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SLn, Orthogonality Relations and Transfer

Alexandru Ioan Badulescu

Abstract. Let π be a square integrable representation of G′
= SLn(D), with D a central division algebra

of finite dimension over a local field F of non-zero characteristic. We prove that, on the elliptic set, the

character of π equals the complex conjugate of the orbital integral of one of the pseudocoefficients

of π. We prove also the orthogonality relations for characters of square integrable representations of

G′. We prove the stable transfer of orbital integrals between SLn(F) and its inner forms.

1 Introduction

Let F be a local field of non-zero characteristic and D a central division algebra of
finite dimension over F. Let G ′ be the group SLn(D). If π is a square integrable rep-
resentation of G ′, we show that the well-known (in zero characteristic, [Cl]) relation

between the character of π and the orbital integral of one of its pseudocoefficients
holds for G ′. Since Lemaire [Le2] proved the local integrability of characters for rep-
resentations of SLn(D), the orthogonality relations for characters follows.

The idea of the proof is the same we used in [Ba1] to prove the same result for
GLn(F). It uses basically two ingredients: the close fields theory à la Kazhdan [Ka]

for SLn(D) and a result about the lifting of orbital integrals on GLn(F) by Lemaire.
Here we show that our construction [Ba2] of the close fields theory for GLn(D) eas-
ily implies the construction of the close fields theory for SLn(D), and the result of
Lemaire implies an analogous result for SLn(D). First we work under the conditions

D = F and the characteristic of F does not divide n. We remove these two conditions
later.

In the end we remark that our formula relating orbital integrals on SLn with orbital
integrals on GLn implies the transfer of stable orbital integrals (see [LL, Sh] for SL2)
in all characteristics.

2 GLn(D) and Hecke algebras

Let F be a non-archimedian local field, o its ring of integers and i the maximal ideal
of o. Let q be the cardinal of the residual field o/i. Let D be a central division algebra
of dimension d2 over F. Let O be the ring of integers of D and I the maximal ideal
of O. Let π be a uniformizer for D. Set G = GLn(D). Set K0 = GLn(O) and, for all

j ∈ N
∗, K j = 1 + Mn(Id j). Let H (or H(G), if more than one group are involved)

be the convolution algebra of locally constant functions on G with compact support.
For each j, let H j be the sub-algebra of H formed by the K j bi-invariant functions.
H j will be called the Hecke algebra of level j. Let Z be the center of G. The way of
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defining a characteristic polynomial for elements in G may be found in [Pi, 16.1].
If g ∈ G, g is called regular semisimple if its characteristic polynomial has distinct

roots in an algebraic closure of F. It is called elliptic if in addition its characteristic
polynomial is irreducible (some authors then call it “regular elliptic”).

Recall the Cartan decomposition. Let A be the set of matrices (ai, j)1≤i, j≤n such
that ai, j = δi, jπ

ai where δi, j is the Kronecker symbol and a1 ≤ a2 ≤ · · · ≤ an. Then

we have
G =

∐

A∈A

K0AK0.

So the characteristic functions of the sets K0AK0 form a basis of H0 when A lies

in A. If j ∈ N, then K j is a normal subgroup of K0. The kernel of the natu-
ral projection from K0 onto GLn(O/I j) is K j , so there is a canonical isomorphism
K0/K j ≃ GLn(O/I j). Hence we will identify these two groups. In particular we
write:

K0 =

∐

B∈GLn(O/I j )

K jB =

∐

B∈GLn(O/I j )

BK j .

Now set T j = GLn(O/I j) × GLn(O/I j). The Cartan decomposition may then be
written:

G =

∐

A∈A

⋃

(B,C)∈T j

K jBAC−1K j .

It is not a disjoint union. However, two sets in the union are either equal or dis-

joint. Let XA be the subgroup of GLn(O) × GLn(O) made of couples (B,C) such
that BAC−1

= A. Let XA, j be the image of XA in T j . Then we have K jBAC−1K j =

K jbAc−1K j if and only if (b−1B, c−1C) ∈ XA, j . So, the set K jBAC−1K j is well defined
for (B,C) ∈ T j/XA, j , and we have

G =

∐

A∈A

∐

(B,C)∈T j/XA, j

K jBAC−1K j .

So the set of characteristic functions of sets K jBAC−1K j is a basis of H j when A lies
in A, and for every such A, (B,C) lies in T j/XA, j . See [Ba2] for details.

3 GLn(D) and Close Fields

Now suppose L is another non-archimedian local field. All the objects we described
before are defined for L too, and in the following they will take an index F or L to

specify the field to which they are attached. Suppose that there is an isomorphism

λ j : oF/i
j
F ≃ oL/i

j
L for some positive integer j. We say then that the fields F and L

are j-close. If DL is the central division algebra of dimension d2 over L with the same

Hasse invariant as DF , then λ j induces an isomorphism OF/I
d j
F ≃ OL/I

d j
L , which we

still denote by λ j . Fix a uniformizer πL of DL such that the image by λ j of the class
of πL is the class of πF . The set AL is defined with respect to this choice, and we get a
natural bijection, still denoted λ j , from AF onto AL. It is clear that the isomorphism

λ j : OF/I
d j
F ≃ OL/I

d j
L induces an isomorphism λ j : T j,F ≃ T j,L. One may prove
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that the restriction of this isomorphism induces, for every A ∈ AF , an isomorphism
between the subgroups XA, j,F and Xλ j (A), j,L. So we get a natural bijection between the

basis of H j,F and H j,L which defines an isomorphism λ j between these two vector
spaces.

