (2.19)). The
‘β16’ simulations, which do not have a matching set of passive runs, all have β0 = 16
and scan from the collisionless to the MHD regime in order to probe the approach to
collisional MHD and compare more directly with the solar wind and/or kinetic simulations
of A+22. Finally, we have carried out a number of simulations to test additional physical
effects, including the effect of finite electron temperatures and different microinstability
limiters.
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3.3. Diagnostics
3.3.1. Energy and rate-of-strain spectra

The spectrum of a field φ is defined as

Eφ(k) = 1
δk

∑
|k|=k

|φ̂(k)|2, (3.4)

where φ̂(k) is the Fourier transform of φ, |k| = k indicates a sum over all modes that
fall in the relevant bin of k =

√
k2

x + k2
y + k2

z or k⊥ =
√

k2
y + k2

z and δk is the width of the
bin. The spectra are computed using a fine, logarithmically spaced k or k⊥ grid, removing
the large-scale bins that do not contain any modes. Wavenumbers and spectra and are
plotted in units of L−1

⊥ and φ2L⊥ (for various φ), respectively, which will be omitted for
conciseness in most figures.

Useful measures of turbulence structure are the spectra of the parallel and perpendicular
rates of strain. These are formed via

∇‖u‖
.= b̂ib̂j∇iuj,

(∇‖u⊥)l
.= b̂i(δlj − b̂jb̂l)∇iuj,

(∇⊥u‖)l
.= (δli − b̂ib̂l)b̂j∇iuj,

(∇⊥u⊥)kl
.= (δki − b̂ib̂k)(δlj − b̂jb̂l)∇iuj,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.5)

with the spectrum of a vector or tensor (e.g. ∇‖u⊥) computed by summing the spectra of
each component. This gives a ∇⊥u⊥ spectrum that is nearly identical to the dissipation
spectrum (∇u spectrum). Note that ∇‖u‖ with this definition is exactly what must be
minimised to minimise the generation of pressure anisotropy.

We also consider pressure-anisotropy gradients defined in a similar way:

∇‖�p .= b̂ · ∇�p,

∇⊥�p .= (I − b̂b̂) · ∇�p.

}
(3.6)

These will prove useful to quantify the reduction in the pressure-anisotropy stress ∇ ·
(b̂b̂�p) compared with �p itself.

3.3.2. Structure functions
To diagnose the 3-D structure of turbulent eddies, we use three-point second-order

structure functions, conditioned on the angle between the point-separation vector and the
local field and/or the local perturbation. For any field φ, these are defined as

S2[φ](�) = 〈|φ(x + �) − 2φ(x) + φ(x − �)|2〉, (3.7)

with the average taken over all x.12 The separation vector � is conditioned on its angle
to B� = [B(x + �) + B(x) + B(x − �)]/3 to obtain parallel and perpendicular structure
functions (�‖ = b̂� · � and �⊥ = � − �‖b̂� with b̂�

.= B�/|B�|) (Cho & Lazarian 2009;
St-Onge et al. 2020). We also condition � on its direction with respect to the local field

12Note that the results from three-point structure-function measurements can be interpreted in the same way as those
of the more common two-point structure functions. But higher-point measurements have the ability to capture steeper
power-law scalings, similar in many ways to using wavelets (Cho & Lazarian 2009; Lovejoy & Schertzer 2012).
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and flow perturbations to study the alignment of the turbulent fluctuations (Boldyrev 2006;
Chen et al. 2012; Mallet, Schekochihin & Chandran 2015).

Following the computation of S2, a useful diagnostic of the turbulence structure is the
scale-dependent anisotropy �

φ

‖ (�⊥) for a given field φ. This is computed by solving the
equation S2[φ](�⊥) = S2[φ](�‖) using numerical interpolation.

3.3.3. Energy-transfer functions
Energy-transfer functions are defined as in Grete et al. (2017) and A+22. The transfer

function T AB
q→k measures the average transfer of energy from k-shell q to shell k due to the

interaction labelled AB. Here, k shells are defined by the Fourier-space filtering operation

φk(x) =
∑
|k|=k

φ̂(k) exp(ik · x), (3.8)

where φ̂(k) is the Fourier transform of some field φ(x), and |k| = k represents those
wavenumbers inside the logarithmic shell centred around k (i.e. ln k − 1

2 d ln k ≤ |k| <

ln k + 1
2 d ln k). Such a definition clearly satisfies the property φ(x) =∑k φk(x) and

represents the part of φ centred around wavenumber k. The label AB relates to the
influence of different terms in (2.1)–(2.5): e.g. kinetic energy can be transferred between
shells through the Reynolds stress in the momentum equation ρu · ∇u, with

T UU
q→k = −

∫
dx〈√ρu〉k · [u · ∇〈√ρu〉q], (3.9)

or magnetic energy can be transferred to kinetic energy through B · ∇B. Further details of
the specific transfer terms are given in § 4.4.

The full 2-D transfer functions can give useful information on the locality of the cascade,
but can be difficult to interpret quantitatively. Two useful reductions are the net energy
transfer

TAB(k) =
∑

q

T AB
q→k, (3.10)

and the flux
ΠAB(k) =

∑
q≤k

∑
p>k

T AB
q→p. (3.11)

The net transfer TAB(k) is the contribution of a given term AB in (2.1)–(2.5) to the rate of
change of the energy spectrum at a particular k (for example TUU(k) is the net contribution
to the kinetic-energy spectrum at k from the term ρu · ∇u). In the inertial range in steady
state, all terms should be zero because ∂tE(k) = 0, unless there is a continual transfer
of energy into or out of the particular shell or between terms (for example, a damping).
The flux ΠAB(k) quantifies the transfer of energy across a particular k, such that the
sum over all contributions AB measures the cascade rate. The interpretation of individual
terms is less obvious, but gives interesting information about the dominant energy-transfer
processes in the cascade (e.g. whether energy proceeds to smaller scales via transfers
between u and B, or due to transfers from larger scale u to smaller scale u directly).

4. Results

While the most astrophysically relevant consequences of magneto-immutability concern
turbulent heating, it is necessary first to understand the details of how the field and
flow self-organise to be magneto-immutable and how this characteristic manifests in the
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turbulence statistics. We thus start by diagnosing the basic effect of pressure-anisotropy
feedback by comparing PDFs and Fourier spectra of various fluctuations in the active-�p
simulations with those obtained in the passive-�p simulations (§§ 4.1 and 4.2). We
then consider the changes to the flow structure that are necessary in order to enable
these effects in § 4.3, before diagnosing the viscous heating and cascade efficiency using
energy-transfer functions in § 4.4. Overall, the results show that, aside from a small range
at the outer scale, magneto-immutability allows the system to set up a vigorous, nearly
conservative cascade that is in most respects similar to standard MHD.

4.1. Reduction of the pressure anisotropy
A central result – that changes to the pressure anisotropy are suppressed by its feedback
on the flow (magneto-immutability) – is illustrated in figures 1–4. Figure 1 shows the joint
PDF of β and p⊥/p‖ (the ‘Brazil plot’) for all simulations from the ‘lrCL’ and ‘lrB’ sets
(18 in all; see table 1). We compare the set of CGL-LF simulations (left-hand panel)
with the identical passive-�p simulations where the pressure-anisotropy feedback has
been suppressed (right-hand panel). This diagnostic, although only qualitative (the total
probability is normalised separately at each β value for illustrative purposes, but done so
identically for both simulation sets), clearly demonstrating the difference between the two.
In particular, we see that the force on the flow from the pressure anisotropy causes most
of the plasma to remain well within the microinstability limits. In contrast, the passive
case, without �p feedback, has most of the volume stuck at the microinstability limits (the
edges of the PDFs at high and low p⊥/p‖) because the turbulent fluctuations continuously
push the plasma to positive and negative �p. Similar results are demonstrated with a
snapshot of the CL10 simulation in figure 2, where we again compare the active- and
passive-�p simulations with otherwise identical parameters. While the perpendicular
flows are of similar magnitudes, indicating similar turbulent fluctuation levels (a,b), the
pressure-anisotropy variation (c,d) is much smaller in the presence of pressure-anisotropy
feedback. As a consequence, the variation in B = |B| is also suppressed: both �p and B
are driven by b̂b̂ : ∇u, so suppressing one suppresses the other (more fundamentally, �p
is driven by changes in B and ρ).

Figures 3 and 4 demonstrate the same ideas quantitatively, showing PDFs of 4π�p/B2

and B from the lrB simulation set in figure 3 (each with similar I ≈ 0.4) and from
the collisionless lrCL simulation set in figure 4 (covering I ≈ 0.04, at β0 = 100, to
I > 1, at β0 = 1). For each of the pressure-anisotropy PDFs (left-hand panels), we
indicate the volume fraction of the box that sits at the mirror or firehose thresholds as
a percentage (label colours match those of the curves, and the passive-�p cases are
the larger numbers listed in the upper part of each panel). The PDFs have qualitatively
different shapes between the active- and passive-�p simulations, with pressure-anisotropy
feedback causing �p/B2 to peak near zero in the active-�p runs, as opposed to being
nearly flat through the stable regions in the passive runs. As a consequence, the fraction
of the plasma that sits at the microinstability thresholds is strongly reduced due to the
pressure-anisotropy feedback on the flow. This fraction does increase modestly with
decreasing interruption number (increasing β0 in figure 4), but remains very small given
that �p/B2 is effectively forced across a wider range with decreasing I. We do not
see any significant change with νc across the lrB simulations (figure 3), all of which
have I ≈ 0.4, showing that the collisionality regime (collisionless, weakly collisional or
Braginskii MHD) is of subsidiary importance. One exception to this is the mean negative
�p in the collisionless cases, which becomes modestly more negative with increasing
β in collisionless simulations (figure 4), but is not seen in the weakly collisional or
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FIGURE 2. Visualisation of uz/vA (a,b), 4π�p/B2 (c,d) and B2 = |B|2 (e, f ) through an x–y
slice of the CL10 simulation with β0 = 10 and νc = 0 (I ≈ 0.4). (a,c,e) show the active-�p run
(which solves (2.1)–(2.5)), and (b,d, f ) show the passive-�p run, in which the ∇ · (b̂b̂�p) force
was artificially removed. While the fluctuations in uz look rather similar (i.e. the turbulence has
a similar amplitude), magneto-immutability significantly reduces the variation in B and �p in
the active-�p run. Note that −1 < 4π�p/B2 < 1/2 is enforced by the limiters in both runs.

Braginskii regimes because the bulk νc also depletes any mean �p that might otherwise
develop. As discussed in A+22, this feature is likely related to turbulent heating occurring
predominantly in the parallel direction via Landau damping (as approximated by the
Landau-fluid closure). In figure 4, we also test the effect of a reduced firehose limit
ΛFH = 1.4, which is likely a better approximation for scattering from kinetic oblique
firehose modes at very large scale separations L⊥/ρi (see § 3.1.2; Bott et al. 2021). This
increases the proportion of the domain at the limiter thresholds (as expected, since the
range between them is smaller) and decreases the mean |�p|. The latter effect suggests that
the asymmetry of the microinstability limits (i.e. the fact that ΛFH > ΛM) also contributes
to the mean pressure anisotropy, but modest changes to ΛFH do not seem to lead to any
other qualitatively important changes, so we will not consider this further.

4.1.1. Turbulent energy
While the results shown in figures 1–4 clearly demonstrate the significant impact of

the pressure-anisotropy feedback on the statistics of B and �p, it is important to confirm
that this does not occur purely as a result of the viscous damping of those motions that
would otherwise drive significant �p. Because all simulations are driven with the same
energy-injection rate ε, the simplest diagnostic of this is the turbulent fluctuation energy,
which is shown in figure 5 for the lrCL runs (we plot EK⊥ + EM⊥

.= ∫ dx (ρ|u⊥|2 +
|B⊥|2/4π)/2, which includes only the fluctuating y and z components of u and B). A
fluctuation energy that decreased with decreasing I would imply a cascade efficiency that
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(a) (b)

FIGURE 3. Left panel: PDFs of 4π�p/B2 in the lrB simulation set, which explores the
collisionless, weakly collisional and Braginskii regimes at fixed I ≈ 0.4 (see § 3.2). Active-�p
simulations are shown with solid lines and passive-�p simulations with dashed lines. The
percentages shown on the left and right sides of the panel indicate the proportions (in volume) of
each simulation that lie at the firehose and mirror thresholds, respectively (colours match the line
styles; the larger numbers in the upper part of the plot are for the passive simulations). The effect
of pressure anisotropy is relatively strong; only a few per cent of the box lies at the mirror/firehose
thresholds in the active-�p cases, while ∼50 % of the box lies beyond these thresholds when �p
has no effect on the flow. Right panel: PDFs of B = |B| for the same simulations. In active-�p
cases, we see a factor-of-a-few decrease in the variance of B (hence, ‘magneto-immutability’),
which does not depend strongly on the regime of collisionality.

(a) (b)

FIGURE 4. Same as in figure 3 but for the lrCL series of collisionless simulations with varying
interruption number (see § 3.2). For very small interruption numbers (e.g. in the simulation with
β0 = 100, νc = 0, I � 0.04), the proportion of the box at the mirror/firehose thresholds is larger
(�5 %) because it is naturally driven to much larger values by the dynamics (cf. the passive
simulation shown with the black dashed line). We also include a simulation with ΛFH = 1.4 for
comparison, to explore the possible effect of kinetic oblique firehose modes limiting �p before
the fluid firehose threshold (see § 3.1.2).
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(a) (b)

FIGURE 5. Time evolution of the total perpendicular energy (a) and the Alfvén ratio rA =√
ΘEM⊥/EK⊥ (b) for the lrCL set of collisionless simulations with varying interruption number.

