PRINCIPALLY ORDERED REGULAR SEMIGROUPS

by T. S. BLYTH and G. A. PINTO

(Received 30 May, 1989)

An ordered semigroup S will be called *principally ordered* if, for every $x \in S$, there exists

$$x^* = \max\{y \in S; xyx \le x\}.$$

Here we shall be concerned with the case where S is regular. We begin by listing some basic properties that arise from the above definition. As usual, we shall denote by V(x) the set of inverses of $x \in S$.

$$x' \in V(x) \Rightarrow x' \le x^*. \tag{1}$$

This follows immediately from the fact that xx'x = x.

$$x = xx^*x. \tag{2}$$

By (1), if $x' \in V(x)$ then $x = xx'x \le xx^*x$, whence we have equality.

$$x^{\circ} = x^{*}xx^{*}$$
 is the greatest inverse of x. (3)

In fact, by (2), we have $x^*xx^* \in V(x)$. If now $x' \in V(x)$ then, by (1), $x' = x'xx' \le x^*xx^*$. Thus $x^\circ = x^*xx^*$ is the greatest inverse of x.

$$xx^{\circ} = xx^{*}$$
 is the greatest idempotent in R_{x} . (4)

It is clear from (3) and (2) that $xx^\circ = xx^*$. Also, by (2), x and xx^* are \mathcal{R} -related. If now e is an idempotent that is \mathcal{R} -related to x then we have e = xy and x = ez for some y, $z \in S$. It follows that xyx = ex = ez = x and so $y \le x^*$ whence $e = xy \le xx^*$.

$$x^{\circ}x = x^{*}x$$
 is the greatest idempotent in L_{x} . (5)

This is similar to (4)

$$x \le x^{**}$$
 and $x \le x^{\infty}$. (6)

By (3) and (1), $x^*xx^* = x^{\circ} \le x^*$ and so $x \le x^{**}$. The second inequality follows from (3) and the fact that x is an inverse of x° .

$$x^{\circ *} = x^{**}$$
 (7)

This follows from the observation that

$$y \le x^{\circ*} \Leftrightarrow x^{\circ}yx^{\circ} \le x^{\circ}$$

$$\Leftrightarrow x^{*}xx^{*}yx^{*}xx^{*} \le x^{*}xx^{*}$$

$$\Leftrightarrow xx^{*}yx^{*}x \le x$$

$$\Leftrightarrow x^{*}yx^{*} \le x^{*}$$

$$\Leftrightarrow y \le x^{**}.$$

$$x^{*} = x^{***}$$
(8)

By (6) we have $x^* \le x^{***}$. To obtain the reverse inequality, observe that

 $xyx \le x^{**} \Rightarrow x^*xyxx^* \le x^* \Rightarrow xyx \le x$

Glasgow Math. J. 32 (1990) 349-364.

and hence that

350

 $xyx \leq x^{**} \Leftrightarrow xyx \leq x.$

Now, by (6) and (2), we have

 $xx^{***}x \le x^{**}x^{***}x^{**} = x^{**},$

and therefore, by the above observation,

$$xx^{***}x \leq x$$

and so $x^{***} \leq x^*$.

$$x^{*\circ} = x^{**}$$
 (9)

We have

$$x^{*\circ} = x^{**}x^{*}x^{**}$$

= $x^{**}x^{***}x^{**}$ by (8)
= x^{**} by (2).
 $x^{\circ\circ} \le x^{**}$ (10)

This follows from the observation that

$$x^{\infty} = x^{\circ *} x^{\circ} x^{\circ *} \qquad \text{by (3)}$$

= $x^{**} x^{\circ} x^{**} \qquad \text{by (7)}$
 $\leq x^{**} x^{*} x^{**} \qquad \text{by (1)}$
= $x^{**} x^{***} x^{**} \qquad \text{by (8)}$
= $x^{**} \qquad \text{by (2).}$
 $x^{\circ} = x^{\infty \circ}$ (11)

In fact,

$$x^{\circ} = x^{*}xx^{*} = x^{*}x^{**}x^{*}xx^{*}x^{**}x^{*}$$

= $x^{*}x^{\circ *}x^{\circ }x^{\circ *}x^{*}$ by (7)
= $x^{*}x^{\circ \circ }x^{*}$
= $x^{***}x^{\circ \circ }x^{***}$ by (8)
= $x^{\circ \circ *}x^{\circ \circ }x^{\circ \circ *}$ by (7)
= $x^{\circ \circ \circ}$.

EXAMPLE 1. A perfect Dubreil-Jacotin semigroup is characterised in [2] as an ordered regular semigroup S in which

(a) $x^* = \max\{y \in S; xyx \le x\}$ exists for every $x \in S$;

- (β) $\xi = \max\{x \in S; x^2 \le x\}$ exists;
- (γ) $\xi x^* = x^* = x^* \xi$ for every $x \in S$.

Every perfect Dubreil-Jacotin semigroup is therefore principally ordered.

EXAMPLE 2. On the cartesian ordered set

$$S = \{(x, y, z) \in \mathbb{Z}^3; 0 \le y \le x\}$$

define a multiplication by

$$(x, y, z)(a, b, c) = (\sup\{x, a\}, y, z + c).$$

Then clearly S is an ordered semigroup. It is regular since

$$(x, y, z)(x, x, -z)(x, y, z) = (x, y, 0)(x, y, z) = (x, y, z).$$

The idempotents are the elements of the form (x, y, 0), and as they form a subsemigroup S is orthodox. Since

$$(x, y, z)(a, b, c)(x, y, z) = (\sup\{x, a\}, y, 2z + c) \le (x, y, z)$$
$$\Leftrightarrow a \le x, c \le -z$$
$$\Leftrightarrow (a, b, c) \le (x, x, -z),$$

we see that $(x, y, z)^* = (x, x, -z)$ and so S is principally ordered.