One may show that if l ≤ j, λ j induces an isomorphism between oF/il
F and oL/il

L,
then the fields F and L are also l-close. If we use this isomorphism and the same

choice of uniformizer for DF and DL, then the isomorphism λl : Hl,F ≃ Hl,L obtained
is induced by the restriction of the isomorphism λ j : H j,F ≃ H j,L. If K is a compact
subset of GF bi-invariant by K j,F , its characteristic function is an element of H j,F ,
and the image by λ j of this function in H j,L is the characteristic function of an open

compact set denoted λ j(K). Fix a Haar measure on GF (resp., GL) such that the
volume of the subgroup K0,F (resp., K0,L) is 1. Then the volume of λ j(K) equals the
volume of K. All these results are proved in [Ba2].

4 SLn(D) and Hecke Algebras

We forget L for a moment and we turn back to our F, D and the construction of
the beginning. Let G ′ be the subgroup SLn(D) of G. For all positive integers j, set

K ′
j = K j ∩ G ′. The K ′

j make up a basis of open compact neighborhood of 1 in
G ′. Let H ′ (or H ′(G ′) when more than one group are involved) be the algebra of
convolution of locally constant function on G ′ with compact support. Let H ′

j be the
Hecke algebra of level j of G ′ made by K ′

j -bi-invariant functions on G ′ which have

compact support. Set A
′

= A ∩ G ′. The kernel of the natural projection from K ′
0

onto SLn(O/I j) is K ′
j , so there is a canonical isomorphism K ′

0/K ′
j ≃ SLn(O/I j), and

we will identify these two groups. Now let T ′
j be the subgroup SLn(O/I j)×SLn(O/I j)

of T j . For each A ∈ A
′, set X ′

A, j = XA, j ∩ T ′
j . Let Z ′

= Z ∩ G ′ be the center of G ′.

Proposition 4.1 For every (B,C) ∈ T ′
j /X ′

A, j , K ′
j BAC−1K ′

j is well defined and we

have

G ′
=

∐

A∈A ′

∐

(B,C)∈T ′
j /X ′

A, j

K ′
j BAC−1K ′

j .

Proof We use the Cartan decomposition

G ′
=

∐

A∈A ′

K ′
0AK ′

0 .

As

K ′
0 =

∐

B∈K ′
0 /K ′

j

K ′
j B =

∐

B∈K ′
0 /K ′

j

BK ′
j

and K ′
0/K ′

j ≃ SLn(O/I j), we have

G ′
=

∐

A∈A ′

⋃

(B,C)∈T ′
j

K ′
j BAC−1K ′

j .
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Now suppose that K ′
j BAC−1K ′

j = K ′
j bAc−1K ′

j for some (B,C) and (b, c) in T ′
j . If

we consider (B,C) and (b, c) as elements of T j , then in G we must have K jBAC−1K j =

K jbAc−1K j , because these two sets have non-void intersection. So we know that
(b−1B, c−1C) ∈ XA, j . As (b−1B, c−1C) is an element of T ′

j , we must then have

(b−1B, c−1C) ∈ X ′
A, j . The converse is also true: if (b−1B, c−1C) ∈ X ′

A, j , then

K ′
j BAC−1K ′

j = K ′
j bAc−1K ′

j .

(It suffices to consider a representative of (b−1B, c−1C) in XA.)

Choose a Haar measure on G ′ such that the volume of K ′
0 is 1.

Lemma 4.2 If A ∈ G, then for every j ∈ N, we have

card(K ′
j /(AK ′

j A
−1 ∩ K ′

j )) = card(K j/(AK j A
−1 ∩ K j)).

As G = K0AK0 and K0 normalizes K j and K ′
j , it suffices to prove the lemma for

A ∈ A. Write

K j =

l
∐

i=1

ki(AK j A
−1 ∩ K j).

First, suppose that D = F. If A ∈ A, then the diagonal matrix with 1 on the first
n − 1 positions and det(ki)

−1 on the last is always in AK jA
−1 ∩ K j , so we may and

will assume that ki ∈ G ′ for all i. Then

K ′
j = K j ∩ G ′

=

l
∐

i=1

(

ki(AK j A
−1 ∩ K j) ∩ G ′

)

=

l
∐

i=1

(

ki(AK j A
−1 ∩ K j ∩ G ′)

)

because ki ∈ G ′. But G ′ is a normal subgroup of G, so

AK jA
−1 ∩ K j ∩ G ′

= (A(K j ∩ G ′)A−1) ∩ (K j ∩ G ′) = AK ′
j A

−1 ∩ K ′
j ,

and we have proved that

K ′
j =

l
∐

i=1

ki(AK ′
j A

−1 ∩ K ′
j ),

hence the equality for cardinals.
Suppose now that D 6= F. We want to do the same and to find a diagonal matrix

in K j whose determinant is det(ki)
−1. As it is diagonal, it will be in AK jA

−1∩K j , and
the proof will be the same after. First, with elementary operations on lines of k−1

i , we

obtain by a standard algorithm a triangular matrix in K j with the same determinant
det(ki)

−1. Now, if in this triangular matrix we keep only the diagonal and put zero
for all the other entries, we obtain a diagonal matrix with the same determinant (one
has to apply [We, Corollary 2, p. 169] on reduced norms).
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Lemma 4.3 Let j ≥ 1 and A ∈ A, and let a1 ≤ a2 ≤ · · · ≤ an be the powers of the

uniformizer on the diagonal of A. Then

vol(K ′
j AK ′

j ) = qd
∑

1≤i<i ′≤n ai ′−ai vol(K ′
j ).

