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Abstract

Thurston introduced shear deformations (cataclysms) on geodesic laminations–
deformations including left and right displacements along geodesics. For hyperbolic
surfaces with cusps, we consider shear deformations on disjoint unions of ideal
geodesics. The length of a balanced weighted sum of ideal geodesics is defined and
the Weil–Petersson (WP) duality of shears and the defined length is established. The
Poisson bracket of a pair of balanced weight systems on a set of disjoint ideal geodesics
is given in terms of an elementary 2-form. The symplectic geometry of balanced weight
systems on ideal geodesics is developed. Equality of the Fock shear coordinate algebra
and the WP Poisson algebra is established. The formula for the WP Riemannian pairing
of shears is also presented.

1. Introduction

As a generalization of the Fenchel–Nielsen twist deformation for a simple closed curve, Thurston
introduced earthquake deformations for measured geodesic laminations. Later in his study of
minimal stretch maps, Thurston generalized earthquakes to shears (cataclysms), deformations
incorporating left and right displacements [Thu98]. Bonahon subsequently developed the
fundamental theory of shear deformations in a sequence of papers [Bon96, Bon97a, Bon97b].
At the same time, Penner developed a deformation theory of Riemann surfaces with cusps by
considering shear deformations on disjoint ideal geodesics triangulating a surface [Pen87, Pen92,
Pen12]. More recently shear deformations play a basic role in the Fock and Goncharov work on
the quantization of Teichmüller space [FG07, FC99, FG06] and in the Kahn and Markovic work
on the Weil–Petersson Ehrenpreis conjecture [KM08].

The Weil–Petersson (WP) geometry of Teichmüller space is recognized as corresponding to
the hyperbolic geometry of Riemann surfaces. For example, twice the dual in the WP Kähler
form of a Fenchel–Nielsen twist deformation is the differential of the associated geodesic-length
function. Also for example, the WP Riemannian pairing of twist deformations is given by a sum
of lengths of orthogonal connecting geodesics, see Theorem 3 and [Rie05]. An infinitesimal shear
on a disjoint union of ideal geodesics is specified by weights on the geodesics with vanishing sum
of weights for the edges entering each cusp. We define the length of a balanced sum of ideal
geodesics and find that twice the dual in the WP Kähler form of a shear is the differential of
the defined length. We then present the basic WP symplectic and Hamiltonian geometry in § 7
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with Theorem 21 and Corollaries 22–24. The results include new formulas for the Kähler form.

We show that the Poisson bracket of a pair of weight systems on a common set of triangulating

ideal geodesics is given in terms of an elementary 2-form computed from the weights alone. In

§ 8, we use the elementary 2-form to show in Theorem 29 that the Fock shear coordinate algebra

introduced in the quantization of Teichmüller space is the WP Poisson algebra. The basic WP

Riemannian geometry of shears is developed in § 9 with Theorem 32. We generalize Riera’s

WP inner product formula and show that the Riemannian pairing of two weight systems on

ideal geodesics is given by the combination of an invariant of the geometry of ideal geodesics

entering a cusp and a sum of lengths of orthogonal connecting geodesics.

There are challenges in calculating shear deformations. In contrast to earthquake

deformations, shear deformations are in general not limits of Fenchel–Nielsen twists and a shear

on a single geodesic deforms a complete hyperbolic structure to an incomplete structure. For

the deformation theory larger function spaces are involved; for earthquakes geodesic laminations

carry transverse Borel measures and for shears geodesic laminations carry transverse Hölder

distributions. A general approach would require a deformation theory of incomplete hyperbolic

structures. Rather, we follow the approach of [Wol09] and double a surface with cusps across

cusps, and open cusps to collars to obtain approximating compact surfaces with reflection

symmetries. Shears are then described as limits of opposing twists. Given the above expectations,

the approximating formulas include individual terms that diverge with the approximation. The

object is to show that diverging terms cancel and to calculate the remaining contributions. We

use the Chatauby topology for representations to show that the hyperbolic structures converge

and an analysis of holomorphic quadratic differentials to show that infinitesimal deformations

converge.

We begin considerations in § 2 with the variation of cross ratio and geodesic length. A unified

treatment is given for Gardiner’s geodesic-length formula [Gar75], Riera’s twist Riemannian

product formula [Rie05] and the original twist–length cosine formula [Wol83]. In § 3, we review

Bonahon’s results on shears on compactly supported geodesic laminations and Penner’s results on

shears on ideal geodesics triangulating a surface with cusps. The review includes the Thurston–

Bonahon theorem that shears on a maximal geodesic lamination are transitive on Teichmüller

space and Penner’s theorem on λ and h length global coordinate. We include the Bonahon–

Sözen and Papadopoulos–Penner results that in appropriate settings the WP Kähler form is a

multiple of the Thurston symplectic form. In §§ 4 and 5, beginning with hyperbolic collars and

cusps, we give the geometric description of shear deformations and describe the convergence

of opposing twists to shears. In § 6, we treat the convergence of infinitesimal opposing twists to

infinitesimal shears. The analysis includes the convergence of holomorphic quadratic differentials.

In § 7, we define the length of a balanced sum of ideal geodesics and establish the basic symplectic

geometry results in Theorem 21 and the following corollaries. In Corollary 22, we show that the

Poisson bracket of length functions and the shear derivative of a length function are given by

evaluation of the elementary 2-form. We consider the Fock shear coordinate algebra in § 8. We use

Penner’s topological description of the shear coordinate bracket and compute with the elementary

2-form to show that the algebra is the WP Poisson algebra. In § 9 we begin with expansions for

gradient pairings for geodesics crossing short geodesics. Then in Theorem 32, we provide the

formula for the WP Riemannian pairing of balanced sums of ideal geodesics. In Example 34 we

calculate the pairing for the Dedekind PSL(2;Z) tessellation to find an exact distance relation.

Finally in § 10 we give the length parameter expansion for the sum of lengths of circuits about a

closed geodesic.
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2. Gradients of geodesic lengths

We begin with the basics of deformation theory of Riemann surfaces [Ahl06, Hub06, IT92]. A
conformal structure is described by its uniformization. An infinitesimal variation of a conformal
structure is described by a variation of the identity map for the universal cover. The interesting
case for the present considerations is for a Riemann surface of finite type, a compact surface with
a finite number of points removed, covered by the upper half plane H. For a vector field v on the
universal cover and parameter ε, there is a variation of the identity map wε(z) = z + εv + o(ε),
for z, respectively w, conformal coordinates for the domain and range universal covers. Provided
the vector field is deck transformation group invariant, the map is equivariant with respect to
deck transformation groups. The range conformal structure is described by the angle measure
arg(dwε) for the differential dwε = wε,z dz+wε,z̄ dz. The expansion for the variation provides that
dwε = wε,z(dz+ εvz̄dz)+o(ε), and thus arg(dwε) = arg(wε,z)+arg(dz+ εvz̄ dz). The derivative of
the vector field vz̄ describes the infinitesimal variation of the conformal structure. The quantity
vz̄ is an example of a Beltrami differential, a tensor of type ∂/∂z ⊗ dz.

For a Riemann surface R of finite type and vector field v defined on the surface (equivalently
on the universal cover and invariant by deck transformations), then wε(z) is a variation of the
identity map of the surface and in effect describes a relabeling of the points of the surface:
the deformation is trivial. Nontrivial deformations are given by vector fields on the universal
cover; vector fields with nontrivial group cocycles relative to the deck transformation group.

We consider B(H), the space of Beltrami differentials on H, bounded in L∞. By potential
theory considerations, for µ ∈ B(H) there is a vector field v on H with vz̄ = µ, that is actually
continuous on H and is bounded as O(|z|log|z|) at infinity [AB60]. In particular, elements of B(H)
also describe variations of the points of R. We are interested in the corresponding variational
formula.

The cross ratio of points of P1 is given as

(p, q, r, s) =
(p− r)(q − s)
(p− s)(q − r)

and for q = s+ ∆s and rearranging variables, we obtain a holomorphic 1-form

Ωpq(z) =
(p− q) dz

(z − p)(z − q)
=

dz

(z − p)
− dz

(z − q)
.

The cross ratio and 1-form are invariant by the diagonal action of PSL(2;C) on all variables.
There is a natural pairing of Beltrami differentials with Q(H), the space of integrable

holomorphic quadratic differentials on H,

(µ, ψ) →

∫
H
µψ for µ ∈ B(H) and ψ ∈ Q(H).

Rational functions, holomorphic on H, with at least three simple poles on R are example elements
of Q(H). The holomorphic quadratic differentials Q(H) describe cotangents of the deformation
space of conformal structures. The variational formula for points of R is fundamental.

Theorem 1 (Variation of the cross ratio [Ahl61, Ahl06]). For p, q, r, s ∈ R the variational
differential of the cross ratio is

d log(p, q, r, s) = − 2

π
ΩpqΩrs ∈ Q(H).
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The quadratic differentials Q(H) form a pre-inner product space with a densely defined
Hermitian pairing

〈φ, ψ〉 =

∫
H
φψ̄ (ds2)−1 for φ, ψ ∈ Q(H) ∩ L2

and ds2 the hyperbolic metric. The pairing is the WP pre-inner product [Ahl61, Wol10]. The
pairing provides formal dual tangent vectors for the differentials of cross ratios

grad log(p, q, r, s) = (d log(p, q, r, s))(ds2)−1.

We are interested for distinct quadruples P = (p1, p2, r1, r2), F = (f1, f2, g1, g2) in the pairing

〈grad logP, grad logF〉.

The pairing is continuous in the quadruples for all points distinct and also is continuous for (r1, r2)
tending to (p1, p2) and (g1, g2) tending to (f1, f2). We will evaluate particular configurations for
the pairing.

Let T be the Teichmüller space of homotopy marked genus g, n punctured Riemann surfaces
R of negative Euler characteristic. We are interested in pairings corresponding to geometric
constructions of deformations. A point of T is the equivalence class of a pair (R, f) with f a
homeomorphism from a reference topological surface F to R. From the uniformization theorem
a conformal structure determines a unique complete compatible hyperbolic metric ds2 for R and a
deck transformation group Γ ⊂ PSL(2;R) with R = H/Γ. The Teichmüller space is a complex
manifold with cotangent space at R represented by Q(R), the space of holomorphic quadratic
differentials on R with at most simple poles at punctures.

The pairing

(µ, ψ) →

∫
R
µψ for µ ∈ B(R) and ψ ∈ Q(R)

is the ingredient for Serre duality and consequently the tangent space of T at R is B(R)/Q(R)⊥

(see [Ahl61, Ahl06, Har77, Hub06, IT92]). The L2 Hermitian pairing

〈φ, ψ〉 =

∫
R
φψ̄ (ds2)−1

is the WP cometric for Q(R). The metric dual mapping

φ → φ̄(ds2)−1 ∈ Q(R)

is a complex anti-linear isomorphism, since Beltrami differentials of the given form (harmonic
differentials) give a direct summand of Q(R)⊥ in B(R). The metric dual mapping associates a
tangent vector to a cotangent vector and so defines the WP Kähler metric on the tangent spaces
of T ; the mapping is the Hermitian metric gradient.

Geodesic lengths and Fenchel–Nielsen twist deformations are geometric quantities for
pairings. Associated to a nontrivial, nonperipheral free homotopy class α on the reference surface
F is the length `α(R) of the unique geodesic in the free homotopy class for R. Geodesic length
is given as 2 cosh `α/2 = trA for α corresponding to the conjugacy class of A ∈ Γ in the
deck transformation group. Geodesic lengths are functions on Teichmüller space with a direct
relationship to WP geometry. A Fenchel–Nielsen twist deformation is also associated to a closed
simple geodesic. The deformation is given by cutting the surface along the geodesic α to form
two metric circle boundaries, which then are identified by a relative rotation to form a new
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hyperbolic surface. A flow on T is defined by considering the family of surfaces {Rt} for which
at time t reference points from sides of the original geodesic are relatively displaced by t units
to the right on the deformed surface. The infinitesimal generator, the Fenchel–Nielsen vector
field tα, the differential of the geodesic length and the gradient of geodesic length satisfy duality
relations

2ωWP ( , tα) = d`α and equivalently 2tα = J grad `α, (1)

for ωWP the WP Kähler form and J the complex structure of T (multiplication by i on
B(R)/Q(Q)⊥) [Wol82, Wol10]. The factor of two adjustment to our formulas as detailed
in [Wol07, § 5] is included.

We are interested in the WP metric and Lie pairings of the infinitesimal deformations
grad `α and tα with geodesic-length functions `β. The formulas begin with Gardiner’s calculation
of the differential of geodesic length. We now use a single simplified approach that provides
Gardiner’s d`α formula [Gar75], the cosine formula for tα`β (see [Wol83, Wol10]), the sine-length
formula for tαtβ`γ (see [Wol83, Wol10]), as well as Riera’s length–length formula for 〈grad `α,
grad `β〉 (see [Rie05, Wol10]). The approach combines Theorem 1, coset decompositions for the
uniformization group and calculus calculations. An important step is identifying a telescoping
sum corresponding to a cyclic group action. We present the approach.