EXAMPLE 3 [The boot-lace]. Let G be an ordered group and let $x \in G$ be such that 1 < x. Let $M = M(G; I, \Lambda; P)$ be the regular Rees matrix semigroup over G with $I = \Lambda = \{1, 2\}$ and sandwich matrix

$$P = \begin{bmatrix} x^{-1} & 1 \\ 1 & 1 \end{bmatrix}.$$

With $\{1, 2\}$ ordered by 1 < 2, we can regard P as an isotone mapping from the cartesian ordered set $\{1, 2\} \times \{1, 2\}$ to G. Recall that the multiplication in M is given by

$$(i, a, \lambda)(j, b, \mu) = (i, ap_{\lambda j}b, \mu).$$

The set of idempotents of M is

$$E = \{(1, x, 1), (1, 1, 2), (2, 1, 1), (2, 1, 2)\}.$$

Let $\bar{E} = \bigcup_{n \ge 1} E^n$ be the subsemigroup generated by the idempotents. Then, with the convention that $x^0 = 1$, we have

$$\bar{E} = \{(i, x^n, \lambda); i, \lambda \in \{1, 2\}, n \in \mathbb{Z}\}.$$

By a result of Fitz-Gerald [5], the set $V(E^n)$ of inverse of elements in E^n is E^{n+1} . It follows that \overline{E} is regular.

Consider the relation \leq defined on \overline{E} by

$$(i, x^{n}, \lambda) \leq (i', x^{m}, \lambda') \Leftrightarrow \begin{cases} n = m, i \leq i', \lambda \leq \lambda'; \\ or n + 1 = m, i \leq i'; \\ or n + 1 = m, \lambda \leq \lambda'; \\ or n + 1 < m. \end{cases}$$

It is readily verified that this is an order on \overline{E} which gives the boot-lace Hasse diagram

$$efef = (1, x^{2}, 2)$$

$$efe = (1, x^{2}, 1)$$

$$efe = (1, x^{2}, 1)$$

$$efe = (1, x, 2)$$

$$eg = he = \mathbf{e} = (1, x, 1)$$

$$eh = hf = \mathbf{h} = (1, 1, 2)$$

$$hg = (1, 1, 1)$$

$$hgh = (1, x^{-1}, 2)$$

$$hghg = (1, x^{-1}, 1)$$

$$(2, x^{2}, 1) = fef$$

$$(2, x, 2) = fef$$

$$(2, x, 1) = fe$$

$$(2, 1, 2) = \mathbf{f} = fh = gf$$

$$(2, x^{-1}, 2) = gh$$

$$(2, x^{-1}, 2) = gh$$

$$(2, x^{-1}, 1) = ghg$$

$$(2, x^{-2}, 2) = ghgh$$

To see that \overline{E} is thus an ordered semigroup, suppose that we have $(i, x^n, \lambda) \leq (i', x^m, \lambda')$ and compare

$$(i, x^{n}, \lambda)(j, x^{k}, \mu) = (i, x^{n}p_{\lambda j}x^{k}, \mu) = (i, \alpha, \mu),$$

$$(i', x^{m}, \lambda')(j, x^{k}, \mu) = (i', x^{m}p_{\lambda' j}x^{k}, \mu) = (i', \beta, \mu).$$

If n = m, $i \le i'$ and $\lambda \le \lambda'$ then clearly $\alpha \le \beta$ and $(i, \alpha, \mu) \le (i', \beta, \mu)$. If n + 1 = m and $i \le i'$ then $\alpha = \beta$ when $p_{\lambda j} = 1$ and $p_{\lambda' j} = x^{-1}$, in which case $(i, \alpha, \mu) \le (i', \beta, \mu)$; otherwise, $\alpha = x^a < x^b = \beta$ with $a + 1 \le b$ in which case $(i, \alpha, \mu) \le (i', \beta, \mu)$. If n + 1 = m and $\lambda \le \lambda'$, or if n + 1 < m, then again we have $\alpha = x^a < x^b = \beta$ with $a + 1 \le b$ in which case $(i, \alpha, \mu) \le (i', \beta, \mu)$. If n + 1 = m and $\lambda \le \lambda'$, or if n + 1 < m, then again we have $\alpha = x^a < x^b = \beta$ with $a + 1 \le b$ in which case $(i, \alpha, \mu) \le (i', \beta, \mu)$. Thus we see that the multiplication in \overline{E} is compatible on the right with the order; similarly, it is compatible on the left.

The ordered regular semigroup \overline{E} is principally ordered. In fact, for every $n \in \mathbb{Z}$ we have

$$(1, x^{n}, 1)^{*} = (1, x^{-n+2}, 1);$$

$$(1, x^{n}, 2)^{*} = (2, x^{-n+1}, 1);$$

$$(2, x^{n}, 1)^{*} = (1, x^{-n+1}, 2);$$

$$(2, x^{n}, 2)^{*} = (2, x^{-n}, 2).$$

To see the first of these, for example, observe that

 $(1, x^n, 1)(1, x^{-n+2}, 1)(1, x^n, 1) = (1, x^n, 1)$

whereas for the element $(2, x^{-n+1}, 2)$, which is directly opposite $(1, x^{-n+2}, 1)$ in the Hasse diagram, we have

$$(1, x^n, 1)(2, x^{-n+1}, 2)(1, x^n, 1) = (1, x^{n+1}, 1) > (1, x^n, 1).$$

It follows from this that

$$(1, x^n, 1)^* = (1, x^{-n+2}, 1).$$

Similarly, we have the other formulae. Note that in this example we have $a = a^{**}$ for every $a \in \overline{E}$.

Simple calculations show that in both Examples 2 and 3 we have $x^\circ = x^*$ for every x. It is easy to construct further examples in which this identity does not hold.