Proof Using the last lemma, it follows from [Ba2, proof of Lemma 2.10].

Remark The volumes of K0 and K ′
0 are one and, for j ≥ 1, K0/K j ≃ GLn(O/Id j)

and K ′
0/K ′

j ≃ SLn(O/Id j). The determinant is a surjective map GLn(O/Id j) to

GL1(O/Id j) with kernel SLn(O/Id j). So we have

vol(K j ) = card(GL1(O/Id j)) vol(K ′
j ) = (qd − 1)qd2 j−d vol(K ′

j ).

Proposition 4.4 For every a ∈ G, the automorphism fa : x 7→ axa−1 of G ′ is measure

preserving.

Proof Let us show that vol(aK ′
0a−1) = 1. Applying Lemma 4.2 to a and a−1 we get

card(K ′
0/aK ′

0a−1 ∩ K ′
0) = card(K0/aK0a−1 ∩ K0),

card(K ′
0/a−1K ′

0a ∩ K ′
0) = card(K0/a−1K0a ∩ K0).

On the other hand, card(K0/aK0a−1 ∩ K0) = card(K0/a−1K0a ∩ K0), because the
(finite) cardinals are quotients of volumes, and conjugation with a−1 in G (to pass
from aK0a−1 ∩ K0 to a−1K0a ∩ K0) is measure-preserving with respect to a Haar

measure. We also have card(K ′
0/a−1K ′

0a∩K ′
0) = card(aK ′

0a−1/aK ′
0a−1∩K ′

0), because
conjugation with a induces an isomorphism between these two groups. The result
follows.

If g ∈ G ′, set h(g) = (vol(K ′
j )
−1)1K ′

j gK ′
j
.

Lemma 4.5

(i) If A, A ′ ∈ A
′, then h(A) ∗ h(A ′) = h(AA ′).

(ii) If (B,C) ∈ T ′
0 , then h(B) ∗ h(A) ∗ h(C) = h(BAC).

The proof is exactly like that for [Ba2, Lemma 2.11].

We remark that for every function f ∈ H j , the restriction of f to G ′ belongs to
H ′

j . This restriction commutes with the inclusions H j ⊂ Hi and H ′
j ⊂ H ′

i for i ≥ j.
Conversely, every function f ′ ∈ H ′

j can be lifted in a standard way to a function

f ∈ H j , using the natural inclusion of the standard basis of H ′
j into the standard

basis of H j . But this operation no longer commutes with the inclusions between
Hecke algebras. The restriction and the lifting will be used more than once in the
following.
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5 SLn(D) and Close Fields

Let us consider again the situation of the two j-close fields, F and L, and all the other
constructions from Section 3. Embody in the situation the groups G ′

F( = SLn(DF))

and G ′
L( = SLn(DL)). The bijection λ j : AF → AL induces a bijection λ ′

j : A
′
F → A

′
L,

and the isomorphism λ j : T j,F → T j,L induces an isomorphism λ ′
j : T ′

j,F → T ′
j,L. As

a consequence, the isomorphism λ j : H j,A,F → H j,λ j (A),L induces an isomorphism
λ ′

j : H ′
j,A,F → H ′

j,λ j (A),L. (This last result in the case of GLn [Ba2, Lemma 2.7] needed

some painful calculations in the first part of [Ba2], and to avoid recalling all the
notations, we choose to get it here by this embedding of G ′ in G). We then obtain an
isomorphism λ ′

j of vector spaces from H ′
j,F to H ′

j,L. We recall that if m is an integer
greater than j, if F and L are m-close, then F and L are also j-close.

Theorem 5.1 There exists an integer m ≥ j such that if F and L are m-close, then the

isomorphism λ ′
j is an isomorphism of (Hecke) algebras.

We need a lemma before we can prove the theorem.

Lemma 5.2 Let C be a finite subset of A
′
F , and set

G ′
F(C) =

⋂

A∈C

K ′
0,FAK ′

0,F.

Then

(i) There exist m ≥ j depending on C such that, for all g ∈ G ′
F(C), we have

gK ′
m,Fg−1 ⊂ K ′

j,F.

(ii) If L is m-close to F, then for all f1, f2 ∈ H ′
j,F supported on G ′

F(C) we have

λ ′
j( f1 ∗ f2) = λ ′

j( f1) ∗ λ ′
j( f2).

Proof This lemma is analogous to G ′
= SLn of [Ba2, Lemma 2.14] for the group

G = GLn. The point (i) here follows obviously “by intersection with G ′” from the
point (a) there. The point (ii) is then proven exactly like the point (b) of [Ba2, Lemma
2.14].

Proof of Theorem 5.1 It goes exactly like the proof of [Ba2, Theorem 2.13].