Note that rA defined in this way (with Θ computed as a volume average) accounts for the effect
of the mean pressure anisotropy on Alfvénic fluctuations (see (2.11)). The dotted lines in each
panel show the ‘expected’ values assuming δu⊥/vA = δB⊥/B0 = 1/2: EK⊥ + EM⊥ = Vρ0v

2
A/4

and rA = 1. We see that the bulk properties of collisionless turbulence are rather similar to
standard MHD, even for I � 1.

decreased with I, as would be naïvely expected if fluctuations were increasingly strongly
damped above the interruption limit (see § 2.2). Instead, we see in figure 5(a) that such
a decrease is quite small (compare, e.g. the active and passive cases at β0 = 10), with
a similar steady-state energy reached even at β0 = 100 (the lowest I that we explore).
Thus, we see that there is only modest viscous damping of pressure-anisotropy-generating
fluctuations, a feature that we explore in greater depth below. Note that, in contrast, a single
linearly polarised shear-Alfvén wave with similar amplitude would be strongly damped
under these conditions because its fluctuations are confined to the plane set by the initial
conditions and so it cannot rearrange itself to avoid generating large pressure anisotropies
(Squire et al. (2016); S+19).

Figure 5(b) shows the Alfvén ratio, rA = √
ΘEM⊥/EK⊥, for some of the simulations.

This should be approximately unity for Alfvénic turbulence. The time-dependent
box-averaged mean anisotropy parameter Θ is included in rA because an Alfvén wave
satisfies δB⊥ = δu⊥

√
4πρ/Θ in the presence of a mean pressure anisotropy �p (see

§ 2.1.2; we set Θ = 1 for the passive simulation). Figure 5 shows that, after accounting
for the change in the Alfvén ratio due to variation of the mean �p with I (see figure 4),
the bulk properties of the turbulence are rather similar to MHD, with just a slight excess
of magnetic energy (also observed in MHD; see, e.g. Müller & Grappin 2005; Chen et al.
2013).

4.2. Alfvénic turbulence structure
We now diagnose the structure of the Alfvénic fluctuations in more detail, with the goal
of understanding the similarities and differences between turbulence in high-β, weakly
collisional plasmas and turbulence in standard MHD (Schekochihin 2022). We will see
that the basic statistics of the flow and magnetic field are surprisingly similar to MHD.
More detailed diagnostics, which focus on compressive fields and components of the
rate-of-strain tensor (see § 4.3), are needed to reveal the changes to the turbulent flow
structure that enable the suppression of �p discussed in § 4.1.

4.2.1. Turbulent energy spectra at I � 1
Figure 6 shows the kinetic (blue lines) and magnetic (red lines) spectra obtained in the

CL10, B100 and CL100 simulations, again comparing active-�p simulations (solid lines)
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with the passive-�p simulations (dashed lines; note that this case is just isothermal MHD
for velocity and magnetic fluctuations). The purpose of this comparison is to exhibit the
extremely similar spectra in each case, demonstrating that vigorous turbulence survives
even when the expected damping from pressure anisotropy is strong across a wide range
of scales starting at the outer scale (as is the case for all three simulations shown here since
I < 1). A careful examination reveals minor differences caused by the pressure-anisotropy
feedback, in particular a slight steepening of the kinetic-energy spectrum compared with
MHD. In all cases the magnetic spectra exhibit a scaling that is flatter than ∼k−5/3

⊥ and
closer to ∼k−3/2

⊥ (shown with the dashed lines), although the exact slopes vary somewhat
across the inertial range. We shall study the eddies’ 3-D structure and dynamic alignment
in § 4.2.2.

Similar information in a different form is shown in figure 7. We integrate the spectra to
obtain the scale-dependent amplitudes

δB⊥(k⊥)2 = 2
V

∫ ∞

k⊥
dk′

⊥EM⊥(k′
⊥), δu⊥(k⊥)2 = 2

Vρ0

∫ ∞

k⊥
dk′

⊥ EK⊥(k′
⊥), (4.1a,b)

and then use these to compute the scale-dependent interruption number (see (2.19))

I(k⊥) =
(

β
δB⊥
B0

δu⊥
vA

)−1

max
(

1,
νc

ωA

)
(4.2)

(we ignore the effect of the mean Θ on vA and ωA, as it does not make a significant
difference for these qualitative estimates). Here ωA should be considered a function of

scale as per critical balance, so we use ωA(k⊥) = k⊥
√

δu⊥δB⊥/ρ
1/2
0 . We see that, while the

estimated local interruption number is slightly larger for the CGL-LF simulations, because
the turbulence amplitudes are modestly smaller, I(k⊥) nonetheless remains �1 throughout
a wide portion of the turbulent cascade in each case. Since the damping rate of a linearly
polarised Alfvénic perturbation is comparable to its frequency for I � 1 (i.e. for amplitude
δB⊥/B0 � β−1/2 max[1, (νc/ωA)

1/2]), but the turbulent fluctuations exceed this amplitude
throughout most scales of the simulations, the implication is that the fluctuations must
be avoiding those motions that would cause strong damping in order for the cascade to
proceed as observed. Also of note is the difference between the collisionless and weakly
collisional regimes, as shown by the effectively flat I(k⊥) for the B100 simulation up
to k⊥ ≈ 100. This occurs because when ωA � νc (the weakly collisional and Braginskii
MHD regimes; see § 2.1.3), the increasing frequency of the motions towards smaller scales
cancels their decreasing amplitudes, conspiring to keep ωAδu⊥δB⊥ approximately constant
through the inertial range (see § 2.2.3). This breaks down once ωA � νc, which happens
here for k⊥L⊥ � 100, around the expected scale based on the parameters (see table 1).
Below this, I increases at smaller scales since the turbulent eddies are fast enough to be
effectively collisionless.

4.2.2. Three-dimensional anisotropy and alignment
Many previous works have studied the 3-D statistical structure of eddies in MHD

turbulence, which has important implications for the cascade rate and intermittency (see
Schekochihin (2022), and references therein). Starting with Boldyrev (2006), these have
argued that eddies become increasingly ‘dynamically aligned’ towards smaller scales,
evolving into elongated sheet-like structures satisfying �‖ � ξ � λ (where �‖, ξ and λ
are the eddy’s correlation lengths in the field-parallel direction, in the direction of the
turbulent fluctuation, and in the mutually perpendicular direction, respectively). Motivated
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(a)

(b)

(c)

FIGURE 6. Kinetic (blue) and magnetic (red) energy spectra for simulations CL10, B100 and
CL100, as labelled. Solid lines show CGL-LF (active-�p) simulations, and dashed lines show
isothermal MHD (passive-�p) simulations. The dotted black lines indicate slopes of k−3/2

⊥ ,
k−5/3
⊥ and k−2

⊥ for comparison. We see spectra broadly consistent with a k−3/2
⊥ scaling, although

velocity spectra are steepened modestly by the effect of pressure anisotropy in the active-�p
runs (however, they are clearly flatter than the ∝k−2

⊥ spectrum observed in the hybrid-kinetic
simulations of A+22). This demonstrates that vigorous turbulence, broadly resembling MHD, is
maintained even when the feedback from the pressure anisotropy is strong (I < 1 in all cases).
Note that the cutoff of the spectra at relatively larger scales seen in CL100 is simply a result of
that run’s lower numerical resolution.

by its utility as a sensitive diagnostic of the Alfvénic fluctuations’ structure, in figure 8 we
illustrate the 3-D anisotropy of the CL10 simulations, computed using three-point structure
functions (§ 3.3.2). In the left panel, we show the directionally conditioned structure
functions of Z±

⊥ = Z± − b̂(b̂ · Z±). Here, Z± = u ± vA and vA is the local Alfvén speed
vA,eff = BΘ1/2(4πρ)−1/2, with Θ and ρ evaluated using their local three-point average
(Θ = 1 for the passive simulation). The colours show different directions of the separation
vector � = (λ, ξ, �‖), with �‖ applying to separations within 15◦ of the local b̂, ξ to
separations that are perpendicular (>45◦) to b̂ and are within 15◦ of the direction of
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FIGURE 7. ‘Local’ interruption number defined by (4.2) (see also § 2.2.3). We show the three
active-�p simulations whose spectra are given in figure 6, comparing with the passive (MHD)
runs with dashed lines. In the B100 simulation (β0 = 100, νc = 33vA/L⊥), ωA depends on scale

as per critical balance, ωA = k
√

δu⊥δB⊥/ρ
1/2
0 , which causes a slower increase in I with scale.

Clearly, I(k⊥) � 1 across a reasonable range in each simulation, indicating that much larger
pressure anisotropies would be created without dynamic feedback from �p (as is the case for the
passive simulations).

the local increment of Z∓
⊥

13 and λ to separations that are perpendicular to both b̂ and
the Z∓

⊥ increment (note that we use Z∓ to define the directions of Z± because nonlinear
interactions are controlled by the opposite Elsässer variable). We see results that are quite
similar to standard MHD turbulence (dashed lines), with S2 flatter in the λ direction
than in the ξ direction, and broadly consistent with (though modestly steeper than) the
dynamically aligned MHD-turbulence scalings S2 ∼ λ1/2, S2 ∼ ξ 2/3, S2 ∼ �1

‖ indicated
by the dotted lines (Boldyrev 2006; Mallet et al. 2015). The right panel compares
the parallel–perpendicular anisotropy of eddies measured from different quantities in
the turbulence. As seen in the left panel, the Alfvénic eddies are relatively similar to
isothermal MHD, with �‖ ∼ �

1/2
⊥ as expected for an aligned cascade. However, while in

MHD the compressive quantities u‖ and p = Tiρ seem to scale as �‖ ∼ �
2/3
⊥ , suggesting

such fluctuations are unaligned and passively mixed by the critically balanced Alfvénic
cascade (Lithwick & Goldreich 2001; Schekochihin et al. 2009; Chen et al. 2012), the
compressive fields in CGL-LF turbulence scale quite differently, with p‖ and u‖ having
nearly constant anisotropy �‖ � 5�⊥ throughout the entire box. This provides the first hint
of the differences caused by magneto-immutability, which will be discussed in more detail
in the next section (§ 4.3).

4.3. The rearrangement of flows and fields in magneto-immutable turbulence
Figures 6–8 show that the CGL-LF system can sustain random, turbulent-like motions
across a wide range of scales, even when those motions might be expected to be strongly
damped by the effects of pressure anisotropy. The properties of the kinetic and magnetic
fluctuations appear broadly similar to standard MHD, including relatively detailed
measures such as the scale-dependent anisotropy and eddy-alignment intermittency. In
this section, we focus on the differences compared with MHD, understanding how the
turbulent cascade rearranges itself due to the pressure-anisotropy stress. We first present
the numerical results, then speculate on theoretical explanations in § 4.3.3.

13The choice of 15◦ to define a ‘parallel’ fluctuation is arbitrary. Any value below �20◦ gives similar results (Chen
et al. 2012), although smaller values give fewer point-separation pairs and thus noisier results.
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(a) (b)

FIGURE 8. Structure functions in the β0 = 10, νc = 0 simulations. The left panel shows
(3-point) second-order structure functions of Z±

⊥ (see § 3.3.2) with increments taken along the
field (blue; �‖), parallel to the local fluctuation in the opposite Elsässer variable Z∓

⊥ (ξ ; red),
and perpendicular to the local fluctuation in Z∓

⊥ (λ; black). Solid and dashed lines show the
active-�p and passive-�p cases, respectively, with all length scales normalised to L⊥. The
scalings are very similar in both active and passive runs, and are broadly consistent with the
expected λ1/2, ξ2/3 and �1

‖ scalings of dynamic alignment (shown with dotted black lines). The
right-hand panel shows the measured �‖(�⊥) for the same simulation, which is computed from
the second-order structure functions of a variety of different quantities as labelled (this provides
a measure of the average shape of an eddy for different variables). While Z±

⊥ and p⊥ show
the expected scale-dependent anisotropy �‖ ∼ �

1/2
⊥ of a dynamically aligned cascade, p‖ and u‖

have nearly constant anisotropy �‖ ∼ 5�⊥ throughout the inertial range. This differs from MHD
(dashed lines), where u‖ and p seem to follow �‖ ∼ �

2/3
⊥ , as expected for non-aligned eddies in a

critically balanced cascade.

4.3.1. Pressure statistics
Let us first examine the spectra of pressure fluctuations, which are shown in figure 9,

again comparing active- and passive-�p for the CL10, B100 and CL100 simulations. Here,
unlike for the kinetic- and magnetic-energy spectra, we see substantial differences due to
the feedback of �p on the flow. The most obvious feature is the significant reduction and
steepening of the pressure spectra in all active-�p runs. While the passive-�p simulations
have quite flat spectra – approximately ∝k−1

⊥ in B100 and yet flatter in the collisionless
simulations – all three active cases exhibit pressure spectra ∝k−5/3

⊥ across a reasonable
range near the outer scales. Notably, the latter is in agreement with the hybrid-kinetic
simulations of A+22, providing evidence that similar physics operates in their more
realistic simulations. The steepening of pressure spectra due to the pressure-anisotropy
feedback is clear evidence of the modified flow structure in the active-�p cases, despite
their similar velocity spectra.