EXAMPLE 4. Consider the smallest non-orthodox naturally ordered regular semigroup with a greatest idempotent (see, for example, [3]). This is the semigroup N_5 described by the following Hasse diagram and Cayley table:

, ^u		u	е	f	а	b
$e \swarrow f$	u	u	u	f	\overline{f}	b
I ^u b	е	e	е	а	а	b
	f	u	b	f	b	b
	a	е	b	а	b	b
	b	b	b	b	b	b

It is readily seen that xux = x for every $x \in N_5$ and so N_5 is principally ordered with $x^* = u$ for every x. In fact, N_5 is perfect Dubreil-Jacotin.

With \overline{E} as in Example 3, define a multiplication on the cartesian ordered set $N_5 \times \overline{E}$ by

$$(p, x)(q, y) = (pq, xy)$$

Then $N_5 \times \overline{E}$ is a principally ordered regular semigroup in which

$$(p, x)^* = (u, x^*).$$

In this semigroup, we have

$$(p, x)^{\circ} = (p, x)^{*}(p, x)(p, x)^{*} = (upu, x^{\circ}) = (upu, x^{*}).$$

It follows that, for example,

$$(b, x)^{\circ} = (b, x^{*}) < (u, x^{*}) = (b, x)^{*}.$$

Note also that

$$(p, x)^{**} = (u, x), \qquad (p, x)^{\infty} = (upu, x)$$

and so in $N_5 \times \overline{E}$ we have $x \neq x^{**}$ and $x \neq x^{\infty}$ in general.

Bearing in mind Example 1 above, we recall from [2] that if S is a perfect Dubreil-Jacotin semigroup then two particular features of S are, on the one hand, that S has a greatest idempotent and, on the other, that the assignment $x \mapsto x^*$ is antitone. In a general principally ordered regular semigroup, these two properties are independent.

To see this, we refer first to Example 3. Here we have a principally ordered regular semigroup in which the idempotents form the 4-element crown

and so there is no greatest idempotent. But, as is readily verified, the assignment $x \mapsto x^*$ is antitone on \overline{E} .

To obtain an example of a principally ordered regular semigroup that has a greatest idempotent and in which $x \mapsto x^*$ is not antitone, we consider a subsemigroup of that of Example 2.

EXAMPLE 5. Let k be a fixed positive integer and consider the subset T_k of the semigroup S of Example 2 given by

$$T_k = \{(x, y, z) \in \mathbb{Z}^3; 0 \le y \le x \le k\}.$$

Then it is readily seen that T_k is a principally ordered regular semigroup in which $(x, y, z)^* = (x, x, -z)$. Clearly, T_k has a greatest idempotent, namely the element (k, k, 0), and $x \mapsto x^*$ is not antitone.

Our main objective now is to show that for a principally ordered regular semigroup S the conditions (a) S has a greatest idempotent, and (b) the mapping $x \mapsto x^*$ is antitone, are necessary and sufficient for S to be a perfect Dubreil-Jacotin semigroup. For this purpose, we first establish the following result.

THEOREM 1. Let S be a principally ordered regular semigroup in which $x \mapsto x^*$ is antitone. Then S is naturally ordered.

Proof. Let \leq denote the natural order on the idempotents, so that

$$e \leq f \Leftrightarrow ef = fe = e.$$

Suppose that $e \le f$. Then these equalities give fef = e and efe = e. From the latter we obtain $f \le e^*$ whence, by (6) and the fact that $x \mapsto x^*$ is antitone, we have $e \le e^{**} \le f^*$. It follows that $e = fef \le ff^*f = f$. Thus the order on S extends the natural order on the idempotents and so S is naturally ordered.

COROLLARY. Let S be a principally ordered regular semigroup in which $x \mapsto x^*$ is antitone. Then S is locally inverse.

Proof. This follows immediately from [6, Proposition 1.4].

We recall now that if E is the set of idempotents of S and if $e, f \in E$ then the sandwich set S(e, f) is defined by

$$S(e, f) = \{g \in E; g = ge = fg, egf = ef\}.$$

A characteristic property of locally inverse semigroups is that sandwich sets are singletons. We identify them in the present situation as follows.

THEOREM 2. Let S be a principally ordered regular semigroup in which $x \mapsto x^*$ is antitone, and let $e, f \in E$. Then $S(e, f) = \{f(ef)^\circ e\}$.

Proof. Observe that if $g = f(ef)^{\circ}e$ then $g^2 = g = ge = fg$ and egf = ef.

Since the structure of naturally ordered regular semigroups with a greatest idempotent has been completely determined in [3], we shall focus our attention on principally ordered regular semigroups in which $x \mapsto x^*$ is antitone. Unless otherwise specified, S will henceforth denote such a semigroup. For such a semigroup, we now list properties that will lead us to our goal.

$$(\forall e \in E) \ e^{\infty} \in E \cap V(e) \tag{12}$$

In fact, this was shown by Saito [7, Proposition 2.2] to hold in any naturally ordered regular semigroup in which greatest inverses exist, and therefore holds in the present situation by Theorem 1 and property (3) above.

$$(\forall x, y \in S) \quad xy(xy)^{\circ} \le xx^{\circ}, \qquad (xy)^{\circ}xy \le y^{\circ}y.$$
(13)

From $y(xy)^{\circ}xy(xy)^{\circ} = y(xy)^{\circ}$ we deduce that

$$x \leq [y(xy)^\circ]^*,$$

and so, by (6) and the fact that $x \mapsto x^*$ is antitone,

$$y(xy)^{\circ} \leq [y(xy)^{\circ}]^{**} \leq x^{*}.$$

It follows that $xy(xy)^{\circ} \le xx^{*} = xx^{\circ}$. Similarly, we can show that $(xy)^{\circ}xy \le y^{\circ}y$.

$$(\forall x, y \in S) \quad (xy)^{\circ} = (x^{\circ}xy)^{\circ}x^{\circ} = y^{\circ}(xyy^{\circ})^{\circ}.$$
(14)

Since, by (5), x and $x^{\circ}x$ are \mathscr{L} -related, and since \mathscr{L} is right compatible with multiplication, we have that xy and $x^{\circ}xy$ are \mathscr{L} -related, whence

(a)
$$(xy)^{\circ}xy = (x^{\circ}xy)^{\circ}x^{\circ}xy$$
.