6 Hecke Algebras and Representations

We forget the close fields for a moment and turn back to notations in Section 4. Let
(π,V ) be an irreducible smooth representation of G ′. If K is a subgroup of G ′, let

V K be the subspace of vectors which are fixed under π(k) for all k ∈ K. If K is open,
V K has finite dimension. The level of π is the lowest integer l such that V Kl 6= 0.
If f ∈ H ′

j , we set π( f ) =
∫

G ′ f (g)π(g) dg. The image of π( f ) is then included in
V K ′

j . In particular, if j is less than l, then π( f ) = 0. If j is greater than or equal
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to l, then π( f ) induces an endomorphism of V K ′
j . It is also clear that the trace of

π( f ) equals the trace of this endomorphism. The space V K ′
j is an H ′

j -module with
the external low: f ∗ v = π( f )v for all f ∈ H ′

j and all v ∈ V K ′
j . To any irreducible

smooth representation π of level less than or equal to j we associate this way an
H ′

j -module. This construction gives a bijection from the set of equivalence classes

of irreducible smooth representations of G ′ with level less than or equal to j and the
set of isomorphism classes of irreducible non-degenerated H ′

j -modules, (see [Be] for
example).

7 Close Fields and Representations

Let F, L, j and m be as in Theorem 5.1; in view of what has been said in the last
section, λ ′

j induces a bijection between the set of equivalence classes of irreducible

smooth representations of G ′
F with level less than or equal to j and the set of equiva-

lence classes of irreducible smooth representations of G ′
L with level less than or equal

to j. As the maps λ ′
i for i ≤ j are compatible with the inclusions’ relations between

Hecke algebras, we see that λ ′
j is level preserving. Also, if f ∈ H ′

j,F and π is an irre-
ducible smooth representation of level less than or equal to j of G ′

F , we have obviously
tr π( f ) = tr λ ′

j(π)(λ ′
j( f )).

Proposition 7.1 Let π be an irreducible smooth representation of G ′
F of level less than

or equal to j. Then π is square integrable if and only if λ ′
j(π) is. Thus, π is tempered if

and only if λ ′
j(π) is.

Proof For square integrable representations, the proof is the same as for [Ba2, The-
orem 2.17]. Now, the tempered representations of G ′

F are its irreducible unitary rep-

resentations π such that for all ǫ > 0, there exists a non-trivial coefficient of π be-
longing to L2+ǫ(G ′

F), and the same for G ′
L. The same proof as for square integrable

representations shows that λ ′
j sends tempered representations to tempered represen-

tations.

Corollary 7.2 If π is a square integrable representation of G ′
F of level less than or equal

to j and f is a pseudocoefficient of π, then λ ′
j( f ) is a pseudocoefficient of λ ′

j(π).

Proof The corollary is an easy consequence of the above proposition. See [Ba1,
Lemma 4.2], (as well as [Ba1, §2] for a definition and a survey of pseudocoefficients
in all characteristic).

8 Orbital Integrals

Let F be a non-archimedian local field as in Section 1. Here D = F. Recall that
we fixed Haar measures dg and dg ′ on G and G ′ such that vol(K0, dg) = 1 and

vol(K ′
0 , dg ′) = 1. If γ is a regular semisimple element of G and ZG(γ) is the stabilizer

of γ in G, we put a Haar measure on ZG(γ) such that the volume of the subgroup
of its points over O is one. On G/ZG(γ) we put the quotient measure. The same if
γ ∈ G ′ and we consider its commutator ZG ′(γ) = ZG(γ) ∩ G ′ in G ′. The orbital
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integrals Φ( f , · ) of functions f ∈ H or f ∈ H ′ at the point γ will be calculated with
respect to these choices of measures.

Let us fix the following notations: if A is a subset of F, A[n] is the set of all n-th
powers of elements of A in F. If A is a subset of G, then det(A) is the image in F of
A under the determinant map. If A and B are subsets of G, then AB is the set of all
products ab with a ∈ A and b ∈ B.

From here to the end of the section we suppose that the characteristic of F is either

zero or prime with n.

Lemma 8.1 We have 1 + I2n ⊂ O∗[n].

Proof If the characteristic of F is zero, the lemma is an obvious consequence of

[BS, Exercise 2, p. 46] (which is an easy application of [BS, Theorem 3, p.42]). In
our opinion, there is a mistake in the statement of the exercise, and one has to replace
2δ + 1 by 2δ + 1, which is stronger and comes straight from the standard proof. The δ
in the exercise is the greatest power of p dividing n. In particular, we have δ < n, so

2δ+1 < 2n, so the exercise implies our statement. The same proof works in non-zero
characteristic if p is prime to n.

Let S be a set of representatives of O∗/1 + I2n in O∗. Choose a subset S ′ of S which
is a system of representatives of O∗/O∗[n] (always possible, thanks to Lemma 8.1).

Let XG ′ be the set of diagonal matrices in G with 1 in the first n − 1 places and an
element of S ′ in the last one. Let X be the set of diagonal matrices in G with 1 in the

first n − 1 places and an element of {1, π, π2, . . . , πn−1} in the last one.

It is clear that F∗[n]
= det(Z), O∗[n]

= det(Z(O)) and

F/F∗[n]
=

n−1
∐

i=0

πiO∗/O∗[n].

Using the natural inclusion of G ′ in G, we realize x(G ′/Z ′) as a subset of G/Z

for all x ∈ G. It is easy to check that G(O)/Z(O) =
∐

x∈XG ′
x(G ′(O)/Z ′(O)) and

G/Z =
∐

x∈XG ′X x(G ′/Z ′).

Remark If j ≥ 2n, the natural inclusion K ′
j /Z(K ′

j ) → K j/Z(K j ) is a bijection
(where Z(K ′

j ) is the center of K ′
j and Z(K j ) is the center of K j).