Theorem 2 (Gardiner’s variational formula [Gar75]). For a closed geodesic α,

d`α =
2

π

∑
C∈〈A〉\Γ

Ω2
rAaA

(Cz) ∈ Q(R)

with α corresponding to the conjugacy class of A ∈ Γ with repelling fixed point rA and attracting
fixed point aA.

Proof. We begin with the geodesic length. For a hyperbolic transformation A, the geodesic length
is log(As, s, rA, aA) for s a point of R distinct from the fixed points. We begin with the variational
formula for the cross ratio from Theorem 1. The resulting integrand is in L1(H) and H is the
disjoint union ⋃

n∈Z

⋃
C∈〈A〉\Γ

AnC(F)

for F a Γ fundamental domain. By a change of variables the union over domains is replaced by
a sum of integrands

d`α[µ] = − 2

π
<
∫
F
µ
∑
n

∑
C∈〈A〉\Γ

ΩAs s(A
nCz)ΩrAaA(AnCz). (2)

The invariance of Ω by the diagonal PSL(2;R) action gives Ωpq(A
nw) = ΩA−npA−nq(w) and the

given product of forms is
ΩA−n+1sA−ns(Cz) ΩrAaA(Cz).

Using the Ω partial fraction expansion, the first factor is

ΩA−n+1sA−ns =
dw

(w −A−n+1s)
− dw

(w −A−ns)
and the integer sum telescopes

N∑
n=−N

ΩA−n+1sA−ns = ΩAN+1sA−Ns
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and as N tends to infinity, AN+1s tends to aA and A−Ns tends to rA. (Various forms of the
telescoping appear in the calculations for the cosine formula [Wol83, pp. 220–221], the sine–length
formula [Wol83, pp. 223–224] and the length–length formula [Rie05, pp. 113–114].) The sum in (2)
now becomes the desired sum

−
∑

C∈〈A〉\Γ

Ω2
rAaA

(Cz). 2

We consider the WP Hermitian pairing of gradients 〈grad `α, grad `β〉. By (1) the imaginary
part of the pairing is

<〈J grad `α, grad `β〉 = 2tα`β = 2
∑
p∈α∩β

cos θp.

The real part of the pairing 〈grad `α, grad `β〉 was first evaluated by Riera [Rie05]. We now apply
the above approach and with a single simpler treatment derive the real and imaginary part
formulas. Riera’s formula involves the logarithmic function

R(u) = u log

∣∣∣∣u+ 1

u− 1

∣∣∣∣− 2.

The function is even with a logarithmic singularity at ±1 and with the expansion

R(u) = 2

(
1

3u2
+

1

5u4
+

1

7u6
+ · · ·

)
for |u| > 1.

In particular, for u > 1, the function and its even derivatives are positive and the function is
O(u−2) for u > 1. The function R(u) is also given as

u

2
tanh−1 1

u
− 2 for |u| > 1 and

u

2
tanh−1 u− 2 for |u| < 1.

We present the pairing formula for the general case of a cofinite group possibly with parabolic
and elliptic elements.

Theorem 3 (The complex gradient pairing [Wol83, Rie05]). For closed primitive geodesics α, β
corresponding to elements A,B ∈ Γ, we have for the WP pairing

〈grad `α, grad `β〉 =
2

π
δαβe(A)`α +

∑
D∈〈A〉\Γ/〈B〉

RD,

where δαβ is the Kronecker delta for the geodesic pair, where e(A) is 2 in the special case
of the axis of A having order-two elliptic fixed points and is 1 otherwise, where for the axes
axis(A), axis(DBD−1) disjoint in H, then

RD =
2

π
R(cosh d(axis(A), axis(DBD−1)))

and for the axes intersecting with angle θD, then

RD =
2

π
R(cos θD)− 2i cos θD.

Twist–length duality and J an isometry provide that 4〈tα, tβ〉 = 〈grad `α, grad `β〉.
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Proof. For A a hyperbolic element we write

ΘA =
∑

C∈〈A〉\Γ

Ω2
rAaA

and from Gardiner’s formula d`α = (2/π)ΘA with

〈ΘA,ΘB〉 = −
∫
H

∑
C∈〈A〉\Γ

Ω2
rAaA

(Cz) ΩBs s(z) ΩrBaB (z) (ds2)−1.

We first decompose each left coset 〈A〉\Γ by considering right 〈B〉 cosets and then move the
〈B〉 action to the two conjugate forms. The resulting sum over 〈B〉 is telescoping. In particular,
we enumerate the cosets of the sum by writing for C ∈ 〈A〉\Γ the decomposition C = DBn,
D ∈ 〈A〉\Γ/〈B〉 for n ∈ Z. For A,B primitive hyperbolic elements, we consider uniqueness of the
presentation of an element of 〈A〉D in the form AmDBn. A nonunique presentation is equivalent
to a solution of Aa = DBbD−1 for a nontrivial integer pair (a, b). Since A,B each generate Γ
maximal cyclic subgroups, a nontrivial solution of Aa = DBbD−1 provides that A is conjugate
to B±1 by the element D. In particular, the presentation AmDBn is unique except for the case
α = β with A = DB±1D−1. In the case α = β we select the element A to represent the geodesic
and the presentation is unique except for the case of D either the identity or the special case of Γ
containing an order-two elliptic E with A = EA−1E. For the special cases there is no distinction
between left and right 〈A〉 cosets; we only use left cosets. The special left cosets are for the
identity element and the element E.

Now for each resulting integral of the sum, change variable by writing w = Bnz; the effect
is to move a B−n action to the variable of ΩBs sΩrBaB . Using the diagonal PSL(2;R) invariance
of Ω, the B−n action is moved to the quadruple of points, resulting in the telescoping sum∑

n∈Z
ΩBn+1sBnsΩrBaB = −Ω2

rBaB
.

The result is the general formula

〈ΘA,ΘB〉=−δAB±1e(A)

∫
H

Ω2
rBaB

ΩBs s ΩrBaB (ds2)−1

+
∑

D∈〈A〉\Γ/〈B〉

∫
H

Ω2
rD−1ADaD−1AD

Ω2
rBaB

(ds2)−1, (3)

where the Kronecker delta indicates that the first integral is only present for the case that
A = B±1, e(A) is 2 in the case of order-two elliptic fixed points on the axis of A and is otherwise 1,
and for the second integral the diagonal invariance was used to move the D action to the pair of
points. For each integral, a change of variable by an element of PSL(2;R) results in the inverse
element applied to the tuple of points. It follows that the first integral depends only on the
PSL(2;R) conjugacy class of B and the second integral depends only on the PSL(2;R) class of
the pair (D−1AD,B). It follows that the first integral is a function of the geodesic length for B
and the second integral depends only on the distance between/intersection angle of the axes.

We evaluate the integrals. The differential Ωpq is continuous in p, q, including at infinity; for
q tending to infinity the form limits to dz/(z − p). For the first integral of (3), we take the pair
of points to be 0 and ∞, to obtain for z = reiθ the integral

−
∫
H

1

z2z̄

(Bs− s)
(z −Bs)(z − s)

r2 sin2 θr dr dθ,
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which for P = eiθBs,Q = eiθs becomes

−
∫ π

0

∫ ∞
0

(P −Q)

(r − P )(r −Q)
sin2 θ dr dθ

= log
(r −Q)

(r − P )

∣∣∣∣∞
0

∫ π

0
sin2 θ dθ =

π

2
log

Bs

s
,

as expected, since grad `∗ = 2/πΘ∗. For the second integral of (3), we take the first pair of points
to be 0 and ∞, to obtain the integral∫

H

1

z2

(
(p− q)

(z − p)(z − q)

)2

r2 sin2 θ rdr dθ,

which for P = eiθp,Q = eiθq, becomes∫ π

0

∫ ∞
0

(P −Q)2

(r − P )2(r −Q)2
sin2 θr dr dθ. (4)

The r integral has antiderivative

(P +Q)

(P −Q)
log

(r −Q)

(r − P )
− P

(r − P )
− Q

(r −Q)
.

We are evaluating an area integral and θ varies in the interval (0, π); for p, q ∈ R, θ as described,
and r real positive, the quotient (r−Q)/(r−P ) is valued in the complex open lower half plane.
The antiderivative is invariant under interchanging p, q; we now normalize p to be positive real.
We use the principal branch of the logarithm; for r close to zero the argument is close to −π.
Evaluating r at 0,∞ and integrating in θ gives

π

2

(
κ+ 1

κ− 1
log κ− 2

)
for κ the ratio q/p = (q, p, 0,∞).

To interpret geometrically, compare with [Rie05, p. 114], set u = (κ+1)/(κ−1) = 2(∞, q, p, 0)−1,
to obtain the complex-valued expression

π

2

(
u log

u+ 1

u− 1
− 2

)
.

For the lines
_

0∞ and
_
pq disjoint, the ratio κ = p/q is positive and the logarithm is real, with

u = cosh δ∗, for δ∗ the distance between the lines. For the lines intersecting, the ratio κ = q/p is
negative and the argument of the logarithm is −π and evaluation gives

π

2
R(cos θ∗)−

π

2
iπ cos θ∗,

as desired. 2

The double coset enumeration admits a topological/geometric description. We consider that
α and β are primitive and Γ is torsion-free. On the surface R, consider the homotopy classes rel
the closed sets α, β of arcs connecting α to β. For the universal cover, fix a lifting of α to a line
α̃0 in H; then a connecting homotopy class on R lifts to a homotopy class of arcs connecting
α̃0 to β̃ (a line lifting of β). The relation rel α corresponds to the relation of the 〈A〉 action
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on homotopy lifts. In particular, the nontrivial classes on R rel α, β biject to the classes in H
rel α̃0, β̃, for β̃ (disjoint from α̃0) ranging over the line liftings of β modulo the action of 〈A〉;
the nontrivial classes on R correspond to lines β̃ disjoint from α̃0. Let A generate the stabilizer
of the line α̃0. We enumerate the pairs (α̃0, β̃), for β̃ distinct modulo the 〈A〉 action. For B
generating the stabilizer of a line lifting of β, then line pairs (α̃0, β̃) distinct modulo the 〈A〉
action correspond bijectively to double cosets by the rule

(α̃0, β̃) = (axis(A), axis(DBD−1)) corresponds to D ∈ 〈A〉\Γ/〈B〉.

The relation axis(DBD−1) = D(axis(B)) is part of the correspondence. For a finite number of
double cosets the corresponding axes intersect. Overall, the axes enumeration by double cosets,
enumerates pairs of line liftings of α and β modulo the diagonal action of the group Γ. The
geometric description comes from the description of a pair of lines. A pair of lines either intersects
or has a unique perpendicular geodesic, minimizing the connecting distance. The cosine and
hyperbolic cosine describe the geometry of the configurations.

The present approach to evaluating the pairing is a combination and simplification of earlier
works. The role of the cyclic group in Gardiner’s formula was first noted by Hejhal [Hej78,
Theorem 4]. The telescoping of the cyclic group sums appears in the proofs of Theorems 3.3
and 3.4 of [Wol83] and in Theorem 2 of [Rie05], although in each case the telescoping is presented
as a special feature. The basic integral (4) is simpler than found in the earlier formulations. The
present approach can be applied to evaluate the second twist Lie derivatives tαtβ`γ . The first
derivative tα`β is a sum of cosines of intersection angles. A cosine is given by a cross ratio, the
starting point for the above considerations.

3. Thurston shears

We are interested in Thurston shears (cataclysms) on ideal geodesics for a Riemann surface
with cusps. Thurston studied the shear deformation for compact geodesic laminations [Thu98].
Bonahon developed the fundamental results in a sequence of papers [Bon96, Bon97a, Bon97b].
We present a brief summary of Bonahon’s basic results following [Bon96]. In a series of
works [Pen87, Pen92, Pen12], Penner developed a deformation theory of Riemann surfaces with
cusps by considering shear deformations on ideal geodesics triangulating a surface. Our interests
include Penner’s λ-length formulas and formulas for the WP Kähler/symplectic form [PP93].
We present a brief summary of Penner’s results following the exposition of the book [Pen12].

A geodesic lamination λ is a closed union of disjoint simple geodesics. A geodesic lamination
for a compact surface R is maximal provided R–λ is a union of ideal triangles. A transverse
measure for a geodesic lamination λ is the assignment for each transverse arc k with endpoints
in λc of a positive Borel measure µ on the transverse arc with supp(µ) = λ∩k. If transverse arcs
k, k′ are homotopic through arcs with endpoints in λc then the assigned measures correspond by
the homotopy. The assignment k 7→ µ(k) is additive under countable subdivision of transverse
arcs. A measured geodesic lamination defines an earthquake deformation by interpreting µ(k)
as the relative left shift of the λ complementary regions containing the k endpoints. By
allowing left and right shifts on complementary regions, Thurston defined the shear deformation.
The relative left shift of λ complementary regions again defines a functional on transverse arcs.
The functional, called a transverse cocycle, is only finitely additive under subdivision of transverse
arcs. A transverse cocycle is not given by integrating a measure, rather is given by elements of
the dual of Hölder continuous functions on transverse arcs. The space of transverse cocycles H(λ)
on a geodesic lamination is a finite-dimensional vector space.
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Teichmüller space is the space of isotopy classes of hyperbolic metrics. A geodesic lamination
is represented on each isotopy class of a hyperbolic metric. Shear deformations on a given maximal
geodesic lamination parameterize Teichmüller space. A projection between leaves is defined for
the lift of a lamination to the universal covering of the surface. The construction begins with
the observation that the unit area horoballs in an ideal triangle are foliated by horocycles.
The tangent field of the partial foliation of ideal triangles extends to a Lipschitz vector field
on the universal covering; the vector field is not defined on the small trilateral regions in each
ideal triangle. The Lipschitz vector field defines a projection between leaves of the lift of the
lamination. The projection defines a relative displacement between lamination complementary
regions. The relative displacement is finitely additive. The relative left displacement is called
the shearing cocycle σR of the surface R. The transverse cocycle for the shear deformation from
a surface R1 to a surface R2 is the difference σR1 − σR2 of shearing cocycles. For a train track
carrying a geodesic lamination, transverse measures are specified in terms of nonnegative weights
on the track and transverse cocycles are specified in terms of real weights. We also refer to the
Thurston symplectic intersection form τ for a train track. The shearing cocycles for a maximal
geodesic lamination provide an embedding of Teichmüller space.