It follows that

$$xy \cdot (x^{\circ}xy)^{\circ}x^{\circ} \cdot xy = xy(xy)^{\circ}xy = xy$$

and so

$$(x^{\circ}xy)^{\circ}x^{\circ} \leq (xy)^{*}$$

Using this, we see that

$$xy(xy)^{\circ} = xy(xy)^{\circ}xy(xy)^{\circ}$$

= $xy(x^{\circ}xy)^{\circ}x^{\circ}xy(xy)^{\circ}$ by (a)
 $\leq xy(x^{\circ}xy)^{\circ}x^{\circ}xx^{\circ}$ by (13)
= $xy(x^{\circ}xy)^{\circ}x^{\circ}$
 $\leq xy(xy)^{*}$
= $xy(xy)^{\circ}$,

whence we have

(b)
$$xy(xy)^\circ = xy(x^\circ xy)^\circ x^\circ$$
.

It now follows that

$$(xy)^{\circ} = (xy)^{\circ}xy(xy)^{\circ}$$

= $(x^{\circ}xy)^{\circ}x^{\circ}xy(xy)^{\circ}$ by (a)
= $(x^{\circ}xy)^{\circ}x^{\circ}xy(x^{\circ}xy)^{\circ}x^{\circ}$ by (b)
= $(x^{\circ}xy)^{\circ}x^{\circ}$.

Similarly, we can show that $(xy)^\circ = y^\circ (xyy^\circ)^\circ$.

$$(\forall x \in S) \quad (xx^{\circ})^{\circ} = x^{\infty}x^{\circ}, \qquad (x^{\circ}x)^{\circ} = x^{\circ}x^{\infty}.$$
(15)

Take $y = x^{\circ}$ in the first equality of (14), and $x = y^{\circ}$ in the second.

REMARK. Note that (13) and (14) were established by Saito [7] in the case of a naturally ordered regular semigroup with greatest inverses and in which Green's relations \mathcal{R} and \mathcal{L} are regular, in the sense that

$$x \le y \Rightarrow xx^{\circ} \le yy^{\circ}$$
 and $x \le y \Rightarrow x^{\circ}x \le y^{\circ}y$.

Later, we shall see the significance of the regularity of Green's relations \mathscr{R} and \mathscr{L} in the present context of a principally ordered regular semigroup in which the mapping $x \mapsto x^*$ is antitone.

If
$$e \in E$$
 and $f^2 \le f$ then $e \le f \Rightarrow e = efe.$ (16)

This follows from the observation that

$$e \leq f \Rightarrow fefef \leq f^{5} \leq f$$

$$\Rightarrow efe \leq f^{*} \leq e^{*}$$

$$\Rightarrow efe \leq ee^{*}e = e$$

$$\Rightarrow e \leq f \leq e^{*}$$

$$\Rightarrow e \leq efe \leq ee^{*}e = e$$

$$\Rightarrow e = efe.$$

$$(\forall e \in E) e^{\circ} \in E \Leftrightarrow e^{*} \in E.$$
(17)

For every $e \in E$ we have

$$e^{\circ} \in E \Leftrightarrow e^{\circ}e^{\circ} = e^{\circ}$$

 $\Leftrightarrow e^{*}ee^{*} \cdot e^{*}ee^{*} = e^{*}ee^{*}$
 $\Leftrightarrow ee^{*}e^{*}e = e.$

Thus $e^{\circ} \in E$ implies that $e^*e^* \leq e^*$. But $e^{\circ} \in E$ also implies, by (5), (7) and (1), that

$$e^{\circ} \le e^{\circ\circ}e^{\circ} = e^{\circ*}e^{\circ} = e^{**}e^{\circ} \le e^{**}e^{*}$$

whence, by (16),

 $e^{**}e^* \le e^{\circ*} = e^{**} \le e^*$,

the last inequality following from the fact that $e \le e^*$. It follows that

 $e^* = e^*e^{**}e^* \le e^*e^*$.

Thus $e^{\circ} \in E$ implies that $e^* \in E$. Conversely, if $e^* \in E$ then $ee^*e^*e = ee^*e = e$ and, from the above, we deduce that $e^{\circ} \in E$.

For every $x \in S$ we now consider the elements

$$\alpha_x = x^{\circ\circ}x^{\circ} \in E, \qquad \beta_x = x^{\circ}x^{\circ\circ} \in E.$$

($\forall x \in S$) $\alpha_x = \alpha_x^{\circ} \le \alpha_x^* \in E, \qquad \beta_x = \beta_x^{\circ} \le \beta_x^* \in E.$ (18)

Using (15) and (11), we observe that

$$\alpha_x \leq \alpha_x \alpha_x^{\circ} = x^{\infty} x^{\circ} (x^{\infty} x^{\circ})^{\circ} = x^{\infty} x^{\circ} x^{\infty} x^{\circ} = x^{\infty} x^{\circ} = \alpha_x,$$

https://doi.org/10.1017/S0017089500009435 Published online by Cambridge University Press

356

PRINCIPALLY ORDERED REGULAR SEMIGROUPS

and so $\alpha_x = \alpha_x \alpha_x^{\circ}$. Similarly, we have $\alpha_x = \alpha_x^{\circ} \alpha_x$. It follows that

$$\alpha_x = \alpha_x \alpha_x^{\circ} = \alpha_x^{\circ} \alpha_x \alpha_x^{\circ} = \alpha_x^{\circ},$$

and so $\alpha_x^{\circ} \in E$. It now follows by (17) that $\alpha_x^* \in E$.

$$\alpha_x^* = (xx^*)^*$$
 is the greatest idempotent above xx^* , and
 $\beta_x^* = (x^*x)^*$ is the greatest idempotent above x^*x . (19)

Clearly, $xx^* = xx^\circ \le x^{\circ\circ}x^\circ = \alpha_x \le \alpha_x^*$ where, by (18), $\alpha_x^* \in E$. Suppose now that $g \in E$ is such that $xx^* \le g$. Then we have, using (7) and (15),

$$g^{**} \ge (xx^*)^{**} = (xx^\circ)^{\circ*} = (x^{\circ\circ}x^\circ)^* = \alpha_x^* \ge \alpha_x$$

and so $g \le g^* \le \alpha_x^*$. Thus α_x^* is the greatest idempotent above xx^* .