Let γ ∈ G ′. As Z ⊂ ZG(γ), det(Z) ⊂ det(ZG(γ)). So we may (and will) choose
a subset S ′

γ of S ′ which forms a system of representatives for O∗/ det(ZG(γ)(O)) in
O∗. We denote Xγ the corresponding subset of XG ′ . The valuation map sends the set

det(ZG(γ)) into a subgroup W of Z containing nZ. Consider a system of representa-
tives Jγ of Z/W in the set {0, 1, 2, . . . , n − 1}. We have

F∗/ det(ZG ′(γ)) =

∐

j∈ Jγ

π jO∗/ det(ZG(γ)(O)).
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So,
∐

j∈ Jγ
S ′

γπ
j is a system of representatives of F∗/ det(ZG(γ)) in F∗. Let Yγ be the

set of diagonal matrices in G with 1 in the first n − 1 places and π j , with j ∈ Jγ , in
the last one.

One may show that

G(O)/ZG(γ)(O) =

∐

x∈Xγ

x(G ′(O)/ZG ′(γ)(O)),

G/ZG(γ) =

∐

x∈XγYγ

x(G ′/ZG ′(γ)).

Let xγ be the cardinal of Xγ . The first relation shows that with our choice of measures,

the measure we put on G ′/ZG ′(γ) is xγ times the restricted measure from G/ZG(γ).

One may also verify that if δ is conjugated to γ in G, there exist exactly one element
x ∈ XγYγ such that δ is conjugated to xγx−1 in G ′.

Let us look at this construction from another point of view. We say that U is a
system adapted to γ if for each δ ∈ G conjugated to γ in G, there exist exactly one
element x ∈ U such that δ is conjugated to xγx−1 in G ′. Then we have

G/ZG(γ) =

∐

x∈U

x(G ′/ZG ′(γ)).

We just proved that XγYγ is a system adapted to γ. But what is remarkable from
our discussion is that knowing just the set det(ZG ′(γ)), we may construct a sys-

tem adapted to γ and we know xγ (which is the quotient of two cardinals: those of
F∗/ det(ZG ′(γ)) and of Z by its subgroup of valuations of elements in det(ZG ′(γ))).
So, our previous construction allows us to construct a particular such system de-
pending only on O∗/1 + I2n and on the first n powers of π.

Now let U be a system adapted to γ. If we denote by OG(γ) (resp., OG ′(γ)) the
orbit in G (resp., in G ′) of γ, then:

OG(γ) =

∐

x∈U

OG ′(xγx−1).

If dḡ (resp., dḡ ′) is the measure fixed on G/ZG(γ) (resp., G ′/ZG ′(γ)), then we have

that for every f ∈ H(G),

Φ( f , γ) =

∫

G/ZG(γ)

f (gγg−1)dḡ =

∑

x∈U

∫

G ′/ZG ′ (γ)

f (xgγg−1x−1)dḡ

=

∑

x∈U

∫

G ′/ZG ′ (γ)

f ((xgx−1)(xγx−1)(xg−1x−1))dḡ

=

∑

x∈U

∫

G ′/ZG ′ (γ)

f (g(xγx−1)g−1)dḡ,
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the last equality coming from Proposition 4.4. So, if f ′ ∈ H ′ is the restriction of f to
G ′, we obtain, as dḡ =

1
xγ

dḡ ′,

(8.1) Φ( f , γ) =
1

xγ

∑

x∈U

Φ( f ′, xγx−1).

Recall that γ is regular semisimple. Let Vγ be an open and compact neighborhood
of γ in G ′ containing only elements of G ′ which are conjugated under G ′ to a regular
element in the torus ZG ′(γ). Such a neighborhood always exists by the submersion
theorem of Harish-Chandra. Using the same theorem for G, we may and will assume

that an element in Vγ is conjugated in G to exactly one element of ZG ′(γ). Then ZG(t)
is conjugated to ZG(γ) in G ′ for all t ∈ Vγ . In particular, det(ZG(t)) = det(ZG(γ))
which shows that the system XγYγ is adapted to t , too, and xt = xγ . So the formula

Φ( f , t) =
1

xγ

∑

x∈XγYγ

Φ( f ′, xtx−1)

works in the whole neighborhood Vγ (actually the formula works for every regular
element of AdG ZG(γ)∩G ′). For some precise choices when constructing Xt , we even

have Xt = Xγ .

For each x ∈ XγYγ , set Vxγx−1 = xVγx−1 (it is an open and compact neighbor-

hood of xγx−1 in G ′). If A ⊂ G, let AdG ′(A) stand for the set of all conjugates of
elements in A by elements of G ′. The sets AdG ′(Vxγx−1 ), x ∈ U , are disjoint because
of the choice of Vγ . They are all open and closed also. The fact that they are open
is obvious (union of open sets). Then the fact that they are closed would be a con-

sequence of their union being closed. But their union is AdG(Vγ), and this is closed:
if P is the (continuous) map characteristic polynomial from G to Fn, then P(Vγ) is
compact because Vγ is, hence the reciprocal image P−1(P(Vγ)) = AdG(Vγ) is closed.

Now let f ′ ∈ H ′. We may write f ′
= f ′

0 +
∑

x∈XγYγ
f ′
x , where the support of

f ′
0 does not intersect any AdG ′(Vxγx−1 ), and the support of each f ′

x is included in
AdG ′(Vxγx−1 ). The orbital integral of f ′

0 vanishes on all xVγx−1. The orbital integral
of f ′

x0
vanishes on all xVγx−1 with x ∈ XγYγ\{x0}. If f ′

1 ∈ H ′
j , we just lift it to a

function f1 ∈ H j , and using the relation between orbital integrals we get

(8.2) Φ( f ′, t) = xγΦ( f1, t)

for all t ∈ Vγ . In particular, if Φ( f1, · ) is constant in a neighborhood V of γ in G,
then Φ( f ′, · ) is constant on Vγ ∩V .