Theorem 4 [Bon96, Theorems A and B]. The map R 7→ σR defines a real analytic
homeomorphism from T to an open convex cone C(λ) bounded by finitely many faces in H(λ).
A transverse cocycle µ is in the cone C(λ) if and only if τ(µ, ν) > 0 for every transverse measure
ν for λ.

The R-length `µ(R) of the transverse cocycle µ for λ is a generalization of the total length
of a transverse measure. The R-length is defined as

`µ(R) =

∫∫
λ
d` dµ,

computed locally by first integrating hyperbolic length measure along the leaves of λ and then
integrating the local function on the local space of λ leaves with respect to the Hölder distribution
µ. The R-length generalizes the weighted length for weighted simple closed geodesics; R-length
is given by the Thurston intersection form and the shearing cocycle as follows.

Theorem 5 [Bon96, Theorem E]. If µ is a transverse cocycle for the maximal geodesic lamination
λ and σR ∈ H(λ) is the shearing cocycle of the hyperbolic surface R, then `µ(R) = τ(µ, σR).

The Theorem 4 embedding of T into the vector spaceH(λ) provides identifications of tangent
spaces TT with H(λ). The identification enables a comparison of symplectic forms.

Theorem 6 [SB01]. Let R be a compact hyperbolic surface with a maximal geodesic lamination
λ. Then for the tangent space identifications TT ' H(λ), the WP Kähler form is a constant
multiple of the Thurston intersection form.

A decoration for a hyperbolic metric with cusps is the designation of a horocycle at each
cusp. Decorated Teichmüller space DT is the space of isotopy classes of hyperbolic metrics
with cusps and decorations [Pen12]. The decorated Teichmüller space is naturally fibered over
Teichmüller space with fibers given by varying the horocycle lengths in a decoration. A section of
the fibration is given by prescribing horocycle lengths. A decoration enables a notion of relative
length for ideal geodesics. The λ-length of an ideal geodesic α is λ(α) = eδ(α)/2, where δ(α) is
the signed distance along α between the decoration horocycles; the distance is positive in the
case that the associated horodiscs are disjoint. We are interested in the λ-lengths for the isotopy
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Figure 1. Adjacent ideal triangles with a second diagonal.

class of a given ideal triangulation ∆ of hyperbolic metrics. An ideal triangulation for a genus g

surface with n cusps has 6g − 6 + 3n ideal geodesics and 4g − 4 + 2n triangles.

Additional parameters are associated to an ideal triangulation. The ideal geodesics divide the

decoration horocycles into segments. The h-lengths are the lengths of the horocycle segments. For

an ideal triangle, the lengths are related by hâ = λa/λbλc, where for the horocycle segment â the

triangle opposite side is a and the triangle adjacent sides are b, c. We are particularly interested

in the shear coordinates. An ideal triangle has a median. For a pair of triangles adjacent along

an ideal geodesic α, drop perpendiculars from the medians to α. The shear coordinate for α is

the signed distance between the median projections; the distance is positive if the projections lie

to the right of one another along α. The shear coordinate is given simply in terms of λ-lengths

and h-lengths. In Figure 1, the shear coordinate for the diagonal e is given as

σe = log
λbλd
λaλc

= log
h1

h4
= log

h3

h2
, [Pen12, ch. 1, Corollary 4.16]. (5)

The fibers of the Teichmüller fibration DT → T are characterized simply by constant shear

coordinates.

By the classical result of Whitehead, triangulations with common vertices can be related

by a sequence of replacing diagonals in quadrilaterals [Pen12, ch. 2, Lemma 1.4]. The effect on

λ-lengths of replacing diagonals is given by Penner’s basic Ptolemy equation λ13λ24 = λ12λ34 +

λ14λ23 for the configuration of Figure 1 [Pen12, ch. 1, Corollary 4.6]. We also note the coupling

equation h1h2 = h3h4 for the configuration of Figure 1; the equation follows from the definition

of h-lengths. The λ- and h-lengths provide global coordinates for DT .

Theorem 7 [Pen12, ch. 2, Theorems 2.5, 2.10; ch. 4, Theorems 2.6, 4.2]. For the ideal

triangulation ∆, the λ-length mapping DT → R∆
>0 is a real-analytic homeomorphism. For V

the vertex sectors of the ideal triangulation, the h-length mapping DT → RV>0 is a real-analytic

embedding into a real-algebraic quadric variety given by coupling equations. For the ideal

triangulation, the shear coordinate mapping T → R∆ is a real-analytic homeomorphism onto

the linear subspace given by vanishing of the sum of shears around each cusp. The action of the

mapping class group MCG is described by permutations followed by finite compositions of

Ptolemy transformations.
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The WP Kähler form pulls back to the decorated Teichmüller space and has a universal
expression in terms of λ- and h-lengths. We present new formulas for the pullback in § 6.

Theorem 8 [Pen12, ch. 2, Theorem 3.1]. For an ideal triangulation ∆, the pullback WP Kähler
form on DT is

ω̃WP =
∑
∆

λ̃a ∧ λ̃b + λ̃b ∧ λ̃c + λ̃c ∧ λ̃a,

where the sum is over ideal triangles, λ̃∗ = d log λ∗ and the individual triangles have sides a, b
and c in clockwise order.

The formula is given without Penner’s initial 2 factor following the adjustment to our own
formulas as detailed in [Wol07, § 5].

Papadopoulos–Penner establish a formula for the pullback ω̃WP in terms of h-lengths and
describe identifications of spaces to establish that 2 ω̃WP coincides with Thurston’s intersection
form [PP93]. Specifically the authors show that their change of variable (††) transforms their
formula (†) to the formula (†††); the calculation applies to the present setting by taking
µ(greek index) = −log h

îndex
and µ(index) = log λindex and noting the factor of 2.

Corollary 9 [PP93]. For an ideal triangulation ∆, the pullback WP Kähler form is

ω̃WP =
∑
∆

h̃α ∧ h̃β + h̃β ∧ h̃γ + h̃γ ∧ h̃α,

where the sum is over ideal triangles, h̃∗ = d log h∗ and the individual triangles have vertex
sectors α, β and γ in clockwise order.

In particular the λ to h change of coordinates is pre-symplectic.
Papadopoulos and Penner introduce the formal Poincaré dual of an ideal triangulation. The

formal dual is a trivalent graph with an orientation for the edges at a vertex. A modification of the
trivalent graph is a punctured null-gon train track. A set of logarithms of λ-lengths corresponds
to a measure on the train track. A modification of the construction of a measured foliation from
a measured train track parameterizes the space DMF of decorated measured foliations.

Theorem 10 [PP93, Proposition 4.1]. The train track parameterization provides a
homeomorphism of DT to DMF . The homeomorphism identifies twice the pullback WP Kähler
form and the Thurston intersection form 2 ω̃WP = τ .

4. Thurston shears as limits of opposing twists

We show that weighted Fenchel–Nielsen twists with twist lines orthogonal to short geodesics
converge to a Thurston shear deformation on ideal geodesics, as the short lengths tend to zero.
We begin with the collars and cusp description [Bus92]. For a closed geodesic α on the surface
R of length `α, normalize the universal covering for the corresponding deck transformation to
be z → e`αz. The collar C(α) = {`α/2 6 arg z 6 π − `α/2}/〈z → e`αz〉 embeds into R with
α the core geodesic. For a cusp, normalize the universal covering for the corresponding deck
transformation to be z → z + 1. The cusp region C∞ = {=z > 1

2}/〈z → z + 1〉 embeds into R.
The collars about short geodesics and cusp regions are mutually disjoint in R.

In the universal cover a Fenchel–Nielsen twist deformation for a single geodesic line β is
the piecewise isometry self-map of H with jump discontinuity across β given by a hyperbolic
transformation stabilizing β. A twist deformation of magnitude t offsets the β half planes by
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a relative t units to the right, as measured when crossing β. The relative displacement of a
combination of twists on disjoint lines is found as follows. For the displacement of q relative
to p, consider the twist lines separating p and q (for neither point on a twist line). There is
a partial ordering of lines based on containment of half planes containing p. By definition the
(n+ 1)th line contains the preceding n lines in a common half plane with p. The individual twist
deformations are normalized to fix p. The combined deformation map of H is given by left (post)
composition of the individual deformations formed in the order of the lines. A basic property is
that the Fenchel–Nielsen twists on a set of disjoint lines is a commutative group.

A finite collection of disjoint closed geodesics on a surface R lifts to a locally finite collection
in H and an equivariant twist mapping is determined on relatively compact sets. For our purposes
it suffices to analyze finite combinations of twists in H.

We begin with hyperbolic cylinders and cusp regions.

Definition 11. For a hyperbolic cylinder with core geodesic γ, an opposing twist is a finite
combination of weighted Fenchel–Nielsen twists with twist lines orthogonal to γ and vanishing
magnitude sum. For a hyperbolic cusp region, a Thurston shear is a finite combination of weighted
Fenchel–Nielsen twists with twist lines asymptotic at the cusp and with vanishing magnitude
sum.

A positive shear corresponds to a right earthquake. For a Thurston shear an initial piecewise
horocycle orthogonal to the twist lines with successive displacements given by the negative
weights is deformed to a closed horocycle. The deformed region is complete hyperbolic with
a closed horocycle, consequently is a cusp region. The vanishing magnitude sum condition is
required for completeness of the deformed structure. The condition is noted in [Bon96, § 12.3]
and considered in detail in [Pen12, ch. 2, § 4].

Lemma 12. The opposing twist deformation of a hyperbolic cylinder is a hyperbolic cylinder.
The core length of the deformed cylinder is bounded uniformly in terms of the initial core length
and the twist weights. For a bounded number of bounded weights, the deformed core length is
small uniformly as the initial core length is small.

Proof. Opposing twist lines decompose a cylinder into bands, each isometric to a region between
ultra parallel lines in H. The twist deformation is given by translations across lines. The vanishing
magnitude sum provides that a deformed cylinder is complete hyperbolic containing ultra parallel
bands, consequently is a hyperbolic cylinder.

We observe that for disjoint weighted twist lines converging, Fenchel–Nielsen twists
(normalized with a common fixed region) converge. For a core length `, collar twist lines are
represented in the band {1 6 |z| < e`} in H. For ` small, the individual twists are close to the
twist line |z| = 1. The magnitude sum vanishing provides that for ` small the combined twist
transformation is close to the identity. In particular, for twist weights bounded on a compact
set the opposing twist is close to the identity uniformly in `. The deformed core length is the
translation length of z → ze` conjugated by the opposing twists. The deformed core length is
uniformly small in `, as desired. 2

Next we make precise the notion of opposing twists converging to a Thurston shear and also
note a consequence.

Definition 13. Opposing twists for a sequence of cylinders with core lengths tending to zero
geometrically converge to a Thurston shear provided the following. First, the universal coverings
are normalized with the hyperbolic deck transformations for the cylinders converging in the
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Figure 2. A hyperbolic cylinder with geodesics orthogonal to the core geodesic and a cusp
region with geodesics asymptotic at the cusp.

compact open topology for H to the parabolic deck transformation for the cusp region. Second,
for a relatively compact open set K in H whose projection to the cusp region contains a loop
encircling the cusp, the intersection with K of the weighted twist lines for the cylinders converges
to the intersection with the weighted Thurston shear lines.

Lemma 14. Consider hyperbolic cylinders converging to a cusp region with opposing twists
geometrically converging to a Thurston shear. A normalization by H isometries of the twist
deformation maps of H converges to the Thurston shear in the compact open topology for H.

Proof. Convergence of lines intersecting a given relatively compact set in H provides convergence
on any compact set. As noted, convergence of weighted lines in H provides that suitably
normalized deformation maps converge in the compact open topology. 2

5. Chabauty convergence and opening cusps

The points of Teichmüller space T are equivalence classes {(R, f)} of Riemann surfaces with
reference homeomorphisms f : F → R from a reference surface. The complex of curves C(F ) is
defined as follows. The vertices of C(F ) are the free homotopy classes of homotopically nontrivial,
nonperipheral, simple closed curves on F . A k-simplex consists of k + 1 homotopy classes of
mutually disjoint simple closed curves. For surfaces of genus g and n punctures, a maximal set
of mutually disjoint simple closed curves, a partition, has 3g−3+n elements. The mapping class
group acts on the complex C(F ).