The maximality of the idempotent α_x^* implies that

$$\alpha_x^* = \alpha_x^* \alpha_x^{**} = \alpha_x^{**} \alpha_x^*$$

and so

$$\alpha_x^{**} = \alpha_x^{**} \alpha_x^* \alpha_x^{**} = \alpha_x^* \alpha_x^{**} = \alpha_x^*$$

It follows by (7), (8), and (15) that

$$\alpha_x^* = \alpha_x^{**} = (x^{\infty}x^{\circ})^{**} = (xx^{\circ})^{\circ**} = (xx^{\circ})^{***} = (xx^{\circ})^* = (xx^{*})^*.$$

The statement concerning β_x^* is proved similarly.

$$(\forall e, f \in E) \quad S(e, f)^* = \max\{x \in S; exf \le (ef)^{**}\}.$$
 (20)

By Theorem 2, $S(e, f) = \{f(ef)^{\circ}e\} = \{g\}$, say. Then

$$x \le g^* \Rightarrow gxg \le g$$

$$\Rightarrow f(ef)^\circ e \cdot x \cdot f(ef)^\circ e \le f(ef)^\circ e$$

$$\Rightarrow ef(ef)^* \cdot exf \cdot (ef)^* ef \le ef$$

$$\Rightarrow (ef)^* exf(ef)^* \le (ef)^*$$

$$\Rightarrow exf \le (ef)^{**}.$$

Conversely, suppose that $exf \le (ef)^{**} = (ef)^{\circ*}$. Then

$$gxg = f(ef)^{\circ}e \cdot x \cdot f(ef)^{\circ}e$$

$$\leq f(ef)^{\circ}(ef)^{\circ*}(ef)^{\circ}e$$

$$= f(ef)^{\circ}e$$

$$= g,$$

and hence $x \leq g^*$.

Using the above results, we can now establish the following:

THEOREM 3. Let S be a principally ordered regular semigroup in which $x \mapsto x^*$ is antitotone. Then the following statements are equivalent:

- (*i*) $(\forall e \in E) e^* = e^{**};$
- (ii) $(\forall e \in E) e^* \in E;$
- (iii) S has a greatest idempotent;
- (iv) S is a perfect Dubreil-Jacotin semigroup.

Proof. (i) \Rightarrow (ii): If $e^* = e^{**}$ then $e^*e^*e^* \le e^*$. But, by (16), $e \le e^*e^{**}$ gives $e^*e^{**} \le e^*$, so we have $e^* = e^*e^{**}e^* \le e^*e^*$ and so

$$e^* \le e^* e^* \le e^* e^* e^* \le e^*,$$

whence $e^* = e^*e^*$.

 $(ii) \Rightarrow (iii)$: If (ii) holds then it is clear from (16) that, for every $e \in E$, e^* is the greatest idempotent above e. Suppose now that $e, f \in E$. Then, by (ii), we have $e^*, f^* \in E$. Observe now from (20) and (ii) that $e^* \leq S(e^*, f^*)^* \in E$ and $f^* \leq S(e^*, f^*)^* \in E$. The maximiality of e^* , f^* now gives $e^* = S(e^*, f^*)^* = f^*$. Since this holds for all $e, f \in E$, it follows that S has a greatest idempotent.

 $(iii) \Rightarrow (iv)$: Suppose now that ξ is the greatest idempotent in S. Then if $x \in S$ is such that $x^2 \leq x$ we have

$$xxx^*x = xx \leq x$$
,

which gives $xx^* \le x^*$ and hence

$$x = xx^*x \le x^*x \le \xi.$$

Thus $\xi = \max\{x \in S; x^2 \le x\}.$

Now since ξ is the greatest idempotent of S it follows from (19) that $\xi = \alpha_x^*$ for every $x \in S$. Thus we have

$$x^*\xi = x^*\alpha_x^* = x^*(xx^*)^*$$

and hence

$$xx^{*}\xi xx^{*} = xx^{*}(xx^{*})^{*}xx^{*} = xx^{*}$$

and consequently

 $xx^*\xi x = x.$

This gives on the one hand $x^*\xi \le x^*$. But, on the other hand, we have $x^* = x^*x^{**}x^* \le x^*\xi$. Hence we see that $x^*\xi = x^*$ for all $x \in S$, and similarly $\xi x^* = x^*$.

Thus we see that conditions (β) , (γ) of [2, Theorem 1] hold and therefore S is a perfect Dubreil-Jacotin semigroup.

 $(iv) \Rightarrow (i)$: This is immediate from the fact that in a perfect Dubreil-Jacotin semigroup we have $x^* = \xi : x$ and, for every idempotent $e, e^* = e^{**}$ (see [2, (8), (9)]).

THEOREM 4. Let S be a principally ordered regular semigroup in which $x \mapsto x^*$ is antitone. Then $S^\circ = \{x^\circ; x \in S\}$ is a subsemigroup of S with the same properties.