9 Orbital Integrals and Close Fields

We will deal again with two different fields F and L, and the subscript F or L will
indicate the one to which the object is attached. The field F is fixed. If γ is an elliptic
element of G ′

F , then we fix Xγ as in the previous section, and, if L is a field m close
to F with m ≥ 2n, we define λm(Xγ) in the following way: We take the image of
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Xγ in O∗
F/1 + Im

F = (OF/Im
F )∗ defined by its last coefficient on the diagonal. Then

we take the image of this set under the ring isomorphism λm : OF/Im
F → OL/Im

L . We

then consider a system SL of representatives of this set in O∗
L and finally we let λm(Xγ)

be the set of diagonal matrices in GL with 1 in the first n − 1 places of the diagonal
and an element of SL in the last. The set Yγ is defined only in terms of powers of
the uniformizer πF of F, so there is a canonical way of defining the corresponding set

λm(Yγ) using the uniformizer πL of L. It is also clear how we define λm(x) for each x

in XγYγ . Actually, Xγ ⊂ K0,F , and Yγ ⊂ AF , so every x ∈ XγYγ is an element of type
BAC−1 (with C = 1) like those used in the standard decomposition of GF . Hence,
for all m ≥ 2n, if L is m-close to F we automatically have λm(x) ∈ λm(KmxKm), so for

this particular adapted system we have defined a point-wise lifting always compatible
with the general lifting of open compact sets.

Theorem 9.1 (Lemaire) Let γ be an elliptic element of GF . Let j be a positive integer.

Then there exist l and m such that

(i) for every f ∈ H j,F , Φ( f , · ) is constant on Kl,FγKl,F , equal to Φ( f , γ),

(ii) m is greater than j and l and for every field L which is m-close to F, for every

f ∈ H j,F , Φ(λ j( f ), · ) is constant on λl(Kl,FγKl,F), equal to Φ( f , γ).

Proof [Le1, p.1054].

Lemma 9.2 Let γ ∈ GF be an elliptic element and let j be a positive integer. There

exist l and m such that if L and F are m close, then for all γ ′ ∈ λl(Kl,FγKl,F) we have

K j,LZGL
(γ ′)K j,L = λl(K j,FZGF

(γ)K j,F).

Proof It is shown in the first paragraphs of [Le1, proof of (i), p. 1043].

Let γ ∈ G ′
F be an elliptic element. Apply the last lemma for a j ≥ 2n. Then we

have the following.

Proposition 9.3 If L and F are m-close, then for all γ ′ ∈ λl(K ′
l,FγK ′

l,F), the system

λl(Xγ)λl(Yγ) is adapted to γ ′ and xγ ′ = xγ .

Proof We have seen that 1 + I2n
L = det(K2n,L) ⊂ det(ZGL

(γ ′)) and 1 + I2n
F =

det(K2n) ⊂ det(ZGF
(γ)). So det(ZGL

(γ ′)) = det(K j,FZGL
(γ ′)K j,F) and

det(K j,FZGF
(γ)K j,F) = det(ZGF

(γ)).

Now, by the previous lemma we get K j,LZGL
(γ ′)K j,L = λl(K j,FZGF

(γ)K j,F). But, if

V is a K j,F bi-invariant set, then det(V ) is invariant by 1 + I
j
F , and det(V ) ⊂ GL1(F)

correspond to det(λ j(V )) ⊂ GL1(L) by the close fields theory for GL1 (it suffices to
verify this on standard sets K jBAC−1K j , and this is obvious).

Let γ be an elliptic element of G ′
F .

https://doi.org/10.4153/CJM-2007-019-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2007-019-8


460 A. I. Badulescu

Theorem 9.4 Let f ′ ∈ H. There exist p and m such that

(i) Φ( f ′, · ) is constant on K ′
pγK ′

p, equal to Φ( f ′, γ);

(ii) for every field L which is m-close to F, Φ(λm( f ′), · ) is constant on λm(K ′
pγK ′

p),

equal to Φ( f ′, γ).

We begin with a lemma studying the behavior of the lifting under conjugation. It

implies, for example, that if two open compact sets A and B are conjugated, the same
is true for their lifting to a field close enough. It also implies that if no element of A

is conjugated with an element of B, the same is true for their lifting to a field close
enough.

Lemma 9.5 Let H1, H2 be open compact subsets of GF and g ∈ GF such that

gH1g−1 ⊂ H2.

If H1 and H2 are bi-invariant under some K j,F , then K j,FgK j,FH1K j,Fg−1K j,F ⊂ H2.

Moreover, there exist m > j such that if L is m-close to F, then

λm(K j,FgK j,F)λm(H1)λm(K j,Fg−1K j,F) ⊂ λm(H2).

Proof As gH1g−1 ⊂ H2 and H1 and H2 are bi-invariant under K j,F , we obvi-
ously have K j,FgK j,FH1K j,Fg−1K j,F ⊂ H2. For the second assertion, it suffices to

show that λm(K j,FxK j,F yK j,F) = λm(K j,FxK j,F)λm(K j,F yK j,F) for all x, y ∈ GF . But
K j,FxK j,F yK j,F is the support of the function obtained by the convolution product
of characteristic functions 1K j,F xK j,F

and 1K j,F yK j,F
. So, when m is big enough for the

linear isomorphism between H j,F and H j,L to be an algebra isomorphism (Theorem

5.1), we also have our relation.