The Fenchel–Nielsen coordinates for T are given in terms of geodesic lengths and lengths of
auxiliary geodesic segments [Abi80, Bus92, IT92]. A partition P = {α1, . . . , α3g−3+n} decomposes
the reference surface F into 2g − 2 + n components, each homeomorphic to a sphere with a
combination of three discs or points removed. A homotopy marked Riemann surface (R, f) is
likewise decomposed into pants by the geodesics representing the elements of P. Each component
pants, relative to its hyperbolic metric, has a combination of three geodesic boundaries and cusps.
For each component pants, the shortest geodesic segments connecting boundaries determine
designated points on each boundary. For each geodesic α in the pants decomposition, a twist
parameter τα is defined as the displacement along the geodesic between designated points, one
for each side of the geodesic. For marked Riemann surfaces close to an initial reference marked
Riemann surface, the displacement τα is the distance between the designated points; in general,
the displacement is the analytic continuation (the lifting) of the distance measurement. For
α in P define the Fenchel–Nielsen angle by ϑα = 2πτα/`α. The Fenchel–Nielsen coordinates for
Teichmüller space for the decomposition P are (`α1 , ϑα1 , . . . , `α3g−3+n , ϑα3g−3+n). The coordinates
provide a real analytic equivalence of T to (R+ × R)3g−3+n (see [Abi80, Bus92, IT92]).
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A partial compactification, the augmented Teichmüller space T , is introduced by extending
the range of the Fenchel–Nielsen parameters. The added points correspond to unions of
hyperbolic surfaces with formal pairings of cusps. The interpretation of length vanishing is the
key ingredient. For an `α equal to zero, the angle ϑα is not defined and in place of the geodesic
for α there appears a pair of cusps; the reference map f is now a homeomorphism of F − α
to a union of hyperbolic surfaces (curves parallel to α map to loops encircling the cusps). The
parameter space for a pair (`α, ϑα) will be the identification space R>0 × R/{(0, y) ∼ (0, y′)}.
More generally for the partition P, a frontier set T (P) is added to the Teichmüller space by
extending the Fenchel–Nielsen parameter ranges: for each α ∈ P, extend the range of `α to
include the value 0, with ϑα not defined for `α = 0. The points of T (P) in general parameterize
unions of Riemann surfaces with each `α = 0, α ∈ P, specifying a pair of cusps.

We present an alternate description of the frontier points in terms of representations of
groups and the Chabauty topology. A Riemann surface with punctures and hyperbolic metric is
uniformized by a cofinite subgroup Γ ⊂ PSL(2;R). A puncture corresponds to the Γ-conjugacy
class of a maximal parabolic subgroup. In general, a Riemann surface with punctures corresponds
to the PSL(2;R) conjugacy class of a tuple (Γ, 〈Γ01〉, . . . , 〈Γ0n〉) where 〈Γ0j〉 are the maximal
parabolic classes and a labeling for punctures is a labeling for conjugacy classes. A Riemann
surface with nodes R′ is a finite collection of PSL(2;R) conjugacy classes of tuples (Γ∗, 〈Γ∗01〉, . . . ,
〈Γ∗0n∗〉) with a formal pairing of certain maximal parabolic classes. The conjugacy class of a
tuple is called a part of R′. The unpaired maximal parabolic classes are the punctures of
R′ and the genus of R′ is defined by the relation Total area = 2π(2g − 2 + n). A cofinite
PSL(2;R) injective representation of the fundamental group of a surface is topologically allowable
provided peripheral elements correspond to peripheral elements. A point of the Teichmüller
space T is given by the PSL(2;R) conjugacy class of a topologically allowable injective cofinite
representation of the fundamental group π1(F ) → Γ ⊂ PSL(2;R). For a simplex σ, a point
of the corresponding frontier space T (σ) ⊂ T is given by a collection {(Γ∗, 〈Γ∗01〉, . . . , 〈Γ∗0n∗〉)}
of tuples with: a bijection between σ and the paired maximal parabolic classes; a bijection
between the components {Fj} of F − σ and the conjugacy classes of parts (Γj , 〈Γj01〉, . . . , 〈Γ

j
0nj
〉)

and the PSL(2;R) conjugacy classes of topologically allowable isomorphisms π1(Fj) → Γj (see
[Abi77, Ber74]). We are interested in geodesic lengths for a sequence of points of T converging
to a point of T (σ). The convergence of hyperbolic metrics provides that for closed curves of F
disjoint from σ, geodesic lengths converge, while closed curves with essential σ intersections have
geodesic lengths tending to infinity [Ber74, Wol90].

We refer to the Chabauty topology to describe the convergence for the PSL(2;R)
representations. Chabauty introduced a topology of geometric convergence for the space of
discrete subgroups of a locally compact group [Cha50]. A neighborhood of Γ ⊂ PSL(2;R) is
specified by a neighborhood U of the identity in PSL(2;R) and a compact subset K ⊂ PSL(2;R).
A discrete group Γ′ is in the neighborhood N (Γ, U,K) provided Γ′ ∩K ⊆ ΓU and Γ∩K ⊆ Γ′U .
The sets N (Γ, U,K) provide a neighborhood basis for the topology. The PSL(2;R) topology
coincides with the induced compact open topology for transformations of H. Important for
the present considerations is the following convergence characterization. A sequence of points
of T converges to a point of T (σ), provided for each component Fj of F − σ, there exist
PSL(2;R) conjugations such that restricted to π1(Fj) the corresponding representations converge
element-wise to π1(Fj) → Γj (see [Har74, Theorem 2]).

We now consider a Riemann surface R with cusps and data
∑

bj β̂j for a Thurston shear. The
data is a weighted sum of disjoint simple ideal geodesics, geodesics with endpoints at infinity in
the cusps. The weighted sum of segments entering each cusp vanishes. Double the surface across
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its cusps; consider the union of R and its conjugate surface R̄ with the reflection symmetry ρ for

the pair. For the geodesic β̂j , we write βj for the union β̂j∪ρ(β̂j). To open cusps, given ε positive,

remove the area ε horoball at each cusp and glue the remaining surfaces by the map ρ to obtain

a compact surface Rε. The surface Rε has a reflection symmetry (also denoted ρ) and smooth

simple closed curves obtained from gluing the βj (also denoted βj). The construction provides

a homeomorphism from a reference surface F to Rε for ε positive and the simplex σ of short

curves for F is given by the ε horocycles. Standard comparison estimates for metrics provide

that for the uniformization hyperbolic metric, the simplex is realized by short geodesics with

lengths tending to zero with ε. The comparison estimates also provide that on the complement of

prescribed area collars about the short geodesics, the Rε hyperbolic metrics converge C∞ to the

hyperbolic metric of R∪ R̄ (see [Wol90]). The uniformization groups Γ(Rε) for the Rε, Chatauby

converge to the uniformization pair Γ(R),Γ(R̄), relative to F and the horocycle simplex σ.

The uniqueness of geodesics and convergence of hyperbolic metrics provide that the geodesics

β̃j in the free homotopy classes βj converge uniformly on σ collar complements to β̂j ∪ ρ(β̂j)

on R ∪ R̄.

We are ready to compare the effect of the Thurston shear
∑

bj(β̂j ∪ −ρ(β̂j)) on R ∪ R̄
to the effect of the opposing twist

∑
bj β̃j on the hyperbolic metric of Rε. The reflection ρ

reverses orientation and notions of left/right; even though R̄ is the mirror image, we require

regions to move in the same direction by a twist; the minus sign provides the desired effect.

Opposing twist deformations do not preserve the reflection symmetry. As a preliminary matter,

we note from Lemma 12 for weights bounded, the opposing twist of Rε has small geodesic lengths

bounded in terms of ε. Twisting Rε defines a family close to the frontier T (σ). We observe

the following.

Lemma 15. For ε small and weights bounded, the opposing twist
∑

bj β̃j of Rε is Chatauby close

to the Thurston shear
∑

bj(β̂j ∪−ρ(β̂j)) of R∪ R̄. Furthermore, the infinitesimal opposing twist

is close to the infinitesimal Thurston shear in the sense of infinitesimal variations of PSL(2;R)

representations.

Proof. In overview, the convergence of metrics provides for the compact open convergence

of the twist/shear lines on H, which in turn provides for the element-wise convergence of

representations. By construction of Rε, for the components Fj of F − σ, the representations

π1(Fj) into PSL(2;R) converge element-wise and the twist lines compact open converge to

shear lines. Choose generators for the limiting representations and a relatively compact open

set U ⊂ H, such that CU ∩U 6= ∅ for each generator C. For ε small, the same elements generate

the representations of π1(Fj) and satisfy the nonempty translate intersection condition. The

representations are completely determined by their action on U . A twist/shear map τ of H
induces a variation of a representation by varying a transformation B by the conjugation τBτ−1.

Only a finite number of twist/shear lines intersect U . The PSL(2;R) normalized combined twist

is given by finite ordered compositions as described above. By metric convergence, as ε tends

to zero, on U the twist lines converge uniformly and the twists converge uniformly to shears

and thus the representations of the finite number of generators converge. The representations

are element-wise uniformly close in ε. To consider the infinitesimal variations, we introduce a

parameter t for t
∑

bj β̃j and t
∑

bj(β̂j ∪ −ρ(β̂j)). The considerations provide that the initial

infinitesimal variations of the generators are also close in ε. The infinitesimal variations of the

representations are determined on generators. 2
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6. Infinitesimal Thurston shears and opposing twists

We are interested in geodesic length gradients. A thick–thin decomposition of hyperbolic surfaces
is determined by a positive constant. The thin subset consists of those points with injectivity
radius at most the positive constant; for a constant at most unity the thin subset is a disjoint
union of collars and horoballs [Bus92]. Surface representations into PSL(2;R) are Chatauby
close precisely when their thick subsets are Gromov–Hausdorff close [Har74]. For a sequence
of hyperbolic surfaces with certain geodesic lengths tending to zero, we are interested in the
magnitude and convergence of geodesic length gradients grad `α for certain geodesics α crossing
the short geodesic-length collars.

Applications of convergence of surfaces and gradients include generalizing the Gardiner
formula, Theorem 2, to balanced sums of ideal geodesics and generalizing twist–length duality (1)
to Thurston shears and balanced sums of ideal geodesics. The basic matter is to understand the
effect of Chatauby convergence for sums of the basic differential Ω2 from § 2. We begin with
convergence of hyperbolic transformations of H.

A hyperbolic transformation with translation length `, fixed points symmetric with respect
to the origin and i on its collar boundary is given as

A =

(
cosh `/2 1/` sinh `/2
` sinh `/2 cosh `/2

)
(i is distance log 1/` to the A axis with endpoints ±1/`). As ` tends to zero, A converges to the
parabolic transformation (

1 1/2
0 1

)
.

We consider a Chatauby converging sequence of surfaces with short length core geodesics and
a crossing geodesic intersecting the core geodesics orthogonally. A crossing geodesic intersects
collars and core geodesics. Given a segment of a crossing geodesic α in a thick region, normalize
the universal coverings so that the segment lifts to a segment along the imaginary axis with
highest point at i. Extend the segment by including the arcs that connect to core geodesics (the
added arcs cross half collars). A core geodesic intersecting α lifts to a geodesic orthogonal to the
imaginary axis. The figures for the universal covers of the surface, Figure 4, and the Chatauby
limit, Figure 5, are as follows. In the figures the collar lift and its limit are shaded. In Figure 4,
the left and right circular arcs orthogonal to the baseline bound a fundamental domain for a
core geodesic transformation. Chatauby convergence provides that the original segments on the
crossing geodesic α have length bounded and it is standard that collar boundaries converge to
horocycles. Figure 5 is the limit of a sequence of Figure 4 diagrams with upper, respectively lower,
shaded regions converging to upper, respectively lower, shaded regions. The crossing geodesic
limits to an ideal geodesic connecting cusps.

Definition 16. For an ideal geodesic α, we write

d`α =
2

π

∑
C∈Γ

Ω2
pq(Cz)

for the infinite series, where p, q are endpoints of a lift of α to H.

Lemma 17. For a surface R with cusps and an ideal geodesic α, the infinite series d`α converges.
As above, consider surfaces Rε with reflection symmetries obtained by doubling R across its
cusps and opening cusps to obtain short length core geodesics. Consider that an ideal geodesic α
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Figure 3. A symmetric compact surface with crossing and core geodesics.

Figure 4. Crossing and core geodesics. The vertical line is the lift of the crossing geodesic. The
two semicircles orthogonal to the baseline are consecutive lifts of the core geodesic. The left and
right circular arcs bound a fundamental domain for the hyperbolic transformation stabilizing
the larger semicircle. The shaded sectors are lifts of half collars for the core geodesic. The region
bounded by the shaded sectors and the circular arcs covers a region containing a component of
the thick subset of the surface.