Proof. Let $a, b \in S^{\circ}$ so that, by (11), $a = a^{\circ\circ}$ and $b = b^{\circ\circ}$. By (13), we have $ab(ab)^{\circ} \leq aa^{\circ}$ and so, by (19),

$$\alpha_a^* = (aa^\circ)^* \le [ab(ab)^\circ]^* = [ab(ab)^*]^* = \alpha_{ab}^*$$

By the maximality of α_a^* , it follows that

$$(aa^{\circ})^* = [ab(ab)^{\circ}]^*.$$

358

Consequently, we have

$$(ab)^{\infty}(ab)^{\circ}ab = [ab(ab)^{\circ}]^{\circ}ab \quad by (15)$$
$$= [ab(ab)^{\circ}]^{\circ}ab(ab)^{\circ}ab$$
$$= [ab(ab)^{\circ}]^{*}ab(ab)^{\circ}ab$$
$$= (aa^{\circ})^{*}ab$$
$$= (aa^{\circ})^{*}aa^{\circ}ab$$
$$= (aa^{\circ})^{\circ}ab$$
$$= (aa^{\circ})^{\circ}ab$$
$$= a^{\circ\circ}a^{\circ}ab \quad by (15)$$
$$= ab \quad since \quad a = a^{\circ\circ}.$$

and similarly $ab = ab(ab)^{\circ}(ab)^{\circ \circ}$. It follows that

$$ab = (ab)^{\circ\circ}(ab)^{\circ}ab(ab)^{\circ}(ab)^{\circ\circ} = (ab)^{\circ\circ},$$

and so $ab \in S^{\circ}$. Thus S° is a subsemigroup. It is principally ordered with $x \mapsto x^{*}$ antitone since for every $x^{\circ} \in S^{\circ}$ we have, by (7) and (9), $x^{\circ *} = x^{**} = x^{*\circ} \in S^{\circ}$.

THEOREM 5. Let S be a principally ordered regular semigroup in which $x \mapsto x^*$ is antitone. Then the following statements are equivalent:

- (1) S° is orthodox;
- (2) S° is inverse;
- (3) S° has a greatest idempotent;
- (4) S is perfect Dubreil-Jacotin.

Proof. (1) \Rightarrow (4): Suppose that S° is orthodox and let $e \in E$. Then, observing that $e^{\circ}e^{\circ} \in E \cap S^{\circ}$ and $e^{\circ}e^{\circ} \in E \cap S^{\circ}$, we have, using (12),

$$e^{\circ} = e^{\circ}e^{\circ\circ}e^{\circ} = e^{\circ}e^{\circ\circ} \cdot e^{\circ}e^{\circ} \in E.$$

It follows by (17) that $e^* \in E$ and then by Theorem 3 that S is a perfect Dubreil-Jacotin semigroup.

(4) \Rightarrow (2): In a perfect Dubreil-Jacotin semigroup we have $x^* = \xi : x$ and $x^\circ = (\xi : x)x(\xi : x)$. If $e \in E$ then $\xi : e = \xi$ and so $e^\circ = \xi e \xi$. Since, as shown in [2], we have $e = ee^*e = e\xi e$, it follows that $e^\circ \in E \cap S^\circ$ and that $e^\circ = e^\circ$. Now if f is an idempotent in S° then clearly $f = f^\circ = f^\circ$, and so every idempotent $f \in S^\circ$ is of the form g° for some idempotent $g(=f^\circ) \in S$. Now since $\xi S \xi$ is inverse we have $e^\circ f^\circ = f^\circ e^\circ$ for all $e, f \in E$. Consequently, the idempotents of S° commute and so S° is inverse.

 $(2) \Rightarrow (1)$: this is clear.

 $(3) \Rightarrow (4)$: For every $e \in E$ we have $e \le e^{\infty} \in E$, by (12). Thus, if S^o has a greatest idempotent then so must S, whence S is perfect Dubreil-Jacotin by Theorem 3.

(4) \Rightarrow (3): If S is perfect Dubreil-Jacotin then, by [2], $\xi = \xi^{\circ} \in S^{\circ}$ and is the greatest idempotent.

EXAMPLE 6. In the semigroup $N_5 \times \overline{E}$ of Example 4 we have $(p, x)^\circ = (upu, x^*)$. It follows that

$$(N_5 \times \bar{E})^\circ = \{(b, x^*), (u, x^*); x \in \bar{E}\} = \{b, u\} \times \bar{E},\$$

which is not orthodox.

For every idempotent $e \in S$ we know that $e \leq e^{\circ} \leq e^{*}$. We now investigate some consequences of equality occurring.

An idempotent e is maximal if and only if
$$e = e^*$$
. (21)

If e is a maximal idempotent then clearly $e = ee^\circ = e^\circ e$ and so $e^\circ = e^\circ ee^\circ = ee^\circ = e \in E$. It follows by (17) that $e^* \in E$ and hence that $e = e^*$ by the maximality of e in E. Conversely, if $e = e^*$ then $e = ee^*$ and so

$$e = e^* = (ee^*)^* = \alpha_e^*$$

whence, by (19), e is a maximal idempotent.

If
$$e, f \in E$$
 are such that $e = e^{\circ}$ and $f = f^{\circ}$ then
 $(ef)^{\circ} = S(e, f) \in E.$
(22)

Two applications of (14) give

$$(ef)^{\circ} = f^{\circ}(e^{\circ}eff^{\circ})^{\circ}e^{\circ} = f(ef)^{\circ}e = S(e, f) \in E.$$

If e, f are maximal idempotents then we have the Hasse diagram (23)