Another interesting feature of the active-�p pressure spectra is that E�p ∼ Ep‖ � Ep⊥ ,
while in the passive runs the difference between Ep‖ and Ep⊥ is far less pronounced
(particularly for B100, where Ep‖ ∼ Ep⊥ , as might be naïvely expected).14 This feature
was also clearly observed in the hybrid-kinetic simulations of A+22. As discussed in
more detail in § 4.3.3 and in A+22, it likely results from perpendicular pressure balance

14In the passive-�p collisionless simulations δp‖ ≈ 2δp⊥ (Ep‖ ≈ 4Ep⊥ ). This ratio can be explained simply by the
fact that p‖ is driven by −2b̂b̂ : ∇u, while p⊥ is driven by b̂b̂ : ∇u (see (2.4)–(2.5)).
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(a)

(b)

(c)

FIGURE 9. Spectra of �p (purple lines), p⊥ (green lines), p‖ (yellow lines) and the magnetic
pressure B2/8π (grey lines) for the same simulations as in figure 6, and again with the
passive-�p simulations shown with dashed lines. The dotted lines indicate the spectral scalings
E ∝ k−1

⊥ and E ∝ k−5/3
⊥ (see § 4.3.3 for discussion). We see a significant difference between

active- and passive-�p cases, with E�p ∼ Ep‖ � Ep⊥ observed most clearly in the active-�p
simulations (and, to a lesser degree, collisionless cases). The active-�p spectra bear encouraging
resemblance to those seen in the hybrid-kinetic simulations of A+22.

between ∇p⊥ and the magnetic pressure ∇B2/8π, while p‖ is driven more strongly by
b̂b̂ : ∇u, thus dominating �p. The basic feature seems generic to anisotropic collisionless
(CGL) dynamics, occurring because δp⊥ remains highly constrained by perpendicular
pressure balance, while δp‖ is not, affecting the plasma only through the parallel force
(see Appendix A.1.2 for a simple linear calculation to illustrate the effect). We provide
evidence for the scenario in figure 9 by plotting the spectra of the magnetic pressure
EB2/8π (grey lines), which matches Ep⊥ very well below the forcing scales. In the CL10
simulation, where the feedback of the pressure anisotropy is only important at larger
scales because I(k⊥) increases to �1 at small scales (see figure 7), the feature reverses to
Ep‖ � Ep⊥ > E�p for k⊥ � 200 (there is no similar reversal for the passive-�p simulation).
This is presumably the signature pressure-anisotropy feedback becoming subdominant
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(i.e. magneto-immutability no longer being important) once the driving of �p via b̂b̂ : ∇u
becomes subdominant to standard MHD effects (the perpendicular pressure balance). We
see hints that similar behaviour would occur in B100 and CL100, but at smaller scales
than in CL10 (as expected), which unfortunately are unresolved in these simulations.
Overall, the general similarity of the active-�p spectra, but not the passive-�p spectra,
to the large-scale hybrid-kinetic results of A+22 is encouraging for the applicability of
the CGL-LF model.

4.3.2. Rate-of-strain spectra
Given that the pressure anisotropy is driven by the plasma motions, the

pressure-anisotropy feedback must be driving important changes in the flow and
magnetic-field structure, despite having only a small influence on the kinetic-energy
spectrum (figure 6). We diagnose this in figure 10 via the spectra of the local rates of
strain, as defined in § 3.3.1. These reveal the expected substantial suppression of ∇‖u‖ =
b̂b̂ : ∇u by the pressure-anisotropy feedback, as needed to suppress the turbulently driven
fluctuations in �p and B. Of some interest is the comparison of ∇‖u‖ with ∇⊥u‖ and
∇‖u⊥, with neither of the latter two significantly suppressed. This demonstrates that the
system does not reduce b̂b̂ : ∇u purely via a reduction in field-parallel flows, or via
the reduction of field-parallel gradients, but through the combination of the two. We
see broadly similar features in the collisionless (CL10) and weakly collisional (B100)
regimes, with the approximate spectral scalings E∇⊥u⊥ ∝ k1/3

⊥ , E∇⊥u‖ ∝ k1/3
⊥ , E∇‖u⊥ ∝ k−1/3

⊥
and E∇‖u‖ ∝ k−1/3

⊥ for both the active- and passive-�p simulations. As discussed below
(§ 4.3.3), the relatively flat E∇‖u‖ scaling may be a signature of some form of cascade of
compressive fluctuations, since a b̂b̂ : ∇u spectrum that is dominated by linearly polarised
Alfvénic fluctuations would be naïvely expected to scale as ∼k−1

⊥ . The most interesting
difference between the collisionless and weakly collisional spectra is the closer-to-constant
offset between the active and passive ∇‖u‖ spectra in the weakly collisional case (i.e. the
modestly steeper ∇‖u‖ spectrum in B100), which may be a result of the pressure-anisotropy
feedback being approximately constant across scales when ωA < νc, rather than being
dominated by the outer scale (see figure 7).

The lower panels in figure 10 show spectra of gradients of the pressure anisotropy. As is
clear from the u evolution (2.2), it is not the pressure anisotropy itself that feeds back on
the flow, but only its divergence

∇ · (b̂b̂�p) = b̂∇‖�p − b̂�p∇‖ ln B + �pb̂ · ∇b̂. (4.3)

Computing each of these terms separately, one finds that ∇‖�p is larger than the other
terms, and there are no significant correlations between the different terms. Thus, if an
active-�p run exhibits a lower ratio of ∇‖�p to ∇⊥�p than an equivalent passive-�p
run, this signifies that the effect of pressure anisotropy on the flow, ∇ · (b̂b̂�p), is reduced
beyond what would be assumed by just looking at the variance of �p or ∇‖u‖. We see from
figure 10 that this is indeed the case, viz. there is a secondary mechanism – the turbulence
reduces ∇ · (b̂b̂�p) beyond just �p (or ∇�p) – which will further suppress the damping
of plasma motions by pressure anisotropy.

We have examined a wide variety of correlations between the different terms that drive
the pressure-anisotropy evolution (2.12). For example, one might imagine that a positive
correlation between b̂b̂ : ∇u and ∇ · u would aid in reducing �p generation, particularly
at lower β (see (2.13)); or similarly for correlations between the heat fluxes and other
terms in the �p evolution (2.12). However, directly comparing such measures between the
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(a) (b)

FIGURE 10. Rate-of-strain and pressure-gradient spectra in the CL10 and B100 simulations (left
and right panels, respectively). Dashed lines show the equivalent passive-�p runs, while the
colours indicate the specific strain direction considered. Details and definitions are described in
§ 3.3.1 (see (3.5) and (3.6)); the dotted black lines indicate the ∼k1/3

⊥ , ∼k−1/3
⊥ and k−1

⊥ scalings
(see text). While ∇⊥u⊥, ∇⊥u‖ and ∇‖u⊥ are each relatively similar in active- and passive-�p
runs, ∇‖u‖ = b̂b̂ : ∇u, which is responsible for the creation of �p, is markedly reduced when
�p is active. Note that neither ∇‖u⊥ nor ∇⊥u‖ is similarly reduced, showing that the effect is
not just a reduction in u‖ or in ∇‖. The bottom panels show that ∇‖�p is suppressed more than
∇⊥�p in active-�p turbulence, which is a signal that the pressure-anisotropy stress is reduced
beyond just the reduction in the variance of �p, viz., ∇ · (b̂b̂�p)/�prms is smaller in active-�p
than in passive-�p turbulence.

active- and passive-�p simulations has not yielded any further effects that are worthy of
note, so we do not discuss these here.

4.3.3. Possible theoretical interpretation
In this section we speculate on possible phenomenologies that could explain the

observed pressure and rate-of-strain spectra in the inertial range below the forcing scales.
We examine two qualitatively different possibilities: the first is that the pressures and b̂b̂ :
∇u are dominated by the residual magnetic-field variation that arises from a collection
of linearly polarised Alfvénic fluctuations; the second is that they are dominated by a
cascade of compressive fluctuations, which is set up around the forcing scales as the
system rearranges itself. In the first scenario, the �p and B2 spectra are the residual local
‘left-overs’ that cannot quite be eliminated by magneto-immutability; in the second, they
are diagnosing another type of cascade or mixing of larger-scale fluctuations, similar to the
passive slow-mode cascade in reduced MHD or gyrokinetics (Schekochihin et al. (2009),
Kunz et al. (2015) and Meyrand et al. (2019); however, unlike these gyrokinetic cases, the
compressive and Alfvénic cascades could lack individually conserved invariants, meaning
the distinction between them may be less precise than implied above).15 Motivated by the
observation in figure 9 that Ep‖ � Ep⊥ , we will imagine the compressive cascade to consist

15Note that the theory of Kunz et al. (2015, 2018) applies in the presence of a mean pressure anisotropy, but not
when the fluctuations themselves contribute to a dynamically important �p, as is the case for turbulence with I � 1.
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of oblique slow-magnetosonic-like modes,16 which, because they maintain perpendicular
pressure balance, satisfy δp⊥ � δp‖. This property causes the mode’s frequency to scale
as k‖vth, rather than k‖vA (as for the MHD slow mode), as well as leading to significant
damping by heat fluxes and/or collisions. Further details are given in Appendix A.1.2 and
Majeski et al. (2023).

Let us examine predictions for the rate-of-strain and pressure spectra for each possibility
in turn, starting with the idea that finite-amplitude Alfvénic fluctuations dominate. In
this case, a simple estimate for the spectrum of b̂b̂ : ∇u comes from (2.13), using
b̂b̂ : ∇u ≈ (1/2)B−2

0 d(δB2
⊥)/dt ∼ ωAδB2

⊥/B2
0. For a critically balanced Goldreich–Sridhar

cascade (δB⊥ ∝ k−1/3
⊥ , ωA ∝ k2/3

⊥ ), this suggests that b̂b̂ : ∇u ∼ k0
⊥, or a b̂b̂ : ∇u spectrum

E∇‖u‖ ∝ k−1
⊥ , which is clearly significantly steeper than observed (cf. the steepest dotted

line in figure 10). However, this prediction is less rigorous than it seems because ignores
the influence of magneto-immutability: larger δB⊥, with larger local I(k⊥), will be
more affected by �p forces, thus reducing b̂b̂ : ∇u below ωAδB2

⊥/B2
0 and flattening its

spectrum, perhaps to what is observed. However, the most straightforward estimate for
this effect – that magneto-immutability would lead to �p fluctuations of approximately
constant dynamical importance across scale (see § 2.2.3) – would suggest δ�p ∝ B2

0
or E�p ∼ Ep‖ ∼ k−1

⊥ , which also does not agree with what is observed (figure 9). So,
there is no obvious phenomenological explanation for the measured spectral slopes
within this framework. As described above, the observation that δp⊥ � δp‖ can be
naturally explained by postulating that the finite-amplitude Alfvénic fluctuations are
in perpendicular pressure balance with the magnetic-field-strength fluctuations, δp⊥ ∼
δ(B2) (as observed in figure 9). Because δp‖ is instead driven by b̂b̂ : ∇u to δp‖ ∼
β max(1, ωA/νc)δ(B2) � δ(B2), this suggests that δ�p ∼ δp‖ � δp⊥.

The other possibility – a compressive magnetosonic cascade – more naturally explains
some spectral features, but appears to disagree with other key properties. Its most
problematic aspect is that oblique CGL magnetosonic slow waves satisfy δp‖/δp⊥ ≈
(5β + 6)/2 (see Appendix A.1.2), a far larger ratio than what is observed in all three
simulations shown in figure 9.17 Furthermore, although the observed ratio δp‖/δp⊥
increases modestly with β, the increase is far slower than the predicted linear dependence,
which, for example, would yield Ep‖/Ep⊥ ∼ 1000 in the CL100 simulation. This suggests
that at least some other component or complication is necessary to decrease δp‖/δp⊥ well
below the linear prediction to match the simulations. On the other hand, the observed
spectral scalings of the rates of strain and pressure seem to be most naturally explained
via a compressive cascade: if one postulates u‖ ∝ u⊥ ∼ k−1/3

⊥ (assuming the compressive
and Alfvénic cascades scale similarly), b̂b̂ : ∇u should scale as ∼k‖u‖ ∝ k1/3

⊥ , giving
E∇‖u‖ ∝ k−1/3

⊥ , which is close to what is seen in figure 10. Predicted scalings of the other
rates of strain (∇‖u⊥ ∝ k1/3

⊥ , ∇⊥u‖ ∝ k2/3
⊥ and ∇⊥u⊥ ∝ k2/3

⊥ ) are also consistent with
what is observed, being the same as what is expected for passive slow-mode cascade
in isothermal MHD (and indeed, the passive-�p rates of strain exhibit similar scalings
in figure 10). In this scenario, pressure spectra would result predominantly from the
passive mixing of larger-scale fluctuations, as opposed to local driving by b̂b̂ : ∇u, which
also naturally yields the observed scaling Ep‖ ∝ Ep⊥ ∼ k−5/3

⊥ through the inertial range

16Another possibility, a cascade of non-propagating modes, seems to be ruled out immediately because these modes
satisfy δp⊥ > δp‖ at high β (Schekochihin et al. 2009; Majeski et al. 2023).

17Heat fluxes and collisions modify δp‖/δp⊥ modestly, but the predicted ratio remains far too large to match figure 9
in all relevant regimes.
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where u⊥ ∼ k−1/3
⊥ , as well as explaining the similarity of the collisionless and weakly

collisional simulations. Another interesting observation is the long parallel scale of p‖
and u‖ fluctuations (see �‖(λ) in figure 8b), which would be expected if for some reason
the frequencies of Alfvénic and compressive fluctuations were matched around the outer
scale.