Figure 5. An ideal geodesic and horoballs. The central vertical line is the lift of the ideal
geodesic connecting cusps. The left and right vertical lines bound a fundamental domain for the
parabolic transformation stabilizing infinity. The shaded sectors are horoballs about the cusps.
The region bounded by the shaded sectors and the vertical lines covers a region containing the
thick subset of the surface.
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on R is approximated on thick subsets by closed core orthogonal geodesics αε on Rε. There is a
Chatauby neighborhood U of R∪R̄ such that for Rε ∈ U , on thick subsets the harmonic Beltrami
differentials d`αε(ds

2)−1 and d`α(ds2)−1 are uniformly bounded and are uniformly close.

Proof. The d`α series are bounded by area integrals as follows. We first consider regions. In
Figure 4, the unshaded region in H between the shaded crescents, by normalization, lies below
the line =z = 1 and outside a circle tangent to R at 0. The integral of |Ω0∞|2 = dr/r dθ for
z = reiθ over the unshaded region is bounded by the integral over the region between the shaded
sectors in Figure 5 ∫ π

0

∫ csc θ

a sin θ

dr

r
dθ =

∫ π

0
log

csc2 θ

a
dθ = 2π log 2− π log a.

On a thick region of a surface a holomorphic quadratic differential satisfies a mean value estimate
in terms of the integral over a hyperbolic metric ball of a radius r0 at most the injectivity radius.
The thick regions of Rε and R are contained in the projection of the indicated unshaded regions
in Figures 4 and 5. By the standard unfolding, the absolute values of d`αε(ds

2)−1 and d`α(ds2)−1

at a thick point are bounded by the integral of |Ω0∞|2 over the disjoint union of r0 balls about the
orbit of the lifted point in the unshaded region, see [Wol10, ch. 8]. By the above considerations,
the integrals are uniformly bounded, establishing the first result.

For the second conclusion, given δ positive, choose a relatively compact set K in the Figure 4
region between shaded crescents, such that the integral of |Ω0∞|2 over the complement between
the shaded crescents is bounded by δ. The sum of evaluations of Ω2

0∞ at points not in K is
bounded by δ by a mean value estimate. Chatauby convergence provides convergence for the sum
of evaluations of Ω2

0∞ for the orbit points in K. Boundedness and convergence are established. 2

Example 18 (The ideal geodesic series d`α for a hyperbolic cusp). For a cusp uniformized at
infinity with integer translation group, then the sum over the group is∑

C∈Γ∞

Ω2
0∞(Cz) =

∑
n∈Z

dz2

(z − n)2
.

The formula for the integer sum gives d`α = 2π csc2 πz dz2. From the above lemma, for a
hyperbolic cylinder the series d`α approximates the cosecant squared in the compact open
topology of H.

We now combine considerations to obtain a uniform majorant for an opposing sum of twists
and gradients of geodesic-length functions. The majorant is the necessary ingredient for general
limiting arguments. We codify the situation as follows.

Definition 19. A crossing configuration is a compact surface with reflection symmetry with
fixed locus a finite union of small length core geodesics γ and no other geodesics having small
length. A crossing geodesic α is symmetric with respect to the reflection with two intersections
with the core geodesics. For a crossing configuration, a sum

∑
aj`αj of crossing geodesics

length functions is balanced provided for each core geodesic γ, the weighted intersection number∑
aj#(αj ∩γ) vanishes. For a surface with cusps, a formal sum

∑
aj`αj of ideal geodesics length

functions is balanced provided at each cusp the weighted intersection number
∑

aj#(αj ∩ h)
with each small closed horocycle h vanishes.

Balanced is the precedent to the condition of the weight sum vanishing for each cusp for
a Thurston shear. To prepare for a convergence argument, we first consider the distribution of
mass of a harmonic Beltrami differential.

331

https://doi.org/10.1112/S0010437X1400757X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X1400757X


S. A. Wolpert

Lemma 20. A balanced sum σ =
∑

aj grad `αj of gradients for a crossing configuration is
bounded as follows. On the thick subset the absolute value |σ| is uniformly bounded. On a
core geodesic γ collar, uniformized as 1 6 |z| 6 e`γ , `γ 6 θ 6 π − `γ for z = reiθ ∈ H, the
balanced sum σ is bounded as

O((`3γ + e−2πθ/`γ + e2π(θ−π)/`γ )`−2
γ sin2 θ).

The bounding constants depend only on the number of crossing geodesics, the norm of the
weights and a choice of Chatauby neighborhood for the limiting cusped surface.

Proof. A general bound for a harmonic Beltrami differential on a γ collar is

|µ| is O((|(µ, grad log `γ)|+ (e−2πθ/`γ + e2π(θ−π)/`γ )`−2
γ ) sin2 θM) (6)

for M the maximum of µ on the collar boundary [Wol12, Proposition 6]. We use Theorem 3 to
bound the pairings 〈grad `αj , grad `γ〉. By setup the crossing and core geodesics are orthogonal.
Each core geodesic intersection contributes −2 to the pairing evaluation. From the balanced
hypothesis, the weighted sum of intersection contributions vanishes. Each remaining term of the
evaluation involves a connecting geodesic segment that crosses the γ half collar; the width of
the half collar is −log `γ . For large distance, the formula summand R is approximately e−2d(γ,α).
In [Wol10, ch. 8] we showed that the sum of distances from α to the γ collar boundary is
uniformly bounded. It follows that the contribution `2γ of the half collar width can be factored
out of each summand. The sum evaluation is O(`2γ), the desired bound. Lemma 17 provides the
desired bound for σ on the thick subset. 2

7. The symplectic geometry of lengths

There is a length interpretation for a balanced sum A =
∑

aj`αj of ideal geodesics length
functions as follows. Let H be a neighborhood of the cusps given as a union of small horoballs,
one at each cusp. The length L(A) of the balanced sum is the sum with weights aj of lengths of
segments αj ∩ (R−H). The balanced condition provides that the length does not depend on the
choice of horoball neighborhood H. For a crossing configuration the length of a balanced sum
L(A) is defined in the corresponding manner. In the crossing case, the value L coincides with
the sum of geodesic lengths.

The length L(A) of a balanced sum is a generalization of the R-length of a transverse cocycle.
The balanced condition at cusps is discussed in [Bon96, § 12.3], where it is noted that the
condition provides a well-defined notion of length. The definition in terms of horoballs shows
that the length L(A) is given as

∑
2aj log λαj for the λ-lengths of the ideal geodesics and a

decoration. An example of a balanced sum is a shear coordinate σ∗, see formula (5); the sum is
balanced at each vertex of the quadrilateral of Figure 1. A second example comes directly from
the shear coordinates of Riemann surfaces. By Theorem 7, the sum

∑
σj`αj is balanced since

the sum of shear coordinates around each cusp vanishes. The adjustment of a factor of 2 to our
formulas as detailed in [Wol07, § 5] is included in the following.

Theorem 21. For a surface R with cusps and a balanced sum A =
∑

aj`αj of ideal geodesics
length functions, the length L(A) is a differentiable function on the Teichmüller space of R with

dL(A) =
∑

aj d`αj ∈ Q(R).
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The formal sum
∑

ajαj is data for an infinitesimal Thurston shear σA with

σA =
i

2

∑
aj grad `αj .

The WP twist–length duality

2ωWP ( , σA) = dL(A)

is satisfied. In particular, the Thurston infinitesimal shear σA is a WP symplectic vector field
with Hamiltonian potential function L(A)/2.

Proof. We first observe that L is a differentiable function on the PSL(2;R) representation space.
For the reference surface F , a simple loop δ ∈ π1(F ) about the cusp has representation into
PSL(2;R) a parabolic element that generates a maximal parabolic subgroup. Prescribing an
area value (at most unity) for the quotient of a horoball by the maximal parabolic subgroup
determines a horoball and horocycle. (The prescription is equivalent to a choice of decoration in
the Penner approach [Pen04, Pen12].) For a pair of elements of π1(F ) defining distinct maximal
parabolic subgroups, the distance between the prescribed horocycles is a smooth function of the
PSL(2;R) representation. The length L is a sum of distances between horocycles and, hence, a
smooth function. The differential dL is an element of Q(R). In particular, the integral of the
element over small neighborhoods of the cusps is small. The construction of the function and its
differential is also valid for the distance between collar boundaries.

Consider a sequence of compact surfaces Rε with reflection symmetries obtained by doubling
and opening the cusps of R. From Lemma 17, on thick subsets, the differentials of geodesic lengths
converge uniformly to differentials for ideal geodesics. From Lemma 20, for a balanced sum, the
sum of differentials is uniformly bounded in each core collar; the integral of the sum is uniformly
small over small area collars. As Rε limits to R, the distance between collar boundaries limits to
the distance between horocycles. And for closed geodesics β contained in the thick subsets, the
Fenchel–Nielsen twists on β ∪ ρ(β) of Rε converge to the twist of R∪ R̄ and the twist derivatives
of distance converge. The considerations of Chatauby convergence and Lemmas 17 and 20 can
be applied for the Fenchel–Nielsen twists on β ∪ ρ(β). The conclusion is again that the gradient
pairing integrals over small area collars and small area horoballs are uniformly small. It follows
that the pairing for a balanced sum length differential and twist converges to the limiting pairing
as ε tends to zero. The derivative of length converges to the derivative of length. Reflection-even
twists span the reflection-even tangent space. The dL formula is established.

The considerations for infinitesimal Thurston shears are analogous. The deformation is
smooth and by Lemma 15 the infinitesimal deformation is a limit of opposing twists. The opposing
twists satisfy

∑
ajtαj = i/2

∑
aj grad `αj on the side of Rε that limits to R. We find the ε tending

to zero limit by Lemmas 17 and 20. The conclusions follow. 2

We remark that symmetry is basic to considering the Rε to R limit of the tangent–cotangent
pairing. The reflection ρ acts on the Teichmüller spaces. With respect to the reflection ρ, the
differential of the length L(A) is even, while an opposing twist and its limit are odd. Furthermore,
the Kähler form is odd with respect to the ρ action on Teichmüller space, since the reflection
reverses orientation for surface integration. The above duality relation 2ωWP ( , σA) = dL(A) is
established for reflection even deformations of R ∪ R̄. Since a Thurston shear is reflection odd,
the shear pairing ωWP (σB, σA) evaluation requires a separate analysis.

To evaluate the pairing of Thurston shears, we introduce an elementary alternating 2-form
for coefficients summing to zero. For a balanced sequence {aj}pj=1, we consider the partial sums
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A0 = 0, Ak =
∑k

j=1 aj , 1 6 k 6 p, where by hypothesis Ap = 0. We introduce a pairing for
balanced sequences

ω({aj}, {bj}) =
1

2

p∑
j=1

(Aj +Aj−1)bj . (7)

We explain that the pairing depends only on the joint cyclic ordering of the sequences and that
the pairing is alternating. A cyclic shift in the index j, 1 6 j 6 p, has the effect of adding
a constant to the partial sums Aj , 0 6 j 6 p. The balanced condition for the sequence {bj}
provides that the pairing is unchanged. For the alternating property, we have summation by
parts for balanced sequences {fj} and {gj} with partial sums Fk and Gk

n−1∑
k=m

Fkgk+1 = FnGn −
n∑

k=m

Gkfk.

In particular, we have that

p∑
j=1

Ajbj = ApBp −
p−1∑
j=1

Bjaj+1 = −
p∑
j=1

Bj−1aj

and
p∑
j=1

Aj−1bj = ApBp −
p∑
j=1

Bjaj = −
p∑
j=1

Bjaj

using that A0, Ap, B0 and Bp vanish. The pairing can be written in the alternating form

ω({aj}, {bj}) =
1

2

p∑
j=1

Ajbj −Bjaj . (8)

We note that balanced sequences have an interpretation as tangents to the regular (p−1)-simplex
and ω an interpretation as a closed 2-form on the regular simplex.

The form ω can be evaluated for a pair of balanced sums for a common set of disjoint ideal
geodesics limiting to a cusp. For balanced sums A =

∑
aj`αj ,B =

∑
bj`αj and a given cusp,

consider the geodesic segments limiting to the cusp; some geodesics αj may not limit to the given
cusp and some may have both ends limiting to the cusp. Choose and label a limiting geodesic as
the first and enumerate limiting geodesics in the counterclockwise order about the cusp. Evaluate
the form ω on the enumerated sequences of weights {aj} and {bj}.

Corollary 22. For the balanced sums A =
∑
aj`αj and B =

∑
bj`αj for a common set of

disjoint ideal geodesics, the shear pairing is

ωWP (σA, σB) =
1

2
σAL(B) =

1

2

∑
cusps

ω({aj}, {bj}).

The Poisson bracket for the length functions L(A) and L(B) is

{L(A), L(B)} = 2
∑
cusps

ω({aj}, {bj}).

334

https://doi.org/10.1112/S0010437X1400757X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X1400757X


Products of twists, geodesic lengths and Thurston shears

Figure 6. Shear lines at a cusp. The longer horizontal lines represent ideal geodesics ending
at a cusp on the far left; the uppermost and lowermost horizontal lines are identified. The
dotted vertical represents a closed horocycle in the undeformed hyperbolic structure and the
shorter solid verticals form a closed horocycle after applying a shear σA for the horizontal lines.
The shorter verticals are successively displaced by horizontal increments −a1,−a2, . . . ,−ap. The
shaded horizontals indicate segments along the upper and lower edges of each ideal geodesic,
segments connecting the horocycles of the deformed structure.