By (21), we have $e = e^{\circ} = e^{*}$ and $f = f^{\circ} = f^{*}$. Now since the idempotent S(e, f) absorbs eon the right we have $e \cdot S(e, f) \in E$, and indeed $e \cdot S(e, f) \leq e$ whence $e \cdot S(e, f) \leq e$ by Theorem 1. Thus $e \cdot S(e, f) \cdot e \leq e$ and so $S(e, f) \leq e^{*} = e$. Similarly, we have $S(e, f) \leq f$. As $S(e, f) \in E$, we deduce that $S(e, f) \leq ef$. By Theorem 4, $ef = e^{\circ}f^{\circ} \in S^{\circ}$ and so $ef = (ef)^{\circ\circ}$. Now, by (22) we have $S(e, f) = (ef)^{\circ} \leq e$, which gives $e = e^{*} \leq S(e, f)^{*} = (ef)^{\circ*} = (ef)^{**}$ by (7), and then $(ef)^{*} \leq e^{*} = e$. Similarly, $(ef)^{*} \leq f$. Consider now the idempotent $(ef)^{*}ef$. We have

(a)
$$(ef)^*ef \leq e \cdot ef = ef$$
,

and, by (13),

$$(b) \quad (ef)^*ef \le f^*f = f.$$

Similarly, $ef(ef)^* \le ef$ and $ef(ef)^* \le e$. Finally, since $(ef)^\circ = S(e, f) \in E$ we have

$$(ef)^{\circ} \leq (ef)^{\circ}(ef)^{\circ\circ} = (ef)^{\circ}ef = (ef)^{*}ef$$

and likewise $(ef)^{\circ} \leq ef(ef)^{*}$. The diagram now follows by (1) and (10).

https://doi.org/10.1017/S0017089500009435 Published online by Cambridge University Press

THEOREM 6. Let S be a principally ordered regular semigroup in which $x \mapsto x^*$ is antitone. If S is not a perfect Dubreil-Jacotin semigroup then S necessarily contains a crown of idempotents of the form

in which e, f are maximal.

Moreover, if these are the only idempotents in S then they generate the boot-lace semigroup.

Proof. If S is not perfect Dubreil-Jacotin then, by (19) and Theorem 3, S must contain at least two maximal idempotents e, f. Now for these idempotents we must have S(e, f) incomparable to S(f, e). For example, if we had

$$S(e, f) = (ef)^{\circ} \le (fe)^{\circ} = S(f, e)$$

then it would follow by (13) that

$$fe(ef)^{\circ} \leq fe(fe)^{\circ} \leq ff^{\circ} = f$$

and consequently

$$fef = feS(e, f)f = fe(ef)^{\circ}f \leq f,$$

which gives the contradiction $e \le f^* = f$. It now follows by (23) and the corresponding diagram involving the product *fe* that *S* contains a 4-element crown of idempotents as described.

Suppose now that these are the only idempotents in S. Writing $S(e, f) = (ef)^\circ = g$ and $S(f, e) = (fe)^\circ = h$, we clearly have g = fg = ge and h = hf = eh. Now the idempotent $(ef)^\circ ef$ cannot be equal to $g = (ef)^\circ$, for if this were so we would have

$$ef = ef(ef)^{\circ}ef = efg = ef(ef)^{\circ} \in E$$

whence $ef \le (ef)^\circ = g \le e$ which gives $efe \le e$ and the contradiction $f \le e^* = e$. It follows that we must have $(ef)^\circ ef = f$ and therefore

$$gf = (ef)^{\circ}f = (ef)^{\circ}ef = f.$$

Likewise, $fe(fe)^\circ = f$ and

$$fh = f(fe)^\circ = fe(fe)^\circ = f.$$

In a similar way we can show that eg = he = e.

Observe now that $fe \ge he = e$, $fe \ge fh = f$ and $ef \ge eg = e$, $ef \ge gf = f$. Moreover, e, f, ef, fe are distinct since otherwise $ef \in E$ and this implies, by the maximality of e and f, the contradiction e = f. Next, observe that $efe \ge ef$, fe and $fef \ge ef$, fe with ef, fe, efe, fef distinct (since otherwise we have that $efe \in E$ whence the contradiction e = f). Continuing this argument, and doing so similarly with the minimal idempotents g and h, we see that the semigroup generated by the idempotents is the boot-lace semigroup as described in Example 3.

T. S. BLYTH AND G. A. PINTO

COROLLARY. Let PA denote the class of principally ordered regular semigroups in which $x \mapsto x^*$ is antitone and let PDJ denote the class of perfect Dubreil-Jacotin semigroups. Then the boot-lace is the semigroup in PA\PDJ with the least number of idempotents.

Further properties concerning the subsemigroup \overline{E} generated by the set E of idempotents are the following. Note that if $x \in \overline{E}$ then $x^{\circ} \in \overline{E}$; this follows by [5].

THEOREM 7. Let S be a principally ordered regular semigroup in which $x \mapsto x^*$ is antitone. Then S is a perfect Dubreil-Jacotin semigroup if and only if \tilde{E} is periodic.

Proof. \Rightarrow : If S is perfect Dubreil-Jacotin then for every $e \in E$ we have $\xi : e = \xi$. It follows by [1, Theorem 25.5] that $\xi : x = \xi$ for every $x \in \overline{E}$. Thus, for every $x \in \overline{E}$, we have

$$x = x(\xi : x)x = x\xi x,$$

and so ξ is a medial idempotent in the sense of [4], by Theorem 1.1 of which it follows that \overline{E} is periodic.

 \Leftarrow : Let \overline{E} be periodic and let e, f be maximal idempotents of S. Observe that by (a) of (23) we have

$$ef = ef(ef)^n ef \le (ef)^2.$$

As \overline{E} is periodic, it follows that for some positive integer *n* we have

$$ef \leq (ef)^2 \leq \ldots \leq (ef)^n \in E.$$

Consequently, by (a), (b) of (23), by (16), and by the maximality of f, we see that

$$ef \le (ef)^n \le [(ef)^* ef]^* = f^* = f,$$

and similarly $ef \le e$. By (a) again, we then have $(ef)^* ef \le e$ whence

$$e = e^* \leq [(ef)^*ef]^* = f^* = f_*$$

The maximality of e now gives e = f. Since this holds for all maximal idempotents e, f it follows that S has a greatest idempotent and so, by Theorem 3, is perfect Dubreil-Jacotin.