Overall, we see a plausible agreement of the Alfvénic hypothesis with most diagnostics,
although its predictions remain too qualitative to say much of substance. Its biggest flaw
is the similarity of the collisionless and weakly collisional rate-of-strain and pressure
spectra, which argues against pressure fluctuations being driven locally in scale by
b̂b̂ : ∇u. A compressive cascade alone cannot explain the observed spectra because the
δp‖/δp⊥ ratio characteristic of linear slow-mode fluctuations is too large to fit the data
(particularly the dependence on β); however, we cannot rule out their importance in some
form (e.g. if δp⊥ was dominated by residual Alfvénic fluctuations), and various other
properties, particularly spectral scalings, seem to be more naturally explained via the
compressive-cascade hypothesis. Clearly, more work is needed to make further progress.

4.4. Heating and energy fluxes
Perhaps the most interesting and macroscopically relevant impact of the pressure-
anisotropy reduction through magneto-immutability is the suppression of viscous
(pressure-anisotropy) heating that it entails. As discussed above, the effect implies that
viscous damping is suppressed compared with naïve estimates for individual Alfvénic
perturbations of similar amplitudes to the observed turbulent fluctuations, leading to
a larger turbulent-cascade efficiency, with more energy transferred to small scales.
Consequently, a larger fraction of the heating will occur through processes mediated
by the small-scale turbulent cascade (e.g. Landau damping and nonlinear phase mixing
around the ion gyroscale; Schekochihin et al. 2009; Kunz et al. 2018), as opposed to
viscous damping of outer-scale eddies. These different heating mechanisms could in
turn could have important thermodynamic consequences, modifying, for instance, the
perpendicular-to-parallel ion heating fraction, or the ion-to-electron heating fraction.

In this section, we quantify these ideas by measuring directly the turbulent transfers
and fluxes between scales. This allows us to measure the local damping due to
pressure anisotropy across each scale in the cascade, and to determine the cascade
efficiency by measuring the fraction of input energy that is lost into heat near the
outer scale. This will again highlight a large difference between active- and passive-�p
simulations, demonstrating that magneto-immutable turbulence is effectively conservative
(no damping) below the outer scale.

4.4.1. Energy transfers and fluxes
As discussed in § 3.3.3, the turbulence energetics can be usefully quantified using

‘transfer functions’ T AB
q→k, which measure the energy transfer between shells in Fourier

space due to different types of nonlinear interactions. Each of these transfers can involve
several terms in the compressible system, so, as detailed in Grete et al. (2017), we combine
relevant compressive terms into the non-compressive terms in order to reduce the number
of quantities under consideration. The compressive terms are all individually very small
and do not show interesting features, although they are necessary to include in order to
respect energy conservation. Their full forms, as we compute them, are as defined in
Grete et al. (2017), but we simply use the placeholder CAB to refer to them below. We follow
Grete et al. (2017) in our nomenclature; AB = UU refers to the transfer between shells of
the kinetic energy through u · ∇u + CUU (see (3.9)), AB = BU refers to the transfer from
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magnetic to kinetic energy through B · ∇B + CBU, AB = UB refers to the transfer from
kinetic to magnetic energy through B · ∇u + CUB, AB = BB refers to the transfer between
shells of the magnetic energy through B · ∇B + CBB, AB = �pU refers to the transfer
from the kinetic to thermal energy via the pressure anisotropy through ∇ · (b̂b̂�p) (see
below) and AB = F U refers to the transfer to kinetic energy from the external forcing.18

We compute transfers as a function of the isotropic k as opposed to k⊥, but results versus
k⊥ are similar.

As introduced in A+22, the only important new term compared with Grete et al. (2017)
is that due to the pressure-anisotropy stress T �pU

q→k . There is some freedom in the definition
of this; A+22 use

T �pU
q→k =

∫
dx
〈√

ρu
〉
k · sign(�p)

√|�p|
B

B√
4πρ

· ∇〈
√

|�p|b̂〉q, (4.4)

which has the advantage that the square of 〈√|�p|b̂〉k can be interpreted as the pressure
anisotropy’s contribution to the thermal energy (Kunz et al. 2015), but the disadvantage of
sign discontinuities that arise from

√|�p|. If we instead interpret the pressure-anisotropy
stress as a damping of kinetic energy (as opposed to the transfer between energy reservoirs)
a more natural definition is

T �pU
q→k =

∫
dx
〈√

ρu
〉
k · B√

4πρ
· ∇
〈
�p
B2

B
〉

q

. (4.5)

We have computed both versions, finding qualitatively similar results, but will focus on
(4.5), because it fits more naturally with our focus on pressure-anisotropy damping. Note
also that the influence of the sign-discontinuity issue of (4.4) was mitigated in A+22
because the �p distribution was mostly confined to negative values, but the spread of �p
is somewhat broader in our simulations (see figures 3 and 4).

In figure 11, we plot the net energy transfers TAB(k) (see (3.10)), which measure the
net contribution from each term to the rate of change of the kinetic- or magnetic-energy
spectrum at each k. For a conservative cascade, these are zero, because the transfer into
a given shell from larger scales is balanced by the transfer out of the shell to smaller
scales. Thus, TAB(k) provides a direct measure of the damping of kinetic or magnetic
energy at each scale due to pressure anisotropy or other terms. To plot the results clearly,
we normalise TAB(k) by the dimensional (Kolmogorov) estimate ∂tE ∼ kukE ∼ ε(k/k0)

−1

(where k0 = 2π/L⊥); with this normalisation, a line that is constant and non-zero with
k symbolises a contribution that is of approximately constant importance compared a
conservative cascade towards smaller scales. As above, we show the CL10 and B100
simulations, comparing with the results from the corresponding passive-�p simulations
(lower subpanels). The thick black lines, which show the sum of all terms (excluding T�pU

for the passive runs), are approximately zero throughout the inertial range, as expected,
with no clear difference between the active and passive runs. While the contribution
from T�pU is slightly negative in both CL10 and B100, indicating a slight damping of
inertial-range motions, it is small compared with the cascade rate. Contrast this to the
equivalent T�pU from the passive simulations, which gives an indication of what the
damping would be in the absence of feedback from �p. Although this measurement is
counterfactual – the cascade could not have proceeded in the presence of such strong

18We do not plot the pressure-stress transfer from −∇p⊥, AB = PU, because it is small and uninteresting, although
it is included when computing sums of all terms.
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damping – it concisely illustrates how motions driven by normal turbulence would be
strongly damped, at a rate comparable to the cascade rate, across all scales. This is
not entirely obvious for the collisionless case particularly, because the contribution to
the kinetic energy from ∇ · (b̂b̂�p) can be both positive and negative (it is negative
definite in the Braginskii-MHD regime, but not otherwise; see (2.10)). The effect of
magneto-immutability all but eliminates such damping below the outer scale, leaving only
a modest damping of outer-scale motions for the weakly collisional case.

Figure 12 shows similar information in a different form by plotting the contributions to
the turbulent energy flux (3.11). We show only the active-�p runs because the comparison
with passive simulations is less interesting in this case. Unlike the net transfers (figure 11),
individual terms in the fluxes are not easily interpreted because they do not include the
diagonal T AB

k→k transfer. While this diagonal contribution necessarily vanishes for the total
energy flux, it dominates the transfer between different energy reservoirs, including the
damping of the flow by the pressure anisotropy (blue line). Thus the fact that Π�pU is
small and positive is not particularly relevant, while the individual lines are of interest
only insofar as they indicate a contribution to the total flux (black lines). The most
important feature that we observe is that the total energy fluxes are nearly constant for
10 � k � 200, consistent with the result of figure 11 that there is little pressure-anisotropy
damping through the inertial range (a slight decrease in Π(k) is observed for B100,
indicating a slight damping). The value of the Π/ε in the inertial range is a direct measure
of the cascade efficiency, which, as expected, is less than unity because there is some
pressure-anisotropy damping near the forcing scales (the reduction of �25 % for C100 and
�50 % for B100 is consistent with the total inferred pressure-anisotropy heating, which is
discussed below)

4.4.2. Pressure-anisotropy heating fraction and cascade efficiency
The net energy transfer T�pU(k) also gives a convenient way to evaluate the total

heating rate due to pressure anisotropy. Because the pressure-anisotropy (viscous) heating
is confined to the outer scales (figure 11), this is also a measure of the cascade efficiency –
the energy that is available to cascade in the usual way to heat via small-scale collisionless
mechanisms. Its precise value depends on the forcing scheme, since it mostly occurs at the
outer scales where the forcing drives the flow, and could thus differ more significantly in
systems with more realistic turbulence generation mechanisms (e.g. magneto-rotational
turbulence; Kunz, Stone & Quataert 2016; Kempski et al. 2019). Nonetheless, its
dependence on parameters (β and the collisionality) is interesting to consider, as is a
comparison with A+22.

We define

H�p =
∫ kmax

k0

dk T�pU(k), (4.6)

so H�p/ε measures the fraction of the energy input that is converted into heat via
pressure anisotropy up to wavenumber k = kmax. Because the grid-scale dissipation in our
simulations is non-physical – it is supposed to represent energy absorbed by the smaller
scales, which would eventually cascade to mostly dissipate around the ion gyro-radius
scale (Schekochihin et al. 2009) – it is most appropriate to choose kmax to lie near
the bottom of the inertial range. We set kmax = 100 as appropriate for the resolution
400 × 2002, but the choice hardly affects the results for the active-�p simulations anyway,
because almost all of the viscous heating is confined near the outer scales.19

19For passive-�p cases, H�p increases with kmax through the inertial range because there is more and more damping
(see figure 11).
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(a)

(b)

(c)

(d)

FIGURE 11. Important terms in the net energy-transfer spectra, as defined in § 3.3.3 and (3.10).
The top panels show the simulations with β0 = 10, νc = 0 and the bottom panels show the
simulations with β0 = 100, νc = 33, with the upper and lower subpanels for each showing the
active- and passive-�p cases, respectively. Insets in the plots of the two active-�p cases show
a zoom of the grey-box region. All transfers are normalised to ε/(k/kf ), which approximately
represents the local cascade rate (see text). The different colours show different energy-transfer
terms as labelled in the top panel: T�pU is the transfer from u to thermal energy due to ∇ ·
(b̂b̂�p); TUU is momentum transfer via u · ∇u; TBU is the contribution to kinetic energy from
magnetic tension and pressure; TBB is the advection of B in the induction equation; TUB is the
contribution to magnetic energy from field stretching; and TFU is the forcing contribution. In the
active-�p simulations below the outer scale of the turbulence, we see little contribution of �p
to the energy transfer, which shows directly that the effect of the pressure-anisotropy stress is
minimised below the outer scale, even though the local interruption number is still smaller than
unity in this range (see figure 7). In contrast, in the passive-�p simulations (bottom panel), the
pressure anisotropy that develops is such that, if it did feed back on the flow, it would cause O(1)
dissipation at all scales in the cascade (blue line), which would completely damp the turbulence.
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(a)

(b)

FIGURE 12. The energy fluxes (see (3.11)), which measure the transfer of energy across a
particular k, for the two active-�p simulations with β0 = 10, νc = 0 (a) and β0 = 100, νc =
33vA/L⊥ (b). We normalise to the forcing input ε, which implies that the total flux would be
Π/ε = 1 across the full inertial range for a conservative cascade with no damping. As also seen
in figure 11, although there is some energy loss due to �p at the outer (forcing) scale, at smaller
scales the flux remains constant, showing that there is little energy damping through the inertial
range.

We evaluate H�p for all of the lrCL, lrB and β16 simulations (see table 1), time
averaging across the steady state of each. Results are shown in figure 13, plotted
against the measured interruption number, with marker colour indicating the collisionality
and marker style indicating the simulation set (lrCL, lrB or β16). The CGL-LF
(active-�p) simulations, shown with large symbols, have H�p between H�p � 0.2ε for the
collisionless simulations and H�p � 0.45ε for the weakly collisional and Braginskii-MHD
simulations at I ∼ 1, with no significant dependence on β. In other words, for this choice
of forcing, the cascade efficiency is always above �50 %, meaning most of the input
energy can participate in an MHD-like turbulent cascade. Contrast this with the small
symbols, which show the passive-�p simulations for lrCL and lrB, indicating what the
pressure-anisotropy heating rate would be in the absence of magneto-immutability. The
numerical values are of course meaningless in this case – the situation is counterfactual
and having H�p > ε is clearly not possible – but, as above, it demonstrates that the motions
involved in standard MHD Alfvénic turbulence would be strongly damped by pressure
anisotropy were it not for the pressure-anisotropy feedback modifying their structure. From
the β16 simulations, we see also that H�p(I) remains relatively large up to large I, despite
the effective driving of pressure-anisotropy fluctuations decreasing towards large I due to
their larger νc. This shows that as I is decreased below �10, the suppression of viscous
heating is sufficiently strong that it balances the stronger driving of �p fluctuations that
results from lower νc (otherwise H�p would continue increasing below I � 10).
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FIGURE 13. Net pressure-anisotropy heating rate H�p normalised to the cascade rate ε from
all simulations. The cascade efficiency, defined as the fraction of energy that participates in
the cascade to small scales, is 1 − H�p/ε. This is computed using the net transfer functions
(figure 11) by summing up the contributions from all k ≤ 100, viz. H�p =∑k≤100 TU�p(k), so
as to exclude the grid scales. The marker style denotes the simulation set (see § 3.2 and table 1):
circles denote the lrB set at constant I, crosses denote the lrCL set with νc = 0, and stars denote
the β16 set. We see that viscous (pressure-anisotropy) heating damps up to �45 % of the cascade
in collisional regimes (νc/ωA � 1), and less in collisionless cases. This value is approximately
constant for I � 10 and independent of β and νc/ωA (so long as νc/ωA � 1). The small symbols
show the same computation from the passive-�p simulations; in this case the heating rate is
larger than unity, because �p does not actually feed back on the flow. Such large values imply that
if �p had not been reduced by magneto-immutability, it would have nearly completely damped
the cascade.