Proof of Theorem 9.4 The proof of the theorem is now straightforward. Thanks to
Proposition 9.3 and Lemma 9.5, if L is m-close to F, m big enough, then the con-
struction for L at the end of the last section is parallel to that for F (just pick a γL

in λm(Vγ) and use Lemma 9.5 to show (for m big enough) that for all x ∈ XγYγ ,
λm(Vxγx−1 ) = Vλm(x)γLλm(x)−1 ). To conclude (i) of our theorem, just use Theorem
9.1(ii) and relation (8.2).

10 The Orthogonality Relations for Characters

If denotes complex conjugation, we have the following.

Theorem 10.1 Let F be a local field of non-zero characteristic p. Let n be a positive

integer such that p does not divide n. Then if π is a square integrable representation of

G ′
F = SLn(F), if f ′

π is a pseudocoefficient of π, we have

(i) χπ(g) = Φ( f ′
π , g) if g is an elliptic element of G ′

F ;

(ii) Φ( f ′
π , g) = 0 if g is a regular semisimple element of G ′

F which is not elliptic.
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Proof The proof of (i) is then the same as for [Ba1, Theorem 4.3]. Point (ii) is
true in every characteristic and for every connected reductive algebraic group (see

for example [Ba1, Lemme 2.4]).

Corollary 10.2 The orthogonality relations for characters hold on G ′
F .

Proof The proof is the same as in [DKV, 4.4.h], as Lemaire showed the local inte-
grability of characters for SLn in non-zero characteristic [Le2].

11 Removing Condition p ∤ n

What happens if F is of non-zero characteristic p, and p divides n? First of all, The-
orem 9.1 is absolutely independent of that. Otherwise, the decomposition of G/Z as

cosets of G ′/Z ′ is no longer finite, because F∗[n] no longer contains an open neigh-
borhood of 1. But, if a field E is an extension of F, then the norm map from E∗ to F∗

contains an open neighborhood of 1, say 1 + I pE∗ [We, Proposition 5, p. 143]. So, if
γ is an elliptic element of G ′

F , then we may still consider a system of representatives

of O∗
F/1 + I

pZGF
(γ)

F = (OF/I
pZGF

(γ)

F )∗ in O∗
F , and it will be a finite set containing a system

of representatives for O∗
F/ det(ZGF

(γ)). The diagonal matrix with 1 on the first n − 1
positions and an element of this system of representatives on the last will be our Xγ ,

adapted to γ. More generally, if γ is any regular semisimple element of GF , ZGF
(γ)

is isomorphic to the group of invertible elements of a product of finite extensions of
F, and this isomorphism sends the determinant to the product of reduced norms,
so det(ZGF

(γ)) still contains an open subgroup of O∗
L and the whole construction

goes the same. All the other fields L involved when applying the close fields theory
to GF and G ′

F are of zero characteristic, so for them the construction of Xδ involves
O∗

L/1+ I2n
L = (OL/I2n

L )∗ independently of the field L or the element δ. So we just have
to replace the condition m = 2n by m = max(2n, pZGF

(γ)) in the discussion of how to

lift adapted systems. All the proofs go then the same. We remark that Proposition 9.3
implies afterwords that even in this case of bad characteristic, we still have xγ ≤ 2qn2

independently of the regular semisimple element γ, where q is the cardinal of the
residual field.

12 Removing Condition D = F

Let d2 be the dimension of D over F. If γ is a regular semisimple element of GLn(D),

if δ is an element of GLdn(F), we say that δ corresponds to γ if the characteristic poly-
nomial of δ is equal to that of γ. We then write δ ↔ γ. Such δ always exist and are
regular semisimple. If γ is elliptic, then such δ are always elliptic. If f ∈ H(GLn(DF)),
one may find a function e ∈ H(GLnd(F)) such that the orbital integral of e verifies:

(i) Φ(e, δ) = Φ( f , γ) for all elliptic γ ∈ GLn(D) and all δ ↔ γ;
(ii) Φ(e, δ) = 0 for every regular semisimple element δ ∈ GLnd(F) which does not

correspond to any regular semisimple element of GLn(D).

This result is proved in [DKV] for F of characteristic zero and in [Ba3] for F of
non-zero characteristic. We will call it orbital integrals transfer over F.
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Now, if γ ∈ GLn(D) is regular semisimple and δ ∈ GLnd(F) corresponds to γ,
then ZGLn(D)(γ) is isomorphic to ZGLnd(F)(δ) by an isomorphism preserving the deter-

minant. So S ′
γ = S ′

δ , and the theory of the set Xγ and adapted systems to γ is the same
as for δ: for any x ∈ S ′

γ choose an element yx ∈ D such that the reduced norm of y is
x, and then Xγ is the set of diagonal matrices in GLn(D) with 1 in the first n − 1 po-
sitions and yx in the last. Not only is it possible to find such a yx ∈ O∗

D, but one may

choose it in O∗
E where E is the unramified extension of dimension d of F contained in

D [We, Proposition 3, p. 141], so that all yx commute with each other. The construc-
tion of Yγ in GLn(D) is the same as in GLn(F), with the uniformizer of D instead of
that of F. We may suppose the uniformizer of F used for these constructions is the

power d of the uniformizer of D, so that the reduced norm of the uniformizer of D is
the uniformizer of F. We then have an obvious bijection form XδYδ onto XγYγ which
preserves the determinant (thanks to [We, Corollary 2, p. 169]).