Proof. The shear–length duality comes from Theorem 21. The first line of equations is established

by finding the contribution to the change in the length L(B) from the change in the determination

of a closed horocycle at a cusp. We refer to the schematic Figure 6 for the basic geometry. To

evaluate the change in length and ω, geodesic segments are labeled as described above. In the σA
deformed hyperbolic structure, the distance between closed horocycles measured on the upper

edge of an ideal geodesic agrees with the distance measured on the lower edge. We can compute

the change in distance by averaging the change for the upper and lower edges. In Figure 6, the

change in the first distance is A1/2, while the change in the jth distance is (Aj + Aj−1)/2. For

the weighted length L(B), the weight for the jth distance is bj . The change in weighted distance

for the given cusp is
∑

(Aj +Aj−1)bj/2, as desired.

We next consider the Poisson bracket. The nondegenerate Kähler form ωWP defines an

isomorphism from tangent to cotangent spaces and a dual form ω̂WP . For the Hamiltonian

length functions the Poisson bracket is defined as ω̂WP (dL(A), dL(B)). By duality the pairing

is 4ωWP (σA, σB). The final formula follows. 2

There is a counterpart to Theorem 5 for the setting of shear coordinates.1 First given an

ideal triangulation ∆, Theorem 7 provides a bijection between balanced sum shears
∑
ajsj and

T as follows, for sj denoting the shear deformations on the ∆ edges. A basepoint R∆ ∈ T in

Teichmüller space is determined by all shear coordinates vanishing. The surface R∆ is constructed

by gluing ideal triangles with medians on sides always matching. Each marked Riemann surface

R ∈ T is given uniquely as a balanced sum shear σR =
∑
aj(R)sj of the surface R∆. We show

the balanced sum length functions are linear in the shear coordinates as follows.

Corollary 23. For a balanced sum B =
∑
bj`αj of lengths of ideal geodesics of the triangulation

∆ and a marked Riemann surface R ∈ T , then

L(B)(R) =
∑
cusps

ω({aj(R)}, {bj}).

1 Theorem 5 is formulated for left twists/shears while the present results are formulated for right twists/shears.
The orientation difference explains the interchange of entries when comparing 2-forms.
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Proof. First we observe that all balanced sum length functions vanish at R∆. Given a balanced
sum B =

∑
bj`αj , consider the double sum of weights∑

cusps

∑
edges at cusp

b(m,n),

where the index m enumerates cusps and the index n enumerates half edges entering a cusp.
The balanced sum condition is the vanishing of the inner sums. Each triangulation edge enters
two cusps; the enumeration includes each triangulation edge twice. Thus, the sum of weights of a
balanced sum vanishes. Since the shear coordinates of R∆ vanish, we can introduce a decoration
H for R∆ such that all h-lengths have a common value. It follows that all λ-lengths have a
common value λ0. The length L(B) =

∑
bj2 log λ0 of the balanced sum vanishes at R∆.

Given a surface R, the path of shears σt = t
∑
aj(R)sj connects the surfaces R∆ and R.

Corollary 22 provides that the t-derivative of L(B) along the path has the constant value∑
cusps ω({aj(R)}, {bj}). Integration in t provides the desired formula. 2

By Theorem 7, the shear coordinates for the edges of an ideal triangulation provide a
continuous immersion into Euclidean space. In particular, the shear coordinates for appropriate
subsets of edges provide continuous coordinates for Teichmüller space. A procedure determining
appropriate subsets of edges is given in the proof of Lemma 26 below. From Theorem 7, for
a subset of shear coordinates without linear relations, the differentials of the coordinates are
generically linearly independent. Furthermore from Corollary 22, for a subset of shear coordinates
without linear relations there are sets of balanced sum length functions with constant full rank
Poisson bracket pairing. It follows from the pointwise full rank pairing that the differentials of
the shear coordinates in the subset are pointwise linearly independent on Teichmüller space.
It also follows that the shear coordinates from the subset give a basis for the vector space of
balanced sums of length functions.

In [Wol83, § 4], we found for surface fundamental group representations into PSL(2;R) that
the Poisson bracket of trace functions is a sum of trace functions. The present result describes a
simpler structure. By construction Thurston shears on a common set of ideal geodesics commute
and accordingly the Poisson bracket of Hamiltonian potential length functions is constant.

We now express the 2-form ω in terms of h-lengths and use the formula to give the relation
to Corollary 9.

Corollary 24. For an ideal triangulation ∆, the pullback WP Kähler form is

ω̃WP =
∑
cusps

p∑
j=1

h̃j ∧ h̃j+1,

where the first sum is over cusps, the second sum is over h-lengths at a cusp enumerated in
counterclockwise cyclic order and h̃∗ = d log h∗. For an ideal triangulation ∆, the pullback WP
Kähler form is also given as

ω̃WP =
1

2

∑
e∈∆

d log λe ∧ dσe.

Proof. We begin with shear coordinates for T and the shear pairing ωWP (σA, σB) of Corollary 22
above. The coefficients {aj}, {bj} are the evaluations of the differentials {dσe} of the shear
coordinates on the Thurston shears σA, σB. From (5) and Figure 1, the differential of a shear
coordinate is d log h′′/h′ where h′′ is the h-length clockwise from the edge and h′ is the h-length
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counterclockwise from the edge. We now write the sum (7) at a cusp in terms of increments of
h-lengths. We use the notation of formula (7). Introduce a decoration for the surface, write the
shear coordinate increments in terms of h-length increments as aj = h̃j−1− h̃j and bj = g̃j−1− g̃j ,
where h̃∗, g̃∗ are now the evaluations of the differential d log h∗. The partial sums are A0 = 0 and
Ak =

∑k
j=1 aj = h̃p− h̃j , where with the cyclic ordering h̃0 = h̃p and by hypothesis

∑p
j=1 h̃j = 0.

We find the contribution to ω from an individual increment g̃k by considering

(Ak +Ak−1)bk + (Ak+1 +Ak)bk+1

= (2h̃p − h̃k − h̃k−1)(g̃k−1 − g̃k) + (2h̃p − h̃k+1 − h̃k)(g̃k − g̃k+1).

The overall contribution is (h̃k−1 − h̃k+1)g̃k. We now have that

ω =
1

2

p∑
k=1

(Ak +Ak−1)bk

=
1

2

p∑
k=1

det

(
h̃k−1 h̃k
g̃k−1 g̃k

)
=

p∑
k=1

d log hk−1 ∧ d log hk (σA, σB)

and the first formula is established.
The second formula follows from Theorem 8 and formal considerations. From formula (5) we

have that
d log λe ∧ dσe = λ̃a ∧ λ̃e + λ̃e ∧ λ̃b + λ̃c ∧ λ̃e + λ̃e ∧ λ̃d,

where the ordered side pairs (a, e), (e, b), (c, e) and (e, d) are in counterclockwise order relative to
their containing triangles. The pairs are the side pairs of Figure 1 with one side a diagonal. Now
given a pair of adjacent sides of the triangulation ∆, the pair occurs in two quadrilaterals with
one of the sides being a diagonal. It follows that the sum of d log λe ∧ dσe over edges is twice the
sum of Theorem 8. The second formula follows. 2

An observation of Joergen Andersen provides a direct relation of the above to Corollary 9.
The coupling equation h1h2 = h3h4 gives the 2-form equation h̃1∧h̃2+h̃2∧h̃3+h̃3∧h̃4+h̃4∧h̃1 = 0
for h̃∗ = d log h∗. The relation h̃1 ∧ h̃2 + h̃3 ∧ h̃4 = h̃3 ∧ h̃2 + h̃1 ∧ h̃4 follows. Beginning with
Corollary 9 and referring to Figure 1, we observe the following. For an edge e of the triangulation,
the wedge of h-lengths adjacent to e of the triangles adjacent to e can be replaced with the
wedge of h-lengths for consecutive vertex sectors at the cusps at the ends of e. The replacement
agrees with the orientations of the formulas. The replacement for each edge of the triangulation
transforms the first adjacent by side formula to the second adjacent by vertex formula.

Example 25. The form ω for a once punctured torus.

A choice of three disjoint ideal geodesics decomposes a once punctured torus into two ideal
triangles. The torus is described by edge identifying two ideal triangles to form a topological
rectangle with diagonal γ, and then separately identifying the horizontal edges α and vertical
edges β. The pattern of geodesics at the cusp is twofold α, γ, β. Consider the triples of balanced
weights {a, b,−a−b} and {c, d,−c−d} for the sequence α, β and γ. For the geodesics enumerated
according to the pattern at the cusp, the sequence of partial sums for the second set of weights
is A0 = 0, A1 = c, A2 = −d and A3 = 0. The sum (7) evaluates to (ca+ (c− d)(−a− b) +−db) =
(ad− bc).

We now follow the discussion of Bonahon [Bon97b, Theorem 15] and Harer–Penner [PH92,
§ 2.1] for the dimension of the space of balanced sum coefficients.
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Lemma 26. For a surface with cusps and a maximal configuration of disjoint ideal geodesics,
the space of balanced sum coefficients has the same dimension as the Teichmüller space.

Proof. Consider a configuration of ideal geodesics with weights as a graph with weighted edges.
The graph is connected since ideal triangles fill in the configuration to form a connected surface.
We will sequentially coalesce and remove edges, each time decreasing the number of vertices,
to finally obtain a single vertex graph. For a surface with a single cusp no coalescing of edges
is necessary. Otherwise, by connectedness, there is an ideal triangle with not all vertices at the
same cusp. Begin with such a designated triangle. If only two vertices are at distinct cusps, then
we begin by coalescing an edge connecting the distinct vertices. If all vertices are at distinct
cusps then we begin by sequentially coalescing two edges of the triangle and the third edge will
not be subsequently coalesced. We label the ends of edges as incoming or outgoing at coalesced
vertices as follows. Label the ends of edges adjoining the first vertex as incoming. Coalesce the
first designated edge, remove the weight and label the remaining ends of edges at the second
vertex as outgoing for the coalesced vertex. At the coalesced vertex the weight condition is that
the sum of incoming weights equals the sum of outgoing weights. To continue, take a path of
edges to an uncoalesced vertex and coalesce the first edge to an uncoalesced vertex along the
path. Label the new ends of edges at the coalesced vertex as the opposite type as for the initial
segment of the coalesced edge. At the coalesced vertex the weight condition continues to be that
the sum of incoming weights equals the sum of outgoing weights. Continue coalescing edges until
only a single vertex remains. For a surface of genus g with n cusps, there are 6g−6+3n edges in
a maximal configuration. A total of n − 1 edges are coalesced and then 6g − 6 + 2n + 1 edges
remain. At least one edge of the initial designated triangle gives rise to an incoming–incoming
edge of the final coalesced vertex. The single weight sum relation is a nontrivial condition for the
weight on the incoming–incoming edge. The space of weights on the final graph has the expected
dimension. 2

8. The Fock shear coordinate algebra

Fock and Goncharov in their quantization of Teichmüller space introduced and worked with
a Poisson algebra for the shear coordinate functions [FG07, FC99, FG06]. The quantization
considerations begin with the Fock–Thurston theorem that for any ideal triangulation, the
corresponding shear coordinates (without the vanishing sums about cusps condition) provide
a real-analytic homeomorphism of the holed Teichmüller space to Euclidean space [Pen12,
ch. 4, Theorem 4.4]. Fock proposed a Poisson structure by introducing a natural bivector, an
exterior contravariant 2-tensor η and defining {f, g} = 〈(df, dg), η〉 for f, g smooth functions. A
relationship to the WP Kähler form was also proposed. A bivector defines a Poisson structure
with Jacobi identity provided its Schouten–Nijenhuis tensor vanishes.

Theorem 27 [FG07, FC99]. For an ideal triangulation ∆ and corresponding shear coordinates,
the bivector

η∆ =
∑
∆

∂

∂σa
∧ ∂

∂σb
+

∂

∂σb
∧ ∂

∂σc
+

∂

∂σc
∧ ∂

∂σa

is natural for the holed Teichmüller space, where the individual triangles have sides a, b and c in
counterclockwise order.

Penner gave a topological description of the bracket of shear coordinates [Pen12, p. 81], a
proof that the bivector is independent of triangulation and also determined the center of the
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algebra [Pen12, ch. 2]. For the topological description of the bracket, recall the definition of the

fat graph dual to an ideal triangulation. To construct the fat graph G embedded in the surface,

choose a vertex interior to each triangle and connect vertices by an edge when triangles are

adjacent. The result is a trivalent graph with a cyclic ordering of edges at each vertex. The

trivalent graph is a deformation retract of the surface.

Penner’s topological description of the bracket is the following [Pen12, p. 81]. Consider an

ideal triangulation ∆ with dual fat graph spine G. If a, b ∈ ∆ are distinct edges, then let εab
be the number of components of the complement of ∆ ∪ G whose frontier contains points of a

and b, counted with a positive sign if a and b are consecutive in the counterclockwise order in

the corresponding region, and with a negative sign if a and b are consecutive in the clockwise

order.2 Setting εaa = 0 for each a ∈ ∆, εab takes the possible values 0,±1,±2 and comprises a

skew-symmetric matrix indexed by ∆. The quantity εab is the count of oriented vertex sectors

jointly bounded by a and b.