4.5. Effect of electron pressure
In all of the simulations presented so far, we have set pe = ρTe = 0, thus ignoring the
influence of electrons. These add an additional isotropic pressure response that is worthy of
exploration in case it interferes with magneto-immutability once it starts to dominate over
the anisotropic ion-pressure response. We explore this in figure 14 via the rate-of-strain
spectra, motivated by the finding above that these showed a clear difference between
CGL-LF and standard MHD (passive) simulations. We show the low-resolution versions
of the spectra for the CL10 case already shown in figure 10, comparing them with two
additional simulations that include electrons with Te/Ti0 = 1 and Te/Ti0 = 5 (here Ti0 is
the initial ion temperature). We see no important differences, even for Te � Ti, which
further implies that the cascade efficiency is independent of Te/Ti. This is expected since
the plasma is already almost incompressible anyway, and an additional isotropic pressure
should simply help it be even more so. The simulations of S+19 and Kempski et al. (2019)
used a fully incompressible Braginskii-MHD model and found similar results.

The isotropic fluid electron model is formally valid either when the plasma is
semi-collisional (e.g. the ICM) or when electrons are cold. For the case of hot collisionless
electrons, a separate electron pressure-anisotropy equation must be solved, which will add
an electron contribution to the pressure anisotropy. Presumably this will generically act to
enhance the influence of pressure anisotropy, even at large scales, while also bringing in a
plethora of electron-scale kinetic instabilities driven by pressure-anisotropies, heat fluxes
and other non-Maxwellian features (e.g. Gary & Nishimura 2003; Verscharen et al. 2022).
However, because the Coulomb interspecies temperature equilibration is extremely slow
and (as far as we are aware) there exist no plasma instabilities that act to decrease it
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FIGURE 14. Rate-of-strain spectra at β0 = 10, νc = 0, comparing the effect of including an
(isothermal) electron pressure with different Te. We show Te = 0 (solid line), Te/Ti0 = 1
(dot-dashed lines), Te/Ti0 = 5 (dotted lines) and the passive-�p simulation (dashed lines). The
plasma’s behaviour is almost identical to the Te = 0 case, because the isotropic electron pressure
has little effect once motions are already nearly incompressible.

(e.g. Zhdankin, Uzdensky & Kunz 2021), there is not an obvious connection between the
ion and electron thermodynamics. Thus, even though electron instabilities could strongly
influence the electron temperatures (e.g. by limiting pressure anisotropies and heat fluxes;
Verscharen et al. 2022), insofar as they remain very small scale and unable to interact
directly with ions, we do not expect them to have a strong influence on the large-scale ion
dynamics other than through the pressure-anisotropy stress.20 That said, there is clearly
more work needed to understand this complex physics better.

5. Discussion: uncertainties and observable effects

The numerical results presented herein have demonstrated how pressure anisotropy
feeds back on Alfvénic turbulent flows at high β, minimising its own influence to
reduce the variance of B2 and the associated parallel viscous heating. The basic effect
is neither surprising nor escapable, arising from the large pressure-anisotropy forces that
are rapidly generated with any change of B and act to oppose this change, in the same way
that the large isotropic pressure forces that result from changes to density render fluids
incompressible. However, our more detailed conclusions and quantitative features (e.g. the
differences between collisional and collisionless results) do depend on the assumptions of
the CGL-LF with hard-wall pressure-anisotropy limiters. In this section, we consider these
in more detail by reference and comparison with the hybrid-kinetic simulations of A+22,
particularly focusing on uncertainties relating to the interplay of magneto-immutability
and microinstability scattering. We argue that most results are robust and compare well
with A+22, which is promising more generally for the use of CGL-LF models in the
study of weakly collisional plasmas. We also discuss various diagnostics that can be used

20Perhaps, by enhancing the electron scattering rate, electron instabilities could improve the validity of a collisional
electron closure.
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in observations or kinetic simulations, where the comparison with passive-�p simulations
– so useful in our analysis above – is not available.

5.1. Interplay between magneto-immutability and microinstabilities
Perhaps the largest uncertainty concerning the CGL-LF model relates to the influence of
particle scattering through microinstabilities. As discussed in § 2.3, the ‘hard-wall-limiter’
method used here and in previous works is based on the idea that large-scale turbulent
motions are extremely slow compared with microinstability-saturation time scales. This
suggests that microinstabilities should instantaneously halt the growth of |�p| when it
is driven beyond the stability thresholds, then instantaneously disappear again when the
driving reverses and the plasma returns towards stability. In its practical implementation,
the hard-wall-limiter model achieves this by taking ν lim

c to be very large in unstable
regions; however, kinetic theory and simulations show that the saturated scattering rate
should actually be νc ∼ Sβ, where S ∼ b̂b̂ : ∇u is the shear driven by the turbulence.
The effect on �p is similar – both hard-wall limiters and scattering with νc ∼ Sβ act
to pin �p at the stability thresholds – but the differences could lead to inaccuracies.21

Furthermore, kinetic simulations have shown that the assumption that microinstabilities
saturate and decay instantaneously compared with the turbulent motions is questionable.
This is most acute for the mirror instability, which can limit �p growth via particle
trapping through much of a macroscopic shearing time (Schekochihin et al. 2008; Kunz
et al. 2014; Rincon et al. 2015). Decaying firehose and mirror fluctuations can also be
extremely long lived, continuing to scatter particles even when not actively driven by
the large-scale shear (Squire et al. 2017a; Kunz et al. 2020). Indeed, their decay rate,
as it involves changing B2, may itself be limited by the need to avoid creating unstable
pressure anisotropies (Melville et al. 2016). Thus, it may not be appropriate to consider
scattering only in unstable regions – rather, the continual driving will create a ‘soup’
of magnetic fluctuations that drive scattering across the entire plasma, putting it in the
weakly collisional or Braginskii regime (Ley et al. 2023). This situation applies to almost
any foreseeable kinetic numerical simulation, including those of A+22, but is at odds with
the assumptions of our collisionless simulations, where we set νc = 0 in stable regions.

We are thus left with some uncertainty between two limiting scenarios: in
the first, scattering sites pervade the plasma; in the second, they exist only in
spatiotemporal locations where the plasma is unstable. Reality, for astrophysically
relevant scale separations, likely lies somewhere between these extremes.22 Comparing
the microinstability-scattering estimate above, νc ∼ βS ∼ βωAM2

A, with the Alfvénic
interruption estimates discussed in § 2.2, we see that the νc expected in the first scenario
is exactly the collisionality required to maintain I � 1. Indeed, the correspondence is
inherent in the estimate, since this νc is simply that which is necessary to suppress the
production of �p to a level where its influence becomes comparable to the magnetic
forces. This shows that if the first scenario applies, all collisionless plasmas effectively
become weakly collisional with νc/ωA ∼ M2

A and I � 1, meaning our I < 1 collisional
and collisionless simulations are never formally applicable (see further discussion in

21Most importantly, the physics of particles moving spatially between stable and unstable regions of the plasma can,
at least in principle, be captured through the heat fluxes in the CGL-LF model; but, with large νlim

c , the heat fluxes are
completely suppressed in unstable regions meaning such physics is missed. Nevertheless, while kinetic simulations find
that heat fluxes are well approximated by the collisional estimate in firehose regions, in mirror regions, they seem to be
nearly completely suppressed (Kunz et al. 2020). Thus, it is likely that a more accurate model ought to treat �p > 0 and
�p < 0 regions differently, meaning that the complete suppression of heat fluxes via a large νlim

c in limited regions may
be no worse than using νc ∼ Sβ anyway.

22The scale separation in the solar wind, which is �104 between the outer scales and ρi, is definitely not large enough
to lie in the second regime, being foreseeably approachable with kinetic simulations (e.g. Bott et al. 2021).
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A+22). More generally, in both scenarios, the scattering from microinstabilities and the
pressure-anisotropy stress (magneto-immutability) must be of similar importance to the
plasma’s dynamics. Both effects limit �p to |�p| � B2/4π, and scale in the same way
with β and turbulence amplitude. As a corollary, there is no limit in which one or the
other can be ignored, except in the presence of mean pressure anisotropy (resulting in
microinstabilities but with no corresponding pressure-anisotropy stress; Bott et al. 2021).

In order to provide a more detailed theory, we must estimate the relative importance
of two effects that scale in the same way with key parameters. This is difficult to do
without kinetic simulations at asymptotically large scale separation, currently not feasible.
The kinetic simulations of A+22 exhibited a box-averaged scattering rate consistent with
νc � βS at β = 16, or I � 1 (see their figure 12).23 While consistent with the first scenario
(‘scattering everywhere’), given the modest separation (a factor �20 between the outer
scales and ρi), this does not constitute strong evidence against the second scenario in
general, as there is no reasonable way to separate stable and unstable regions in the
later stages of their simulations. This measured scattering rate, νc � βS, also shows that
either our β16ν6 or β16ν12 simulation should be directly comparable to the results of
A+22 (see table 1). Indeed, for scales above ρi, most diagnostics appear relatively similar
(e.g. pressure-anisotropy spectra, the standard deviation of B and �p and the viscous
heating rate), with perhaps the most obviously significant large-scale difference being
that the kinetic simulation drives itself to negative mean pressure anisotropy 〈�p〉, while
our β16 simulations have 〈�p〉 ≈ 0. A likely explanation for this lies in the crudeness of
the scattering process from νc in the CGL-LF model. In the kinetic simulation, negative
pressure anisotropy builds over time as a result of the preferentially parallel heating due
to Landau damping, seemingly reaching steady state once it triggers firehose scattering
across the box (see their figures 3 and 5). However, once particle scattering from firehose
fluctuations is triggered, rather than driving the plasma towards isotropy, it should be
expected to maintain the plasma near the firehose threshold, allowing the system to
maintain 〈�p〉 < 0 even with a relatively high scattering rate. In contrast, the scattering
included in our weakly collisional simulations with the CGL-LF model obviously drives
the system towards 〈�p〉 = 0, making it much harder for the system to maintain 〈�p〉 < 0
in the weakly collisional case.

Given all of these uncertainties, our approach in this paper has been to explore a range of
options within the confines of the fluid model. We have found that the pressure-anisotropy
stress has a strong influence on the plasma’s dynamics across all collisionality regimes,
for I � 10 (see, e.g. figures 13 and 16). Thus even if the first scenario applies at
astrophysically relevant scale separations, magneto-immutability should play an important
role in the plasma’s dynamics, allowing a nearly conservative turbulent cascade to be
set up below the forcing scales. Promisingly, A+22 measured a cascade efficiency of
55 %–60 % (meaning that 55 %–60 % of the input energy is processed via the turbulent
cascade to kinetic scales), which compares very well with all of our weakly collisional and
Braginskii-MHD simulations with I � 10 (all of which have similar H�p; see figure 13).
Given the significant differences in physics and forcing, the correspondence could hint
at �50 % being a quasi-universal (or at least minimum) cascade efficiency for weakly
collisional plasmas, although an exploration of more realistic forcing mechanisms would
be needed to confirm this. Overall, the use of the semi-phenomenological fluid model
has been both a blessing and a curse: while we clearly miss very important kinetic
effects, leading to the uncertainties discussed above, the influence of different physics

23Their β = 4 simulation exhibited a larger scattering rate, which does not fit with this scaling, but that simulation
also had several other peculiarities that may explain this discrepancy.
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can be explored more thoroughly by selectively studying different options, spanning wider
parameter ranges and comparing with counterfactual scenarios.

5.2. Observable consequences and diagnostics
Much of the evidence for magneto-immutability that we presented in this paper has
relied on the direct comparison with the equivalent passive-�p or MHD simulations, a
diagnostic luxury that is clearly not available in observations or even in kinetic simulations.
In this section, we use the β16 simulation set, which scans between the collisionless
and MHD-like regimes by changing νc, to suggest various methods for diagnosing
magneto-immutability in simulations or spacecraft data. There are several difficulties in
this endeavour. First, the general effect of magneto-immutability is to make the weakly
collisional turbulent plasma look more similar to MHD than it otherwise would; the
corollary is that those differences that do persist are rather subtle. Secondly, there are
other effects in MHD that tend to reduce the variance of B, which are unrelated to
pressure anisotropy but very important in the near-Sun (low-β) solar wind especially.
Thirdly, in either the solar wind or kinetic simulations, we will often not know a priori
the effective particle scattering rate (see, e.g. Hellinger et al. 2011; Coburn, Chen &
Squire 2022), making it hard to disentangle the relative contributions of scattering and
magneto-immutability to the reduction in the variance of |�p| (see § 5.1 above).

5.2.1. Constant-B states in the solar wind – imbalance and spherical polarisation
In situ spacecraft measurements in the solar wind and magnetosphere provide us

with an unparalleled laboratory for studying fundamental plasma physics, and especially
collisionless plasma turbulence (Chen et al. 2016; Verscharen, Klein & Maruca 2019).
Regions with β � 1 are regularly observed in the bulk solar wind, with values as
high as β ∼ 102 in specific regions (e.g. Cohen et al. 2017; Chen et al. 2021),
making it a promising arena for studying the physics of pressure anisotropy and
magneto-immutability. However, when working in this laboratory, we must recognise
and consider other possible physics at play. In this context, a key point to note is that
constant-B ‘spherically polarised’ fluctuations, which are observed ubiquitously near the
Sun (e.g. Belcher & Davis 1971; Kasper et al. 2019), are most likely not related to
pressure anisotropy and magneto-immutability. Here we discuss these and other possible
mechanisms for reducing the variance of |B|, which should be taken into account when
interpreting observational data.