We prove an analog of Theorem 9.1 for GLn(D). This version of Lemaire’s theo-
rem that we prove below is weaker, but we need Lemaire’s result only for any fixed

function, as we used it only for a finite number of functions in the proof of our main
theorem.

Theorem 12.1 Let γ be a regular semisimple element of G = GLn(DF). Let f ∈
H(GLn(DF)). Then there exist l and m such that:

(i) Φ( f , · ) is constant on Kl,FγKl,F , equal to Φ( f , γ),

(ii) m is greater than l and for every field L which is m-close to F, Φ(λl( f ), · ) is con-

stant on λl(Kl,FγKl,F), equal to Φ( f , γ).

As f is fixed, the real problem is (ii). We get it by transferring integral orbitals

to GLdn(F), and using Theorem 9.1. So we will deal with four groups: GLn(DF),
GLnd(F), GLn(DL) and GLnd(L), where L is a non-archimedian local field of zero
characteristic m-close to F for some m. Let M ∈ GLnd(F) be the companion matrix

of the characteristic polynomial of γ. Then M corresponds to γ.

We will need the following lemma.

Lemma 12.2 Let U1 and U2 be neighborhoods of γ and M, respectively. Then there

exist open compact neighborhoods V1 of γ and V2 of M and an integer m such that,

(i) V1 ⊂ U1 and V2 ⊂ U2.

(ii) for all field L m-close to F, λm(V1) (⊂ GLn(DL)) and λm(V2) (⊂ GLnd(L)) are

well defined (i.e., V1 and V2 are Km,F bi-invariant) and for all g ∈ λm(V1) there

exist h ∈ λm(V2) corresponding to g.

Proof This is a direct consequence of [Ba2, Propositions 4.5, 4.10]. The reader may
verify it by formal logic, without knowing what “polynômes proches” means.

Proof of Theorem 12.1 Now we have proved that given j, if m is big enough and L

is m close to F, then the orbital integrals transfer over F and over L commute with
the map λ j for functions [Ba3]. So our proposition follows from Lemma 12.2 and
Theorem 9.1 applied after transferring f .
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The analog of Proposition 9.3 in the case D 6= F is also true. If the V2 of Lemma
12.2 is included in the Kl,FγKl,F of Proposition 9.3, and if we apply the proposition

and the lemma, we find that the proposition is true for GLn(D). One has just to
replace the neighborhood Kl,FγKl,F of γ with the V1 of the lemma.

Last but not least is the fact that the characters of irreducible smooth representa-
tions of SLn(D) are locally integrable in non-zero characteristic. This result may be

found in [Le2]. The proof of the orthogonality relations for SLn(D) is now exactly
the same as the proof for GLn(F).

13 Stable Transfer

Let F be a non-archimedian local field of any characteristic and D a central division
algebra of dimension d2 over F. If γ is a regular semisimple element of SLn(D) or
SLnd(F), fix Uγ a system adapted to γ. We note that the set of regular semisimple

classes in SLnd(F) is parametrized via the characteristic polynomial by the set of all
polynomials P of degree n with coefficients in F such that the first and the last co-
efficients of P are equal to 1, while the set of regular semisimple classes in SLn(D) is
parametrized by the set of all polynomials P of degree n with coefficients in F such

that the first and the last coefficients of P are equal to 1 and the decomposition of P

as a product of irreducible polynomials over F involves only polynomials of degrees
divisible by d.

We have the following theorem of stable transfer of orbital integrals for SLn.

Theorem 13.1

(i) Let f ∈ H(SLn(D)). There exists h ∈ H(SLnd(F)) such that:

(a) for all regular semisimple element γ ∈ SLn(D), δ ∈ SLnd(F) such that δ ↔ γ,
∑

x∈Uγ

Φ( f , xγx−1) =

∑

x∈Uδ

Φ(h, xδx−1),

(b) for all regular semisimple elements δ ∈ SLnd(F) which do not correspond to

any regular semisimple element of SLn(D),
∑

x∈Uδ

Φ(h, xδx−1) = 0.

(ii) Let h ∈ H(SLnd(F)) verify (i)(b). Then there exists f ∈ H(SLnd(F)) such that for

all regular semisimple elements γ ∈ SLn(D), for all regular semisimple elements

δ ∈ SLnd(F) such that the characteristic polynomials of γ and δ are equal, we have
∑

x∈Uγ

Φ( f , xγx−1) =

∑

x∈Uδ

Φ(h, xδx−1).

Proof In the previous section we explained the transfer of orbital integrals for GLn

([DKV] for the zero characteristic case and [Ba3] for the non-zero characteristic
case). Transferring f to h may be done by lifting f to a function on GLn(D), transfer-
ring this function to GLnd(F) and then taking the restriction to SLnd(F) to be h. Then
h verifies (a) and (b) thanks to (8.1) (as we already pointed out, xδ = xγ).
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There is a natural question to ask for (i): Could we find h such that all of its
orbital integrals would be zero at regular semisimple points of SLnd(F) that do not

correspond to any regular semisimple element of SLn(D) (i.e., each of the terms in
the sum of the (b) of our theorem is zero)? We do not know the answer to this
question.
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