Definition 28. The Fock shear coordinate algebra is defined by the bracket {σa, σb} = εab for

a, b ∈ ∆.

From formula (5) and Figure 1, a shear coordinate is a balanced sum of length functions.

For Riemann surfaces with cusps the WP Poisson bracket of sums of length functions is given in

Corollary 22 in terms of weights and the form ω. We evaluate ω for quadrilaterals and find that

the evaluation agrees with Penner’s topological description of the count εab.

Theorem 29. The Fock shear coordinate algebra is the WP Poisson algebra. The Fock shear

coordinate bracket is given by the form ω.

Proof. We begin with Corollary 22 providing that the Poisson bracket of the shear coordinates

for edges e, f is {σe, σf} = 2
∑

cusps ω({aj}, {bj}), for {aj}, {bj} the weights for the shears as

sums of lengths of ideal geodesics. The matter is to evaluate the sum (7) for ω for the possible

configurations. We first consider the case of the quadrilateral for the side e embedded in the

surface and then describe necessary modifications for sides of the quadrilateral coinciding. The

quadrilateral with weights for the edge e is given in Figure 7.

Referring to formula (7), the first calculation is for the partial sums Aj of edge weights. At

a vertex, edges are enumerated for summation in the counterclockwise order with the first edge

being the clockwise-most edge. Normalize the partial sums to be zero for the not listed edges

preceding the first edge. The partial sums by vertex and in counterclockwise order are given in

Table 1. The second calculation is for the sums Aj + Aj−1 of partial sums about vertices. The

sums are given in Figure 7 by the numbers in square brackets; again sums vanish for edges not

listed. Now we are ready to consider the configuration of the quadrilateral for the edge f and

the sum of weights 1
2(Aj +Aj−1)bj . The weights for f are again 0,±1 as in Figure 7. The edges

e and f are necessarily distinct. First consider that f coincides with a boundary edge of the e

quadrilateral. In this case the diagonal edge weight 0 for f is multiplied by the [±1] boundary

edge weights for e and added to the ±1 boundary edge f weight times 1
2 the sum of the [2] and

[2] diagonal weights for e. The result is ±2 with the positive sign if f is counterclockwise from e.

Now consider the case that the e and f quadrilaterals are either disjoint or intersect along a

boundary edge. In the case of intersection along a boundary, the vanishing sum [1] + [−1] of e

2 We have reversed Penner’s original sign convention given that his bivector has sides enumerated in a clockwise
order, while Fock’s bivector has sides enumerated in a counterclockwise order.
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c

e

a

d

b

0

1 –1

–1 1

I

II

IV

III

[1][1]

[1] [1]

[–1] [–1]

[–1][–1]

[2] [2]

Figure 7. The quadrilateral for a triangulation edge e following formula (5). The quadrilateral
sides are labeled by lowercase letters and vertices are labeled by Roman numerals. The edge
weights 0,±1 refer to expressing the e shear coordinate as a balanced sum of edge lengths. The
numbers in square brackets are the sums Aj +Aj−1.

Table 1. Partial weight sums in counterclockwise order about vertices.

Vertex A1 A2 A3

I −1 −1 0
II 1 0
III −1 −1 0
IV 1 0

boundary weights gives a vanishing overall contribution. This completes the calculation if the

quadrilateral of e is embedded.

In general a pair of sides of the quadrilateral of e could coincide; we do not consider the special

cases (g, n) = (0, 3) or (1, 1) where two side pairs coincide. A pair of adjacent sides could coincide

by a 3
4 rotation about the common vertex or opposite sides could coincide by a translation.

When sides coincide the contribution to ω is found by adding the contributions from each of the

relative configurations for the quadrilateral of f . The result will be 0,±4 according to adjacent or

opposite sides coinciding and the e, f orientation. As already noted, we are using the adjustment

[Wol07, § 5] to our formulas 2ωWP ( , t∗) = d`∗ in place of ωWP ( , t∗) = d`∗ systematically used

by Penner and Fock. The consequence is that our shear pairing is fourfold the Fock and Penner

calculations. With this information, the shear pairing evaluations correspond and the proof is

complete. 2

9. The norm of a length gradient for a collar crossing geodesic

We continue to consider compact surfaces with crossing geodesics α and a reflection symmetry,

see Figure 3. We consider surfaces Rε obtained by doubling a surface with cusps with ideal

geodesics α, and opening cusps to obtain short length core geodesics γ. We are interested in the
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products of the gradients grad `α and grad `γ . Theorem 3 and Lemma 20 can be combined to
provide expansions for the pairings

〈grad `γ , grad `γ〉 =
2

π
`γ +O(`4γ)

and

〈grad `α, grad `γ〉 =
−4

π
(#α ∩ γ) +O(`2γ).

Considerations of Chatauby convergence and sums of the differential Ω2 from § 2 suggest the
heuristic expansion grad `α = cα(`γ) grad `γ + ψ(`γ)(ds2)−1 with ψ(`γ) ∈ Q(Rε) converging to
ψ(0) ∈ Q(R ∪ R̄). A simple argument provides that ψ(0) is orthogonal to the limit of grad `γ .
The above pairing formulas and heuristic then suggest an expansion

〈grad `α, grad `α〉 =
8

π`γ
(#α ∩ γ)2 +O(1).

The divergence of the pairing corresponds to the geometry. The limit of d`α is formally the
differential of length of an ideal geodesic and is a holomorphic quadratic differential with double
poles at cusps. The limit is not an element of Q(R). Also the limiting infinitesimal deformation
grad `α corresponds to opening cusps and has infinite WP norm.

We would like to now use the gradient pairing formula, Theorem 3, to find the WP pairing
for balanced sums of gradients of lengths of ideal geodesics. The above considerations show
that a pairing formula involves canceling divergences in `γ . The divergences appear directly in
evaluating the formula. The crossing geodesic α is orthogonal to the collar core γ. Arcs along
γ connect the intersection points with α. Each connecting arc provides a summand for the
Theorem 3 evaluation. The connecting arcs along γ occur in families; a family consists of a
simple arc and the additional arcs obtained by adjoining complete circuits of γ. With `γ tending
to zero and the summand R(cosh dist) ≈ 2 log 2/dist for small distance, there is an immediate
divergence. We consider the sequence of lengths as a partition for a Riemann sum and find the
`γ-asymptotics of the sum.

The resulting formulas involve an elementary function, a reduced length for an ideal geodesic
and a reduced connecting arcs sum formula.

Definition 30. For 0 6 a 6 1, define the function λ(a) = a(1 − a)/(2 sinπa) with value given
by continuity at the interval endpoints. For a crossing geodesic α on a compact surface R with
reflection symmetry, the reduced length red(`α) is the signed length of the segment connecting
length 1 boundaries of the complement of collars about core geodesics. For an ideal geodesic α
on a surface with cusps, the reduced length red(`α) is the signed length of the segment of the
geodesic connecting the length 1 horocycles about the limiting cusps.

The function λ(a) is symmetric about a = 1
2 and satisfies 1

8 6 λ 6 1/2π. For a pair of points
p, q on a circle, we write λ(p, q) for the evaluation using the fractional part of the segment from p
to q. For a hyperbolic surface without cone points the length 1 horocycles are embedded circles
bounding disjoint cusp regions and red(`α) is nonnegative. For surfaces with cone points, the
reduced length can be negative.

For crossing geodesics α, β on a surface with reflection symmetry or ideal geodesics α, β on
a surface with cusps, we will write

red∑
α toβ

R
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for the reduced sum over homotopy classes rel the closed sets α, β of arcs connecting α to β,
that are not homotopic to arcs along a core γ or along a horocycle and R the analytic quantity
of Theorem 3. For the double of a surface with cusps, the symmetric homotopy classes are even
with respect to the reflection; for this situation the sum is only over arcs with representatives on
a chosen side of the surface. Each geodesic representative for the reduced sum intersects the thick
subset of the surface and the reduced sum includes any intersection points of the ideal geodesics
α and β. We assume the main result Theorem 32 and illustrate the approach with the example
of a single core geodesic. The general formula depends on the pattern of crossing geodesics.

Example 31. Expansion of the WP gradient pairing for crossing geodesics α, β and a single core
geodesic γ. For the core intersections α ∩ γ = {a1, a2}, β ∩ γ = {b1, b2} and a given positive
constant c, then

〈grad `α, grad `α〉 =
2

π

(
16

`γ
+ red(`α) + 4 + 2

∑
(ai,aj)

log λ(ai, aj)

)
+ 2

red∑
α toα

R+O(`1−cγ )

and for α 6= β

〈grad `α, grad `β〉 =
2

π

(
16

`γ
+ 2

∑
(ai,bj)

log λ(ai, bj)

)
+ 2

red∑
α toβ

R+O(`1−cγ ).

We are ready to consider that pairings of balanced sums on a surface with cusps are the
limits of pairings of balanced sums on approximating symmetric compact surfaces. The balanced
sum condition will serve to cancel the universal 16/`γ leading divergence terms. To compare
formulas note that a surface with cusps represents half of a compact surface. It is also important
that remainder terms as in the example tend to zero with `γ .

We state the main result. For a surface with cusps, the sum over core geodesic intersections
is replaced with a double sum. First, a sum over cusps and second, a sum over ordered pairs
of ideal geodesic segments limiting to a cusp. Ideal geodesics are orthogonal to horocycles. The
fractional part of a horocycle defined by a pair of ideal geodesics is independent of the choice
of horocycle. The geometric invariant λ is evaluated by considering the intersections with any
horocycle for the cusp. We present the formula for the case of a torsion-free cofinite group.

Theorem 32 (The ideal geodesic complex gradient pairing). For a surface R with cusps and
balanced sums A =

∑
aj`αj ,B =

∑
bk`βk of ideal geodesic length functions, the WP pairing of

gradients is

〈gradL(A), gradL(B)〉

=
∑
j,k

ajbk

(
δαjβk

2

π
(red(`αj ) + 2) +

2

π

∑
cusps

∑
segments α̃j ,β̃k

limiting to the cusp

log λ(α̃j , β̃k) +

red∑
αj toβk

R
)
.

The first sum is over weights; the double sum is over ordered pairs of geodesic segments limiting
to cusps. The final sum is over homotopy classes rel the closed sets αj , βk of arcs connecting αj
to βk, arcs that are not homotopic into a cusp. For the homotopy class of an intersection αj ∩βk,
the function R is evaluated on cos θ, where θ is the intersection angle. Otherwise, the function
R is evaluated on the hyperbolic cosine of the length of the unique minimal connecting geodesic
segment. Twist–length duality and J an isometry provide that 4〈σA, σB〉 = 〈gradA, gradB〉.

342

https://doi.org/10.1112/S0010437X1400757X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X1400757X


Products of twists, geodesic lengths and Thurston shears

Proof. Begin the consideration with compact surfaces with reflection symmetries and balanced

sums of geodesic-length functions converging to a surface with cusps formally doubled across the

cusps. The approach is to show that the connecting arcs sums of Theorem 3 converge to the sum

for the limiting surface. The individual summands are considered in terms of the geometry of

the biorthogonal connecting geodesic segments.

Begin by normalizing the uniformizations to ensure Chabauty convergence of the deck

transformation groups Γ. For the geodesic α, let α̃ be a chosen geodesic line lift and 〈A〉 the

cyclic group stabilizer. A fundamental interval on α̃ is chosen; each left 〈A〉 orbit in Γα̃ and Γβ̃,

β̃ a lift of β, has a unique biorthogonal geodesic connecting segment with one endpoint in the α̃

fundamental interval. The considerations proceed in terms of the geometry of the second endpoint

of the connecting segment. The finite number of terms corresponding to endpoints in a given

compact set converge. The sums for families of connecting segments along the core geodesics

provide universal divergences; the analysis is described in the next section. The remaining

connecting segments have second endpoint outside a given compact set and the segments do

not lie along core geodesics. The remaining segments necessarily intersect the lift of the thick

subset. The remaining segments are treated according to whether the second endpoint lies in

the lift of the thick or the thin subset. In the first case, the injectivity radius is bounded away

from zero and the sum of such terms is uniformly bounded by applying the distant-sum method

of [Wol10, ch. 8]. In the second case, the endpoint lies in the lift of a standard collar or cusp region.

Hyperbolic geometry is used to show that the full sum over the stabilizing cyclic hyperbolic or

parabolic group is bounded simply by the distance of the fundamental interval on α̃ to the

boundary of the region. The distant-sum and cyclic group bounds provide that the contributions

from the complement of a large compact set is sufficiently small. The estimates for the various

cases are combined to establish convergence of formulas.