The robustness of spherically polarised states is related to the fact that any perturbation
that satisfies

δB√
4πρ

= ±u, B = const, p⊥, p‖, ρ = const (5.1a–c)

is an exact nonlinear solution of the Kinetic MHD system (2.1)–(2.5) (or even the standard
MHD equations). Any such solution propagates at velocity ∓B0

√
Θ/4πρ, where B0 is the

mean of B and δB is the remainder (Barnes & Hollweg 1974). Since the solution (5.1a–c)
holds even if |δB| � |B0|, these states are the natural nonlinear generalisation of linear
Alfvén waves to large amplitudes. Their ubiquitous presence in the near-Sun solar wind
is not unexpected given that Alfvénic perturbations grow in amplitude as they propagate
outwards from the low corona due to the decreasing Alfvén speed (e.g. Völk & Aplers
1973; Hollweg 1974b). Given that they are observed consistently when β � 1, which
necessarily implies I � 1 for trans-Alfvénic motions, it seems unlikely that pressure
anisotropy is playing an important role in their formation and sustenance (but see Tenerani
& Velli 2020). Indeed, most aspects of their evolution can be well described by isothermal
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MHD (Hollweg 1974b; Vasquez & Hollweg 1998; Squire, Chandran & Meyrand 2020;
Mallet et al. 2021).

Clearly, as exact nonlinear solutions, such states are not meaningfully turbulent,
although there do exist turbulent-like states with very small B variance that are similar
to (5.1a–c) (Dunn et al. 2023). But in order for such states to occur, the turbulence must
be strongly imbalanced, with |z+| = |u + B/

√
4πρ| � |z−| = |u − B/

√
4πρ| (or vice

versa). This is the norm in the fast solar wind, but is less prevalent in the slow wind –
presumably turbulence is also generically less imbalanced in other astrophysical plasmas
with less ordered global structure. In this paper, we have not considered imbalanced
turbulence, taking |z+| ∼ |z−| in all simulations, a limitation of our study that should be
relaxed in future work. At any rate, the basic message is that there exist both MHD-related
and pressure-anisotropy-related effects that reduce B fluctuations in turbulence. In order
to diagnose the influence of pressure anisotropy by considering the variance of B between
different regions, the imbalance must be taken into account, lest one inadvertently study
the prevalence of nearly spherically polarised solutions instead. Similarly, in highly
imbalanced high-β turbulence, both pressure anisotropy and other reasons (e.g. wave
growth in a plasma with a decreasing Alfvén speed) could cause the plasma to develop
constant-B spherically polarised fluctuations. Once formed, such fluctuations would not
generate significant turbulent pressure anisotropy, in which case magneto-immutability
might not play such an important role even for I � 1.

To demonstrate more directly the reduction in the variance of B across our simulations,
in figure 15 we plot

CB2 = (δB2)rms

(δBrms)2
= 〈(|B|2 − 〈|B|2〉)2〉1/2

〈|B − 〈B〉|2〉 , (5.2)

which was introduced by Squire et al. (2020) as a simple measure of the relative tendency
of the components of B to become correlated in order to reduce the variance of B. This
measure is mostly insensitive to the amplitude of the turbulence (small-amplitude, linearly
polarised Alfvén waves have CB2 ≈ 1/2).24 For reference, Parker Solar Probe observations
and highly imbalanced expanding-box MHD simulations have CB2 in the range of 0.1 to
0.3 (Squire et al. 2020; Johnston et al. 2022). We plot CB2 from a number of snapshots of
the β16, lrCL and lrB simulation sets, with each point coloured by the interruption number
I (this can vary modestly between snapshots in a given simulation). As in figure 13,
the MHD (passive-�p) simulations are plotted with small markers, showing the expected
higher variance of B for otherwise similar conditions (see figures 3 and 4). The dependence
on I is obvious, with lower-I simulations generally showing lower CB2 at otherwise
identical parameters. We also see a tendency for modestly lower CB2 at lower β, which
is likely related to the larger influence of magnetic pressure forces compared with thermal
pressure forces at low β (Vasquez & Hollweg 1998). However, also of note is that all
simulations, including those where pressure-anisotropy forces are very strong (low I),
show values of CB2 that are rather large compared with what is routinely observed in the
solar wind or imbalanced turbulence (Kasper et al. 2019; Squire et al. 2020). It seems
that magneto-immutability, while an important influence on the evolution of B, can never
drive balanced turbulence arbitrarily close to keeping B truly constant across the domain
– imbalanced spherically polarised solutions are much better at this task.

24A number of other reasonable choices exist to quantify features of the spherical polarisation. The similar statistic
CB = (δBrms)

2/(δBrms)
2 decreases with turbulence amplitude, meaning it is more appropriately interpreted as a total

magnetic compressibility (Chen et al. 2020). Another possibility, which may be preferable because it is likely to depend
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FIGURE 15. The variation in magnetic-field strength, or spherical polarisation, for all
simulations, quantified in terms of CB2 given by (5.2). This measures the relative tendency
for the components of B to be correlated in order to reduce the variation in |B|. We plot
multiple snapshots for each simulation, with the marker colour showing I, which changes
modestly during simulations due to heating and random fluctuations. Marker styles denote
the simulation set and the small markers show the equivalent passive-�p simulations, with
the same styles as in figure 13. We see a clear correlation between the magneto-immutability
and the interruption number, even within individual simulations, and without any clear
dependence on the collisionality regime. Further, even for β ∼ 1, CB2 is reduced significantly
by pressure-anisotropy effects. However, even the lowest values of CB2 observed here are larger
than those regularly observed in the near-Sun solar wind due to the predominance of highly
imbalanced, spherically polarised states (5.1a–c).

5.2.2. Spectral diagnostics
In § 4, we saw that, while kinetic- and magnetic-energy spectra remained rather similar

in magneto-immutable turbulence compared with MHD, the rate-of-strain spectra and
pressure anisotropy spectra did not. The β16 simulation set provides a useful scan from
low-I (small νc) to large-I collisional MHD, while other parameters (MA and β) remain
similar. In figure 16 we plot two interesting ratios of spectra that clearly show the change
in the structure of the turbulence at low I. In the left panel, we show the ratio of parallel to
perpendicular pressure spectra,which should be readily observable with in situ solar-wind
measurements. As discussed in § 4.3, it becomes larger than unity in magneto-immutable
turbulence because of perpendicular pressure balance. We see the clear trend with I:
the higher-collisionality simulations (νc/ωA � 50, I � 8) all collapse down to δp‖ ∼
δp⊥, because the pressure anisotropy ceases to have a strong dynamical influence. In
addition, the dashed line shows the lrB600 simulation, which is in the Braginskii regime
but with I ≈ 0.4. This verifies that the observed change is not related to a transition
between collisionality regimes (collisionless, weakly collisional or Braginskii MHD). A
similar diagnostic could be constructed from the slopes of the pressure spectra: in low-I
turbulence, Ep⊥ flattens with scale while Ep‖ steepens, with the two spectra converging
at small scales (see figure 9); in contrast, when unaffected by the pressure-anisotropy
feedback, the p⊥ and p‖ spectra have similar shapes.

Since we saw that the reduction in ∇‖u‖ was one of the more obvious consequences
of the pressure-anisotropy feedback, the right panel compares the ratios of parallel-flow

less strongly on the fluctuations’ intermittency, is C̃B2 = (δB2)rms/〈|B − 〈B〉|4〉1/2. This produces very similar results to
(5.2), aside from all points being reduced by a factor ≈2.
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FIGURE 16. The left panel shows the ratio of pressure spectra Ep‖/Ep⊥ , a simple diagnostic
of magneto-immutability that should be readily observable in the solar wind. We show the
simulations from the β16 simulation set (see § 3.2 and table 1), with the line colour showing
I, and the black lines showing the corresponding results for isothermal MHD. The dashed
line shows the lrB600, β0 = 600 Braginskii-MHD simulation, to demonstrate that the observed
decrease in δp‖/δp⊥ is not due to the change from the weakly collisional to the Braginskii-MHD
regime at high I and β0 = 16. The right panel shows the ratio of the spectra of u‖ and u⊥ in the
parallel and perpendicular direction; E∇‖u⊥/E∇‖u‖ is shown with solid lines, and E∇⊥u⊥/E∇⊥|u‖ is
shown with dashed lines (see figure 10 and § 3.3.1). The increase in ∇‖u⊥/∇‖u‖ with decreasing
I shows the change in the structure of the flow that results from the turbulence becoming more
magneto-immutable at smaller collisionality. The lack of the same change in ∇⊥u⊥/∇⊥|u‖
allows the effect to be considered separately from u‖ itself, which may depend on the forcing
and other parameters.

gradients E∇‖u⊥/E∇‖u‖ (solid lines) with those of perpendicular-flow gradients E∇⊥u⊥/E∇⊥u‖
(dashed lines). While the latter ratio is almost constant as a function of I and looks very
similar to MHD (black lines), the former varies by a factor of at least ∼10 as the plasma
transitions to collisional MHD. We also see that even at the highest collisionality (νc/ωA =
200, I ≈ 50), there remain clear differences in the flow structure compared with MHD.

In summary, these diagnostics could provide a useful way to understand and measure the
influence of pressure-anisotropy feedback in more realistic simulations or observations.25

While the exact values of these metrics will depend on details (e.g. the forcing, MA, and
the imbalance), we expect that the qualitative features should be robust, especially the
fact that E∇‖u⊥/E∇‖u‖ � E∇⊥u⊥/E∇⊥u‖ and δp‖ � δp⊥. This may allow one, for example, to
diagnose and understand a transition to I � 1 turbulence at small scales (as seen, e.g. for
CL10 in figure 9).

6. Conclusions

In this paper, we have studied the influence of fluctuation-generated pressure anisotropy
(�p) on magnetised plasma turbulence. The simulations and theory are based on a
CGL-LF model, which is effectively drift kinetics (Kulsrud 1983) with heat fluxes
approximated by a fluid closure that captures linear parallel Landau damping (Snyder
et al. 1997). This makes it a reasonable model for the collisionless plasma dynamics on
scales far above the proton gyroradius. Indeed, our results compare well with the recent
hybrid-kinetic simulations of A+22, which capture a much more comprehensive array

25Rate-of-strain spectra are not possible to measure with a single spacecraft, but could be computed from data taken
by multi-spacecraft constellations such as the upcoming NASA MidEx mission HelioSwarm (Klein & Spence 2021).
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of kinetic processes at the price of having a limited inertial range. Our results focus
on the β > 1 regime, where small changes of the magnetic-field strength lead to large
pressure-anisotropy stresses on the plasma. This regime is relevant to many hot and diffuse
astrophysical plasmas, including the intracluster medium and regions of the solar wind.

We show numerically, and argue theoretically, that the primary effect of the
pressure-anisotropy stress on the fluid is to reduce its own influence via a dynamical
feedback. This makes high-β weakly collisional turbulence behave more like standard
collisional MHD than would be naïvely expected, aside from a few important differences.
The effect is straightforwardly understood by analogy with the origin of incompressibility
in fluids, which results from the large −∇p force that rapidly opposes any flow with
∇ · u �= 0 attempting to change the fluid’s pressure. With pressure and density tied
together, this feedback eliminates density fluctuations. Analogously, there is a large
force from ∇ · (b̂b̂�p) that rapidly opposes any flow with b̂b̂ : ∇u �= 0 attempting
to change the pressure anisotropy; since �p and B are tied together, the feedback
minimises magnetic-field-strength fluctuations in the turbulence. In the same way that the
Mach number of a hydrodynamic flow quantifies the importance of pressure compared
with inertial forces, the ‘interruption number’ I (introduced in S+19) quantifies the
importance of pressure-anisotropic forces compared with magnetic tension (see § 2.2.3).
The most important consequence of this physics is to reduce viscous heating from pressure
anisotropy, confining it to a small range of scales near the outer scale so that most of the
cascade remains nearly conservative. This increase in ‘cascade efficiency’ will in turn
increase the fraction of heating that occurs via kinetic processes near and below the ion
gyroscale (Schekochihin et al. 2009), thus influencing the thermodynamics of the plasma.

Compared with the previous work on Braginskii-MHD Alfvénic turbulence (S+19;
Kempski et al. 2019), the results here explore plasmas in more realistic regimes at
more modest β and lower collisionality. Our results highlight the resilience of the
pressure-anisotropy feedback mechanism: despite the much more complex evolution
of the pressure anisotropy in the regimes studied here, particularly the effect of heat
fluxes that act quasi-diffusively to smooth out �p, we find that the basic features
of magneto-immutable turbulence are robust. Our detailed analysis is aided by direct
comparisons with‘passive-�p’ simulations, which are identical in setup but artificially
remove the feedback of the pressure anisotropy on the flow. This allows us to compare, for
example, the pressure-anisotropy distribution and viscous heating with the counterfactual
situation in which �p evolved in standard MHD turbulence. A familiar illustration of
this comparison is given in figure 1, where we plot the classic ‘Brazil plot’ of the joint
PDF of β and pressure anisotropy (e.g. Kasper et al. 2002; Hellinger et al. 2006). In the
CGL-LF simulations, the pressure anisotropy is naturally constrained close to zero by
magneto-immutability; in the passive-�p simulations, most of the volume sits instead at
the microinstability boundaries, enforced here by artificial limiters.