COROLLARY. If \overline{E} is finite then S is perfect Dubreil-Jacotin.

Proof. If \overline{E} is finite then it is necessarily periodic.

Finally, we turn our attention to the regularity of Green's relations \mathcal{L} and \mathcal{R} . Here we have the following characterisation.

THEOREM 8. Let S be a principally ordered regular semigroup in which $x \mapsto x^*$ is antitone. Then the following statements are equivalent:

- (1) \mathcal{L} is regular on \overline{E} ;
- (2) \Re is regular on \overline{E} ;

(3) S is a perfect Dubreil-Jacotin semigroup.

Proof. (1) \Rightarrow (3): Suppose that \mathscr{L} is regular on \overline{E} . If $e, f \in E$ are such that $e \leq f$ then $e^{\circ}e \leq f^{\circ}f$ and so

$$\beta_f^* = (f^\circ f)^* \le (e^\circ e)^* = \beta_e^*,$$

where $f \le f^{\circ}f \le \beta_{f}^{*} \le \beta_{e}^{*}$. Consequently, β_{e}^{*} is the greatest idempotent above *e*. It follows that $\alpha_{e}^{*} \le \beta_{e}^{*}$ whence, by the maximality of α_{e}^{*} , we have

$$\alpha_e^* = \beta_e^* = \gamma_e, \text{ say.}$$

Now $e \leq \gamma_e$ gives, by (16), $e = e\gamma_e e$ and so $(e\gamma_e)^2 = e\gamma_e \Re e$. But ee° is the greatest idempotent in the \Re -class of e, and $ee^\circ \leq e\gamma_e$. Hence $ee^\circ = e\gamma_e$, whence $e^\circ = e^\circ e\gamma_e$. Similarly, we have $e^\circ e = \gamma_e e$ and so $e^\circ = \gamma_e ee^\circ$. It now follows that

$$e^{\circ}e^{\circ} = e^{\circ}e\gamma_e$$
, $\gamma_e ee^{\circ} = e^{\circ}$, $e\gamma_e e$, $e^{\circ} = e^{\circ}ee^{\circ} = e^{\circ}e^{\circ}$

and so $e^{\circ} \in E$. By (17) we deduce that $e^* \in E$ and then, by Theorem 3, that S is perfect Dubreil-Jacotin.

(3) \Rightarrow (1): If S is perfect Dubreil-Jacotin then, denoting the elements of \overline{E} by \overline{x} , we have

$$\bar{e} \leq \bar{f} \Rightarrow \bar{e}^{\circ}\bar{e} = \bar{e}^{*}\bar{e} = \xi\bar{e} \leq \xi\bar{f} = \bar{f}^{\circ}\bar{f},$$

so that \mathscr{L} is regular on \overline{E} .

The proof of $(1) \Leftrightarrow (2)$ is similar.

We remark here that although, in a perfect Dubreil-Jacotin semigroup S, Green's relations \mathcal{R} and \mathcal{L} are regular on the subsemigroup generated by the idempotents, they are not in general regular on S. This is illustrated in the following example.

EXAMPLE 7. Consider a fixed integer k > 1. For every $n \in \mathbb{Z}$ let n_k denote the largest multiple of k that is less than or equal to n, so that we have

$$n_k = tk \le n < (t+1)k.$$

It is readily seen that \mathbb{Z} , under the usual order and the law of composition described by $(m, n) \mapsto m + n_k$, is a principally ordered regular semigroup in which $n^* = -n_k + k - 1$. The mapping $x \mapsto x^*$ is then antitone. Since the idempotents are $0, 1, \ldots, k - 1$ it follows that this semigroup is perfect Dubreil-Jacotin.

Consider now the cartesian ordered semigroup $N_5 \times \mathbb{Z}$ where N_5 is as in Example 4. This is clearly non-orthodox and perfect Dubreil-Jacotin. By Theorem 8, \mathcal{R} and \mathcal{L} are regular on the subsemigroup generated by the idempotents. Now for every $(x, n) \in N_5 \times \mathbb{Z}$ we have

$$(x, n)(x, n)^* = (x, n)(u, -n_k + k - 1) = (xu, n - n_k);$$

$$(x, n)^*(x, n) = (u, -n_k + k - 1)(x, n) = (ux, k - 1).$$

It is clear from these equalities that \mathscr{L} is regular on $N_5 \times \mathbb{Z}$, whereas \mathscr{R} is not.

REFERENCES

1. T. S. Blyth and M. F. Janowitz, Residuation Theory, Pergamon Press, 1972.

2. T. S. Blyth, Perfect Dubreil-Jacotin semigroups. Proc. Roy. Soc. Edinburgh, 78A, 1977, 101-104.

3. T. S. Blyth and R. McFadden, Naturally ordered regular semigroups with a greatest idempotent. Proc. Roy. Soc. Edinburgh, 91A, 1981, 107-122.

4. T. S. Blyth and R. McFadden, On the construction of a class of regular semigroups. *Journal of Algebra*, 81, 1983, 1-22.

5. D. G. Fitz-Gerald, On inverses of products of idempotents in regular semigroups. J. Austral. Math. Soc., 13, 1972, 335-337.

6. D. B. McAlister, Regular Rees matrix semigroups and Dubreil-Jacotin semigroups. J. Austral. Math. Soc., 31, 1981, 325-336.

7. Tatsuhiko Saito, Naturally ordered regular semigroups with maximum inverses. Proc. Edinburgh Math. Soc., 32, 1989, 33-39.

Department of Mathematical Sciences, University of St Andrews, St Andrews KY16 9SS, Fife, Scotland. Departamento de Matematica, Universidade Nova de Lisboa, 2825 Monte da Caparica, Portugal.

364