We consider the connecting segments along a given core geodesic. We outline the approach

and give a detailed treatment in the next section. The sum for a family of connecting arcs in a

given direction along a core geodesic has the form

∞∑
n=0

S((a+ n)`) for S(t) = cosh t

(
log

cosh t+ 1

cosh t− 1

)
− 2

for ` the core length and a`, a > 0, the distance between core intersection points. The function
S(t) has the initial expansion S(t) ≈ 2 log 2/t and for N approximately `−1−ε, ε > 0, we break
up the sum

∞∑
n=0

S((a+ n)`)

=

N∑
n=0

2 log
2

(a+ n)`
+

1

`

N∑
n=0

`

(
S((a+ n)`)− 2 log

2

(a+ n)`

)
+

∞∑
n=N+1

S((a+ n)`).

For the first sum, we use additivity of the logarithm to obtain an expression in terms of log 2/`

and log Γ(a + 1) for the gamma function. Stirling’s formula is then applied. For the second

sum, half of the first and last sum terms are separated, then the trapezoid rule is applied to

approximate the sum by an integral and an error term. The trapezoid rule provides an improved

approximation in `. The integral is calculated by an antiderivative. Finally the bound that S(t)

is O(e−2t) for t > t0 > 0, provides that the third sum is exponentially small; the consequence is
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Figure 8. (Colour online) The Dedekind tessellation. Graphic created by and used with
permission from Gerard Westendorp.

that for a > 0 the original full sum has the expansion

2

`
+ log

Γ(a+ 1)2`2a−1

22aπ
+ 2a− 1 +O(`1−ε).

The overall expansion for connecting arcs in the forward and reverse directions is obtained by
combining the expansions for the values a and 1−a. Identities for the gamma function are used to
simplify the resulting formula and to obtain the function λ. As already noted, the `-divergence is
in the leading term. The balanced sum condition provides for the overall canceling of divergences
in evaluating the gradient product. The proof is complete. 2

Corollary 33. For a balanced sum A =
∑

aj`αj of ideal geodesic length functions and β a
closed geodesic, the shear and twist derivative pairing is

σA`β = −tβL(A) =
∑
j

aj
∑

p∈αj∩β
cos θp

for the intersection angles measured from αj to β.

Example 34. A distance relation for the elliptic modular tessellation.

The Dedekind tessellation is the tiling of the upper half plane for the action of PSL(2;Z).
The light, respectively dark, triangle tiles form a single PSL(2;Z) orbit. The reflection in
the imaginary axis normalizes the group and interchanges the light and dark triangles. The
tessellation vertices are fixed points of elements of the group action. There are two orbits for
vertices. There are also two orbits for ideal lines. The first consists of the lines containing a
single order-2 fixed point. The second consists of the lines sequentially containing an order-3, an
order-2 and an order-3 fixed point. We refer to the types as 2-lines and 323-lines. We consider
the lines with weights: w = +1 for 323-lines and w = −1 for 2-lines. The system of weighted
lines is PSL(2;Z) invariant.

The formula of Theorem 32 provides a relation for the distances between lines for the
Dedekind tessellation. For any choice ã of a 323-line and α̃ of a 2-line, we have∑

ultraparallels to ã

w(η)R(d(ã, η))−
∑

ultraparallels to α̃

w(η)R(d(α̃, η)) = log
36π4

226
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for R(d) = u log((u+ 1)/(u− 1))− 2 and u = cosh d. Ultraparallels are the tessellation lines at
positive distance. Lines at zero distance are asymptotic.

We find the relation as an exercise in evaluating the formula of Theorem 32. We begin with
the geometry of the tiling quotient. We work with the thrice-punctured sphere uniformized by
the projectivized index 6 subgroup PΓ(2) ⊂ PSL(2;Z) of matrices congruent to the identity
modulo 2. A fundamental domain for the torsion-free group PΓ(2) is given by the 12 light and
dark triangles adjacent to a given largest height nonvertical 323-line. The PΓ(2) quotient is a
tri-corner pillow with three 323-lines, labeled a, b, c and three 2-lines, labeled α, β, γ. The 2-lines
separate the quotient into two ideal triangles. A 323-line enters a single cusp of the quotient,
while a 2-line connects two distinct cusps. We evaluate the pairing product for the weighted
balanced sum σ = a + b + c − α − β − γ. The sum is PΓ(2) invariant, thus gradσ ∈ Q(PΓ(2))
by Theorem 21. The space of PΓ(2) quadratic differentials is zero dimensional. The self-pairing
of gradσ is zero.

We determine the contributions for terms on the right-hand side of the Theorem 32 formula.
The evaluation corresponds to the formal expansion of the product (a+ b+ c−α−β− γ)2. The
pairing is real and the initial factor π/2 can be moved to the left-hand side. We begin with the
reduced length contribution. The PΓ(2) cusps have width 2; the length 1 horocycle at infinity has
height 2. For a vertical 2-line, half of the reduced length segment connects the height-2 horocycle
to the order-2 fixed point at height 1. A 2-line has reduced length 2 log 2. For a vertical 323-line,
half of the reduced length segment connects the height-2 horocycle to the order-2 fixed point
at height 1

2 . A 323-line has reduced length 4 log 2. The reduced length contributing terms of
the product are a2 + b2 + c2 + α2 + β2 + γ2. The total first term reduced length contribution
is 18 log 2 + 12. We next consider the log λ contributions, which measure the geometry of the
ideal geodesics limiting to cusps. There are two reflections stabilizing each cusp. The reflections
stabilize the geodesics and provide that the intersections of the ideal geodesics with a horocycle
are equally spaced and alternate by weights. The log λ contributing terms of the product are

a2 + b2 + c2 + α2 + β2 + γ2 − 2aβ − 2aγ

− 2bα− 2bγ − 2cα− 2cβ + 2αβ + 2αγ + 2βγ.

By PSL(2;Z) symmetry, the evaluation is the same as for 3a2 + 3α2 − 12aβ + 6αβ. The a2

contribution is 2 log(λ(0)λ(1
2)) given the two segments at a cusp; the α2 contribution is 2 log λ(0)

given the two limiting cusps; the aβ contribution is 2 log λ(1
4) given the symmetry of λ and the

αβ contribution is log λ(1
2). The evaluations are λ(0) = 1/(2π), λ(1

4) = 3
√

2/32 and λ(1
2) = 1

8 .
The total log λ contribution is

6 log
1

16π
+ 6 log

1

2π
+−24 log

3
√

2

32
+ 6 log

1

8
.

We next consider the contribution from ideal geodesics intersecting. The intersection product
contributing terms are 2ab+ 2ac+ 2bc− 2aα− 2bβ − 2cγ. The geodesic intersections ab, ac and
bc are twofold. From the formula the total intersection contribution is

2 · 3 ·R
(

cos
π

3

)
+ 2 · 3 ·R

(
cos

2π

3

)
− 2 · 3 ·R

(
cos

π

2

)
= 6 log 3− 12

as follows. The leading 2-factors are from the formal expansion of σ2. The 3-factors are from
the symmetry of the triples a, b, c and α, β, γ. The first and second terms correspond to the
fact that distinct 323-lines intersect twice. The R-evaluations R(cosπ/3) = (log 3)/2 − 2 and
R(cosπ/2) = −2 are elementary. The final contribution of the right-hand side of the overall
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formula is the sum for the nontrivial connecting geodesics. We start with the formal expansion
σ2 = aσ + bσ + cσ − ασ − βσ − γσ. By PSL(2;Z) symmetry the evaluation is the same as for
3aσ − 3ασ. Connecting geodesics are enumerated by lifting to the universal cover. Given lifts ã
and α̃, the desired sums are obtained. The overall relation now follows. We note that the lines
asymptotic to ã and α̃ correspond to the limits of lines with connecting segments along core
geodesics; the log λ terms account for the combined contribution of the asymptotic lines.

10. The geodesic circuit sum

We consider the contribution to the Theorem 3 sum corresponding to connecting geodesics given
by circuits about a fixed closed geodesic. Such a circuit sum enters when the geodesics α and β
are orthogonal to a common closed geodesic. The summands are evaluations of the function

S(t) = cosh t

(
log

cosh t+ 1

cosh t− 1

)
− 2.

The consideration is for the length parameter ` expansion of the infinite sum of circuits. The
application to Theorem 32 requires an expansion with remainder term tending to zero for small
`. Simple analysis gives that the expansion begins with terms divergent in `. We provide the
expansion.

Theorem 35. For a and ε positive, the circuit sum has the expansion

∞∑
n=0

S((a+ n)`) =
2

`
+ log

Γ(a+ 1)2`2a−1

22aπ
+ 2a− 1 +O(`1−ε)

for the gamma function Γ(z).

Corollary 36. For ε positive, the circuit sum for 0 < a < 1 has the expansion

∞∑
n=−∞

S((a+ n)`) =
4

`
+ 2 log

Γ(a+ 1)Γ(2− a)

2π
+O(`1−ε)

=
4

`
+ 2 log

a(1− a)

2 sinπa
+O(`1−ε),

and for a = 1 has the expansion

∞∑
n=1

S(n`) =
2

`
+ log

`

4π
+ 1 +O(`1−ε).

Proof of Corollary. Since S(t) is an even function the first sum can be rewritten as
∑∞

n=0 S((a+
n)`)+S((1−a+n)`) and the theorem is applied. The gamma function identities Γ(z+1) = zΓ(z)
and Γ(1− z)Γ(z) sinπz = π are applied to obtain the desired expression. Finally, the case a = 1
is a direct application of the theorem. 2

Proof of Theorem. We begin with properties of the summand S(t). The summand has the small-t
expansion S(t) = 2 log 2/t − 2 + O(t2 log t) and the large-t expansion S(t) = O(e−2t). We also
consider the function

F (t) = S(t)− 2 log
2

t
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and write

F (t) = (cosh t− 1)

(
log

cosh t+ 1

cosh t− 1

)
+ log

t2(cosh t+ 1)

4(cosh t− 1)
− 2.

We note that for small t, since cosh t − 1 is O(t2) and t2/(cosh t − 1) is analytic it follows that
F (t) has second derivative bounded by −log t for small t. 2

We are ready to begin the overall considerations and write the sum in the form of Riemann
sums, adding in and subtracting out a 2 log 2/t contribution

∞∑
n=0

S((a+ n)`) =
N∑
n=0

2 log
2

(a+ n)`

+
1

`

N∑
n=0

`

(
S((a+ n)`)− 2 log

2

(a+ n)`

)
+

1

`

∞∑
n=N+1

`S((a+ n)`)

= I + II + III. (9)

We consider the right-hand sums in order. For the first sum we have

2
N∑
n=0

log
2

(a+ n)`
= 2(N + 1) log

2

`
+ 2

N∑
n=0

log
1

(a+ n)
.

The right-hand sum is −2 log
∏N
n=0(a+ n) = −2 log Γ(a+N + 1)/Γ(a+ 1). We apply Stirling’s

formula log Γ(z) = 1
2 log 2π/z + z(log z − 1) +O(1/z) to find that

I = 2(N + 1) log
2

`
+ 2 log Γ(a+ 1)− 2

(
a+N +

1

2

)
log(a+N + 1)

+ 2(a+N + 1)− log 2π +O(N−1)

and noting that log(a + N + 1) = log(a + N) + 1/(a + N) + O(N−2) gives the desired final
expansion

I = 2(N + 1) log
2

`
+ 2 log Γ(a+ 1)− 2(a+N) log(a+N)

− log(a+N + 1) + 2(a+N)− log 2π +O(N−1). (10)

For the second sum of (9) we refer to the trapezoid rule approximation for an integral. The
approximation uses weights 1

2 for the first and last sum terms and unit weights for the remaining
terms. The error bound is in terms of the second derivative of F (t) on the interval [a`, (a+N)`]
and the square of the partition size. The approximation gives the expansion

II =
1

`

∫ (a+N)`

a`
F (t) dt+

1

2
(F (a`) + F ((a+N)`))

+O(` |[a`, (a+N)`]|max |F ′′|).

We set (a+N) = `−ε and consider terms in order from right to left. Given the small-t logarithmic
bound for F ′′ the remainder is bounded as O(`1−2ε). Given the large-t exponential decay S(t)
and the small-t expansion of S(t), then

F ((a+N)`) = −2 log
2

(a+N)`
+O(e−`

−ε
) and F (a`) = −2 +O(`2−ε).
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The next step is to include the contribution of sum III. The sum is replaced with the
corresponding integral. Since the integrand is exponentially decreasing on the interval, the
replacement remainder is exponentially small. The considerations combine to give the expansion

II + III =−2

`

∫ (a+N)`

a`
log

2

t
dt+

1

`

∫ ∞
a`

S(t) dt− 1− log
2

(a+N)`
+O(`1−2ε).

The first integrand has antiderivative t log 2/t+ t. The second integrand S(t) has antiderivative

sinh t

(
log

cosh t+ 1

cosh t− 1

)
,

which has the large-t expansion 2 +O(e−2t). We evaluate the integrals to find the contribution

II + III =−2N log 2 + 2(a+N) log((a+N)`)− 2(a+N)

− 2a log a`+ 2a+
2

`
− 2a log

2

a`
− 1− log

2

(a+N)`
+O(`1−2ε).

The next step is to combine with expansion (10) and note again that (a+N)` = `−ε to find the
desired final expansion

I + II + III =
2

`
+ log

Γ(a+ 1)2`2a−1

22aπ
+ 2a− 1 +O(`1−ε).
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