A primary result of this study is that magneto-immutable turbulence behaves
surprisingly similarly to standard MHD, illustrating the fundamental robustness of the
MHD turbulent cascade. Specifically, despite the system having to rearrange itself to avoid
dissipating most of the injected energy, the simulations show that saturated fluctuation
amplitudes are similar to MHD for identical forcing, and the magnetic- and kinetic-energy
spectra have slopes close to the expected k−3/2

⊥ or k−5/3
⊥ . This has the effect of making

the influence of pressure anisotropy rather subtle: rather than it causing some dramatic,
obvious modifications to the system, magneto-immutability interferes and causes such
turbulence to resemble MHD rather closely. That said, there are important differences that
enable this behaviour, particularly that the system significantly suppresses the spectrum
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of the parallel strain b̂b̂ : ∇u (see figure 10), which reduces the magnitude of the �p
and B fluctuations (e.g. figures 4 and 15) and steepens the pressure spectra, leaving a
characteristic signature with δ�p ∼ δp‖ � δp⊥ (figure 9). These changes are summarised
in figure 16, which shows how turbulence transitions from being magneto-immutable (low
I, blue) to collisional MHD (high I, red and black), demonstrating how such effects could
be diagnosed and studied with in situ solar-wind observations (see § 5.2).

Macroscopically, the most important effect of magneto-immutability is to suppress
strongly the viscous heating that would otherwise almost completely damp the turbulent
cascade. This leaves an effectively conservative cascade below the forcing scales that
processes ≈50 % to ≈80 % of the input energy (depending on the regime; see figures 11
and 13). While the particular values for the cascade efficiency will depend on the forcing
scheme, so will certainly differ for more realistic systems (e.g. those driven by large-scale
instabilities), the general point is that the magneto-immutability modifies the conversion
between mechanical and thermal energy in the plasma. This could have interesting
consequences for its macroscopic thermodynamics. For example, important quantities like
the fraction of turbulent energy that heats ions versus electrons, or in the perpendicular
versus parallel directions, can depend on the cascade efficiency and viscous heating. A
specific application where such physics could have direct consequence is the intracluster
medium, in which turbulent heating is thought to offset a large fraction of radiative losses
to mitigate cluster cooling flows (e.g. Churazov et al. 2004; Zhuravleva et al. 2014). Kunz
et al. (2010) suggested that, by forcing the plasma to adjust its parallel rate of strain,
pressure anisotropy could regulate turbulent heating to maintain naturally the plasma’s
thermal stability against bremsstrahlung cooling (with viscous heating ∝B4T−5/2 at fixed
gas pressure increasing faster than cooling ∝T−3/2 as the temperature drops). While
the details of their scheme differ from the turbulent heating studied here (specifically,
Kunz et al. (2010) assumed that kinetic microinstabilities provide the primary regulation
mechanism by contributing to, and thereby regulating, the total parallel rate of strain), the
basic idea – that suppression of the parallel rate of strain provides a strong constraint on
the heating rate – is analogous to magneto-immutability. Thus, similar thermal-stability
considerations may apply to magneto-immutable turbulence, with the modification that it
is the large-scale (as opposed to the small-scale) adjustment to the parallel rate of strain
that regulates the viscous heating. At the same time, the mechanism would allow some
of the injected energy (the cascade efficiency) to pass into a turbulent cascade, as needed
to explain observations of small-scale fluctuations on scales below the Coulomb mean
free path (Zhuravleva et al. 2019; Li et al. 2020). The effectiveness of such a mechanism
likely depends on how fluctuations are driven (the forcing), as well as complications such
as anomalous particle scattering (see § 5.1), so further study in more realistic settings is
clearly needed.

Due to the ad hoc nature of some approximations that were needed for the CGL-LF
model, our study is beset with some serious (but, we think, ultimately not game-changing)
uncertainties. The most important one is the influence of kinetic microinstabilities,
e.g. the firehose and mirror instabilities, which grow extremely rapidly compared with
large-scale motions in regions of large |�p|. We use simplified hard-wall limiters (Sharma
et al. 2006), but it is clear from kinetic simulations that these could miss important
effects such as long-lived fluctuations that continue to scatter particles even in stable
regions. In this context, our study complements the recent hybrid-kinetic simulations of
A+22, which capture all such complexities (except the electron physics), but suffer from
unavoidable limitations related to low scale separation. This complicates the exploration of
the inertial-range k⊥ρi � 1 turbulence in the system, both because the microinstabilities’
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growth and saturation are not particularly fast compared with the integral-scale motions,
and because ρi-scale physics (e.g. the damping of perturbations; Foote & Kulsrud 1979)
can start to interfere directly with scales comparable to the size of the box. Nonetheless,
our comparable simulations that have an imposed collisionality to approximate the effects
of microinstabilities (see § 5.1), provide a good match to most features observed in
A+22. This includes most spectra of Alfvénic and compressive quantities, �p and B
distributions (aside from a mean 〈�p〉 < 0 in A+22), and the cascade efficiency, which is
�55 % in A+22 (matching effectively all of the weakly collisional and Braginskii-MHD
simulations; see figure 13). Thus, a secondary result of our work is that the CGL-LF model
provides an accurate and relatively simple way to model weakly collisional plasmas in
high-β regimes. That said, there remain significant caveats, and working to build a better
bridge between the regimes accessible via the CGL-LF and hybrid-kinetic approaches
should be a priority for future work.
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Appendix A. Numerical method and validation

In this appendix we discuss various features of the numerical implementation of our
equations. We first give the relevant equations and other results that are needed for the
conservative part of the equations (i.e. for the CGL equations; Appendix A.1), followed
by those needed for the heat fluxes and collisions (Appendix A.1.1). We then present some
simple wave tests and discuss a collection of numerical problems that arose for this system,
speculating on their possible causes. As part of this discussion, we present a more accurate
Riemann solver that works well for some problems, but has turned out to be too unreliable
for large-amplitude (large-δB⊥) turbulence simulations.
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A.1. Conservative form
As is standard for finite-volume implementations, we solve (2.1)–(2.5) in the conservative
form

∂U
∂t

+ ∂F x

∂x
+ ∂F y

∂y
+ ∂F z

∂z
+ ∇ · Q = 0, (A1)

where

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ
mx
my
mz
E
A
Bx
By
Bz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ
ρux
ρuy
ρuz

p⊥ + 1
2 p‖ + 1

2 B2 + 1
2ρ|u|2 + pe ln pe

ρ ln( p⊥ρ2/p‖B3)

Bx
By
Bz,

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

; (A2)

where F x, F y and F z are the CGL fluxes; and Q are the heat fluxes, which are defined below
(for simplicity of notation, we normalise B by

√
4π through this section). In the limit of

Te = 0, the pe ln pe contribution to E disappears. There is a fundamental degeneracy in
the choice of the second conserved thermodynamic variable (in addition to energy), since
both μ = p⊥/ρB and J = p‖B2/ρ3 are passively advected by the CGL dynamics. Our
choice of the logarithm of their ratio A was inspired by Santos-Lima et al. (2014) and also
by extensive numerical testing of solvers that use ρμ instead, which can become highly
unstable for certain types of problems. We suspect the superiority of A compared with
μ is related to the fact that A treats p⊥ and p‖ on approximately equal footing, rather
than assigning artificial importance to one over the other (see further discussion below).
Note that, in principle, ρ multiplied by any function of μ and/or J could be used as the
conserved variable, and it is possible that there exist other options with better numerical
properties.

The fluxes are

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρux

ρu2
x + P� − B2

xΘ

ρuxuy − BxByΘ

ρuxuz − BxBzΘ

(E + P�)ux − Bx(u · B)Θ

uxA
0

Byux − Bxuy

Bzux − Bxuz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A3)

with the obvious permutation of x, y and z used to get G and H . Here, P� .= p⊥ + B2/2 +
pe and Θ

.= 1 + �p/B2 is the anisotropy parameter.

A.1.1. Heat fluxes and collisions
A downside of using A, as opposed to μ, is that the heat fluxes take a rather complex

form that does not seem possible to write as a total divergence ∇ · Q. In order to
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maintain this property, thus simplifying the numerical implementation of the heat fluxes,
we transform A to μ, add the heat fluxes to e and μ, then transform back to A. For this
purpose, the e-component of the heat flux is Qe = b̂(q⊥ + q‖/2), while the μ-component
is Qμ = b̂q⊥/B, where q⊥ and q‖ are given by (2.7) and (2.8), respectively (all other
components of Q are zero). Further information is provided in § 3.1.

Collisions, including microinstabilities, are evaluated implicitly on the primitive
variables p⊥ and p‖ at the end of each global time step. This is done via the exact solution
of ∂tp⊥ = −(νc/3)�p, ∂tp‖ = (2νc/3)�p across time δt

p⊥(t + δt) = 1
3(2 + exp(−νcδt))p⊥(t) + 1

3(1 − exp(−νcδt))p‖(t),

p‖(t + δt) = 2
3(1 − exp(−νcδt))p⊥(t) + 1

3(1 + 2 exp(−νcδt))p‖(t).

}
(A4)

The microinstability limiters are also implemented implicitly, via the first order in
δt solution of ∂tp⊥ = −(ν lim

c /3)(�p − ΛMIB2/8π), ∂tp‖ = (2ν lim
c /3)(�p − ΛMIB2/8π),

applied only in regions where �p lies beyond the relevant instability threshold (here
ΛMI = −2 and ΛMI = 1 for the firehose and mirror thresholds, respectively). The methods
relax �p back to isotropy or to the relevant instability threshold accurately and with no
constraint on the time step, meaning that adiabatic MHD can be recovered by setting
νc → ∞, and true ‘hard wall’ limiters are recovered by setting ν lim

c → ∞.

A.1.2. Dispersion relation
The Harten–Lax–van Leer (HLL) Riemann solver and its relatives (Toro 2009), which

are used to approximate the solutions of (A1) across cell boundaries, require the wave
speeds for the hyperbolic double-adiabatic system (Q = 0, νc = 0). Assuming a mode of
wavenumber k = kx̂ and linearising about the equilibrium, ρ = ρ0, u = uxx̂, p⊥ = p⊥0,
p‖ = p‖0 and B = (Bx, By, 0), one finds the set of eight eigenvalues (Baranov 1970; Meng
et al. 2012)

k−1ωC = ux, k−1ω�p = ux, (A5a,b)

k−1ωA = ux ±
(

Θ0

ρ0

)1/2

Bx, (A6)

k−1ωMS± = ux ±
(

1
2ρ0

)1/2

{2p⊥0 + B2 + b̂2
x(2p‖0 − p⊥0) + Teρ0

± [(2p⊥0 + B2 + b̂2
x(2p‖0 − p⊥0) + Teρ0)

2 + 4p2
⊥0b̂2

x(1 − b̂2
x)

− 12p⊥0p‖0b̂2
x(2 − b̂2

x) + 12p2
‖0b̂4

x − 12p‖0B2b̂2
x]1/2}1/2, (A7)

where Θ0 = 1 + ( p⊥0 − p‖0)/B2. Here, ωA is like the MHD shear-Alfvén wave, modified
by the pressure anisotropy, while ωC and ω�p are two entropy-like waves. One of these
entropy waves (ωC) involves only density perturbations and no �p, like the MHD entropy
mode, but is strongly damped by heat fluxes. The other mode (ω�p) involves balanced
perturbations to p⊥, p‖, ρ and B in general and becomes the gyrokinetic non-propagating
mode with the inclusion of heat fluxes (Howes et al. 2006).

The CGL magnetosonic waves ωMS+ and ωMS−, which correspond to the + and − on
the second line of (A7), respectively, are compressive waves that also involve perturbations
to the magnetic field. In general, for ux = 0, |ωMS+| ≥ |ωMS−| and |ωMS+| ≥ |ωA|, but for
β � 1, |ωMS−| > |ωA|, meaning that CGL ‘slow’ waves propagate faster than shear-Alfvén
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waves, unlike in standard MHD. As discussed in § 4.3.3, the properties of obliquely
propagating CGL slow waves are potentially of interest to explain the compressive
features of the cascade. A key characteristic is their perpendicular pressure balance,
δp⊥ + δ(B2)/8π ≈ 0 or δp⊥ ≈ −(B2

0/4π)δB‖/B0 (just like the MHD slow mode), which
is derived by applying the standard RMHD ordering (Schekochihin et al. 2009) to the
perpendicular part of the momentum equation (2.2) (with Te = 0). Then, using the
linearised form of the CGL invariants (dμ/dt = dJ /dt = 0) yields δp⊥/p0 − δρ/ρ0 −
δB‖/B0 = 0 and δp‖/p0 − 3δρ/ρ0 + 2δB‖/B0 = 0, which can be combined with the δp⊥
constraint to yield δp‖ = −(5 + 6/β)δB‖/B0. Thus we see that δp‖/δp⊥ = (5β + 6)/2 �
1, a strong dominance of parallel pressure, as observed in figure 9 (although this prediction
is much stronger than that observed). Then, because δp‖ provides the restoring force for
the wave and it is not constrained by δp⊥ (unlike MHD, where p⊥ = p‖), the frequency
scales with the thermal speed, becoming ω2

MS− = (5/2)k2
‖p0/ρ0 for β � 1. In the presence

of heat fluxes, this general structure is maintained, although the wave becomes strongly
damped at a rate that is approximately half that of its propagation frequency. Weak
collisions with νc � k‖vth cause even stronger damping by weakly coupling together δp⊥
and δp‖; the mode becomes non-propagating around νc ∼ k‖vth before reverting towards
the MHD slow mode for νc � k‖vth (see Majeski et al. 2023).

Full expressions for the eigenvectors for all angles are inconveniently complex and not
important for our purposes, so we do not list them here.

A.2. Linear-wave convergence
Code testing was carried out with standard problems and methods, such as examining
the total-energy conservation, nonlinear Alfvén-wave dynamics (Squire et al. 2016) and
linear waves. Figure 17 illustrates the ability of the solver to capture the diverse linear
behaviour of the CGL-LF system. The tests involve initialising the solver with a chosen
linear eigenmode, computed analytically from the linearised system, then comparing the
frequency and decay rate from the code with the analytic expectations. In the right-hand
panel, we show the convergence to the analytic solution with spatial resolution for a
range of different waves and parameters, scanning from the collisionless system out to the
adiabatic-MHD with νc = 1010. For modes that are only weakly damped, meaning their
dynamics is dominated by the conservative (CGL) solver, we see almost second-order
convergence. With more strongly damped modes, for which the error becomes dominated
by the non-conservative heat flux and/or collisions in the solver, we see first-order
convergence above some resolution that depends on the mode in question (this behaviour is
clearest for the slow-like modes shown with dashed lines, because these are more strongly
damped).

A.3. Numerical problems and challenges
The CGL system seems to be particularly prone to numerical instability, which hampered
efforts to design more accurate numerical solvers. As part of the code development effort
for this work, we tested a wide variety of different numerical options and solvers, all
of which showed some issues in certain situations. Our final choice of the piecewise
parabolic method with an HLL Riemann solver and the conserved variable A (see (A2))
was made by trading off the various issues that arose in different numerical tests. Examples
include a pernicious numerical instability that acts on the compressive components of the
system at the smallest scales, creating flute-like (k⊥ � k‖) grid-scale modes that can grow
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(a) (b)

FIGURE 17. Propagation of oblique linear waves within the ATHENA++ CGL-LF
implementation in one spatial dimension. Background parameters are p⊥ = p‖ = 5, ρ = 1,
u0 = 0 and B0 = (1,

√
2, 0.5), with k = 2πx̂ and kL = |k|. The left panel shows the time

evolution of ρuy(xm, t), where xm is chosen so that ρuy(xm, 0) is the maximum of the sinusoidal
initial condition. Results are normalised to the initial amplitude of �10−4. The curves show
the expected linear solution, computed analytically from the dispersion relation (A5a,b)–(A7),
while symbols show results from ATHENA++ with Nx = 1024. Blue lines/symbols show
νc = 10, with the solid line (plus symbols), dashed line (circle symbols), dot-dashed line (star
symbols) and dotted line (triangle symbols) corresponding to the Alfvén, slow-like, fast-like
and entropy-like modes, respectively. The red dashed curve (circle symbols) shows the slow
mode at νc = 1010 to illustrate how the system reverts to undamped adiabatic MHD at high
νc. The right panel shows the normalised root-mean-squared error in the solution, as measured
from the analytic solution, as a function of spatial resolution Nx. Line styles and colours are
as in the left panel, with the addition of yellow curves for collisionless modes (νc = 0) and
black for pure CGL (no heat fluxes; kL → ∞). We see almost second-order convergence for
most solutions, except for those that are dominated by damping from heat fluxes, in particular
the collisionless/weakly collisional slow mode (blue and yellow dashed lines; the former is
overdamped |Im(ω)| > |Re(ω)|, see left-hand panel).

sufficiently to break up wave solutions in certain circumstances26 ; or virulent numerical
instabilities that arise in regions of small |B| when μ rather than A is used as the conserved
variable. While we do not fully understand the root causes of these issues, we speculate
that they may be worse than standard in MHD because the system involves two different
volumetrically conserved variables (ρ and μ or A) that feed back on the momentum in
different ways.

As part of this development process, we designed a new Riemann solver for the
CGL system that treats the Alfvénic-branch solutions separately, just like the popular
HLLD solver for MHD (Miyoshi & Kusano 2005; Mignone 2007). This has significantly
improved accuracy for problems involving predominantly Alfvénic fluctuations. Although
this made it an obvious candidate for our Alfvénic turbulence simulations, the solver
was ultimately found to cause issues in our higher-resolution turbulence simulations, even
though it worked quite well for many simpler test problems. This type of behaviour is not
uncommon, for example, also occurring in HLLC and related hydrodynamic finite-volume
solvers, which can suffer from serious numerical issues if shocks develop (see, e.g. Simon

26In particular, they are strongest when they can directly align with the numerical grid, which can occur when the
magnetic field is nearly constant and grid aligned.
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& Mandal (2019), and references therein). For this reason, for our main simulations, we
reverted back to the simplest HLL solver, using parabolic reconstruction to reduce the
large numerical dissipation that is inherent to this method. Nonetheless, in case the HLLD
solver proves useful for other problems in future works, we provide a brief description of
it below.

A.3.1. An HLLD CGL Riemann solver
Rather than proceeding in the most obvious way, by extending the HLLD method of

Miyoshi & Kusano (2005) to the double-adiabatic mode structure, we instead base our
solver on the isothermal HLLD solver of Mignone (2007). The method thus computes
the fluxes of thermodynamic variables using the simple HLL method (Harten, Lax &
Leer 1983), while those of the transverse momentum and magnetic field are obtained
using a more accurate computation of the wave structure. It enables the shear-Alfvénic
dynamics (or rotational discontinuities) to be captured accurately, while avoiding various
very complex and time-consuming nonlinear solves that arise if one attempts to replicate
the method of Miyoshi & Kusano (2005)27 .

The basis for the solver is to take ρ, mx, E, A and their fluxes as constant across the
Riemann fan. In contrast, the ‘Alfvénic variables’, my, mz, By and Bz, are allowed to vary
across the fan, being separated into three states U∗

L, U∗
c and U∗

R by the left and right Alfvén
discontinuities with velocities S∗

L and S∗
R, as in isothermal MHD (Mignone 2007). We then

use the consistency conditions for a five-state Riemann solver separated by waves SL, S∗
L,

S∗
R and SR (Mignone 2007; Toro 2009)

(S∗
L − SL)U∗

L + (S∗
R − S∗

L)U
∗
c + (SR − S∗

R)U
∗
R

SR − SL
= Uhll, (A8)

for the conserved variables U , and

(S∗−1
L − S−1

L )F ∗
L + (S∗−1

R − S∗−1
L )F ∗

c + (S−1
R − S∗−1

R )F ∗
R

S−1
R − S−1

L

= F hll, (A9)

for the fluxes F . Here, Uhll and F hll are the HLLE states and fluxes

Uhll .= SRUR − SLUL − F R + F L

SR − SL
, (A10)

F hll .= S−1
R F R − S−1

L F L − UR + UL

S−1
R − S−1

L

. (A11)

Applying the assumption U∗
L = U∗

c = U∗
R = U∗ to the non-Alfvénic variables gives U∗ =

Uhll, F ∗ = F hll, as expected. It remains to determine U∗
L, U∗

R and their fluxes for the
Alfvénic variables, after which F ∗

c is determined from (A9).
We compute the jump conditions for the Alfvénic variables across the SL and SR waves

following Mignone (2007)

F ∗
L = F L + SL(UL − U∗

L), (A12)

F ∗
R = F R + SR(UR − U∗

R). (A13)

27Indeed, following the logic of Miyoshi & Kusano (2005) for the CGL system, one finds it necessary to solve for
nearly all inner states of the Riemann fan simultaneously in a complex system of nonlinear equations. This leads to a slow
and impractical solver.
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This leads to

ρ∗u∗
yα = ρ∗uyα − BxByα

u∗
xΘα − uxαΘ

∗ + Sα(Θ
∗ − Θα)

(Sα − S∗
L)(Sα − S∗

R)
, (A14)

ρ∗u∗
zα = ρ∗uzα − BxBzα

u∗
xΘα − uxαΘ

∗ + Sα(Θ
∗ − Θα)

(Sα − S∗
L)(Sα − S∗

R)
, (A15)

B∗
yα = Byα

ρ∗
ρα(Sα − uα)

2 − B2
xΘα

(Sα − S∗
L)(Sα − S∗

R)
, (A16)

B∗
zα = Bzα

ρ∗
ρα(Sα − uα)

2 − B2
xΘα

(Sα − S∗
L)(Sα − S∗

R)
. (A17)

Here, α denotes either L or R, ρ∗ = ρhll, u∗
x = Fhll

ρ /ρhll and Θ∗ is the anisotropy parameter
(Θ .= 1 + �p/B2) across the fan (see below). The Alfvénic wave speeds, S∗

L,R, are

S∗
L = u∗

x −
√

Θ∗

ρ∗ |Bx|, S∗
R = u∗

x +
√

Θ∗

ρ∗ |Bx|. (A18a,b)

These are fixed by the jump conditions from the left and right regions to the central regions
after asserting that Θ∗ should be constant (this is in keeping with the assumption that only
Alfvénic quantities change inside the fan; see (25)–(28) of Mignone 2007). The numerical
flux is then computed as

F =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

F L, 0 < SL,

F ∗
L, SL < 0 < S∗

L,

F ∗
c, S∗

L < 0 < S∗
R,

F ∗
R, S∗

R < 0 < SR,

F R, SR < 0,

(A19)

where F ∗
L and F ∗

R are computed from (A12) and (A13) and F ∗
c from the consistency

condition (A9).
The firehose parameter Θ∗ remains unspecified. Unfortunately, it is not possible to have

�p/B2, E and A all constant across the central region for general By and Bz that vary as in
(A16) and (A17). We are thus forced to consider B2 in Θ to be some average across the fan.
There appears to be no way to circumvent this inconsistency, so long as we assume that
non-Alfvénic variables are constant across then fan, while Alfvénic components vary.28

We are thus left with choosing a suitable average for defining Θ∗. We have experimented
with various possibilities for doing this, finding that the most robust method seems to be to
use the HLL average to compute B2 (i.e. using Bhll

y and Bhll
z ). This method has the advantage

of being straightforward and fast to execute, while also being conceptually consistent with
the idea that non-Alfvénic variables (B2 in this case) should be computed using HLL
averages. Special cases. There are two special cases that must be dealt with in the solver.
The first, which occurs if S∗

α → Sα, is handled identically to the Mignone (2007) solver
by imposing a zero jump across my, mz, By, and Bz. As in isothermal MHD, there is no

28It is worth noting that the same inconsistency arises in the isothermal MHD solver of Mignone (2007), although
this is not discussed in his paper. Specifically, this solver assumes that, within the fan, the total pressure pT = c2

s,isoρ +
B2/2 is constant (this is required so that ux is constant), while also taking ρ to be constant. These assumptions are clearly
inconsistent if B2 varies. A similar inconsistency arises in the adiabatic MHD solver of Miyoshi & Kusano (2005) across
the S∗

α waves.
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issue with the limit Bx → 0, which simply leads to S∗
α = u∗ and various simplifications of

(A14)–(A17).
The other special case occurs as Θ approaches 0. For Θ < 0, Alfvén waves are unstable,

and it no longer makes sense to compute the wave structure in the same way. We thus
switch to a standard HLL solver for all variables if ΘL, Θ∗ or ΘR is below some threshold
Θthresh. In practice, Θthresh ≈ 0.1 seems to give reasonable results (recall that Alfvénic
perturbations propagate very slowly for small Θ anyway). The switch to the HLL solver
is carried out using the ‘anti-diffusion control’ method described presently. Anti-diffusion
control. As mentioned above, the CGL HLLD method displayed numerical instabilities, in
particular small-scale oscillations in Θ , which became worse for more complex problems.
These can often be mitigated by the ‘anti-diffusion control’ method of Simon & Mandal
(2019), which was proposed to solve the ‘Carbuncle’ problem of the hydrodynamic HLLC
solver. The method involves continuously switching to the more diffusive HLL solver at
the advent of grid-scale oscillations. It is derived by rewriting (A12) and (A13) as

F ∗
L = F hll + SL(Uhll − U∗

L), (A20)

F ∗
R = F hll + SR(Uhll − U∗

R), (A21)

then recognising the second term on each right-hand side as an ‘anti-diffusive’
contribution to the flux (it corrects the HLL flux, making it less diffusive). Multiplying
this contribution by a factor ωAD satisfying 0 ≤ ωAD ≤ 1, gives a method to interpolate
between the HLLD and HLL solvers. As a simple option, ωAD can be chosen as ωAD =
exp(−αAD max |�Θ|), where max |�Θ| is the maximum value of |ΘL − ΘR| across the
interface and its two neighbours perpendicular to the interface. The free parameter αAD
controls the strength of the anti-diffusive effect, with αAD ≈ 10 providing a reasonable
trade off between accuracy and stability for a range of parameters and problems. We
also multiply ωAD by H(Θmin − Θthresh), where H(x) is the Heaviside step function and
Θmin = min{ΘL,Θ

∗,ΘR}, to switch to the HLL solver as the system approaches the
firehose instability condition (see above). More information and stability analysis of the
anti-diffusion control method in the HLLC context can be found in Simon & Mandal
(2019).
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HELLINGER, P., TRÁVNÍČEK, P., KASPER, J.C. & LAZARUS, A.J. 2006 Solar wind proton temperature
anisotropy: Linear theory and wind/swe observations. Geophys. Res. Lett. 33, L09101.
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