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Atomic Decomposition and Boundedness
of Operators on Weighted Hardy Spaces

Yongsheng Han, Ming-Yi Lee, and Chin-Cheng Lin

Abstract. In this article, we establish a new atomic decomposition for f ∈ L2
w ∩ H

p
w , where the de-

composition converges in L2
w-norm rather than in the distribution sense. As applications of this de-

composition, assuming that T is a linear operator bounded on L2
w and 0 < p ≤ 1, we obtain (i) if

T is uniformly bounded in L
p
w-norm for all w-p-atoms, then T can be extended to be bounded from

H
p
w to L

p
w ; (ii) if T is uniformly bounded in H

p
w-norm for all w-p-atoms, then T can be extended to be

bounded on H
p
w; (iii) if T is bounded on H

p
w , then T can be extended to be bounded from H

p
w to L

p
w .

1 Introduction

The study of H p spaces has been going on for a long time. The classical H p spaces on

the unit circle or upper half-plane are defined by the aid of complex function theory.

Stein and Weiss [13] extended the definitions of these spaces to higher dimensional

cases by a system of conjugate harmonic functions. Fefferman and Stein [2] gave real

characterizations of H p spaces by several maximal functions, the Littlewood–Paley

function, and the Lusin function. Coifman [1] and Latter [9] gave explicit represen-

tation theorems for elements in H p, that is, atomic decomposition theorems. Using

Muckenhoupt’s weights w, Garcia-Cuerva [4] characterized weighted Hardy spaces

H
p
w by several maximal functions; moreover, he used the auxiliary maximal function

S∗M to get the atomic decomposition of H
p
w. Gundy and Wheeden [7] gave a char-

acterization of H
p
w in terms of the Lusin area integral. Recently Garcia-Cuerva and

Martell [5] gave another equivalent expression of elements in H
p
w via a wavelet char-

acterization. It is important to emphasize that to prove the boundedness of many

classes of operators defined on H p spaces, it suffices to verify the boundedness of

operators acting on all atoms. The best known class of operators with this prop-

erty is the class of Calderón–Zygmund operators. A complete argument for verifying

Calderón–Zygmund operators bounded from H p to Lp and bounded on H p can be

found in [6, Chapter III, §7] or [11, §7.3].

Garcia-Cuerva and Rubio de Francia [6, pp. 322–325] used smoothly truncated

kernels to deal with the boundedness of convolution operators on H p(R
n). Here we

are trying to generalize their results, not only to more universal linear operators, but

also to weighted cases.
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The main purpose of this article is to give a criterion of the boundedness of op-

erators on H
p
w. We first establish a new atomic decomposition for L2

w(R
n) ∩ H

p
w(R

n),

where the decomposition converges in L2
w-norm instead of in the distribution sense.

Theorem 1.1 Let 0 < p ≤ 1 and w ∈ A2. Set N = [n(2/p − 1)] the integer part

of n(2/p − 1). For f ∈ L2
w(R

n) ∩ H
p
w(R

n), there exist a sequence {ai} of w-(p, 2,N)-

atoms and a sequence {λi} of real numbers satisfying
∑

|λi |p ≤ C‖ f ‖p

[b]H
p
w

such that

f =
∑
λiai , where the series converges in L2

w(R
n) and hence a subsequence converges

almost everywhere.

As a consequence of Theorem 1.1, we obtain the following.

Corollary 1.2 Let 0 < p ≤ 1 and w ∈ A2. For a linear operator T bounded on

L2
w(R

n), if T f ∈ H
p
w(R

n) and ‖T f ‖H
p
w
≤ C‖ f ‖H

p
w

for f ∈ L2
w ∩ H

p
w, then T can be

extended to a bounded operator from H
p
w(R

n) to L
p
w(R

n).

Corollary 1.3 Let 0 < p ≤ 1 and w ∈ A2. For a linear operator T bounded on

L2
w(R

n), T can be extended to a bounded operator from H
p
w(R

n) to L
p
w(R

n) if and only if

there exists an absolute constant C such that ‖Ta‖L
p
w
≤ C for any w-(p, 2,N)-atom a.

Corollary 1.4 Let 0 < p ≤ 1 and w ∈ A2. For a linear operator T bounded on

L2
w(R

n), T can be extended to a bounded operator on H
p
w(R

n) if and only if there exists

an absolute constant C such that ‖Ta‖H
p
w
≤ C for any w-(p, 2,N)-atom a.

Remark It follows from Corollary 2 that, for 0 < p ≤ 1 and w ∈ A2, the identity

operator on H
p
w(R

n) extends to a bounded operator from H
p
w(R

n) to L
p
w(R

n). One

could be curious to know if such an extension concludes a fallacious result H
p
w = L

p
w.

The answer is negative. We start with the identity operator 1 on L2
w(R

n) ∩ H
p
w(R

n).

By Corollary 1.2 it has an extension 1̃; however, 1̃ is different from 1 outside the

L2
w(R

n) ∩ H
p
w(R

n).

Throughout this paper the letter C will denote a positive constant that may vary

from line to line but will remain independent of the main variables.

2 Preliminaries

By a weight we always mean the Muckenhoupt Ap weight. Let us recall the definition

and properties of Ap weight. We say that w ∈ Ap, 1 < p <∞, if

(∫

I

w(x) dx
) (∫

I

w(x)−1/(p−1) dx

)p−1

≤ C|I|p for every cube I ⊂ R
n,

where C is a positive constant independent of I. By the definition of A2, we know

w ∈ A2 if and only if w−1 ∈ A2. For p = 1, we say that w ∈ A1 if

1

|I|

∫

I

w(x) dx ≤ C · ess inf
x∈I

w(x) for every cube I ⊂ R
n.
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A function w satisfies the condition A∞ if w ∈ Ap for some p ≥ 1. It is well known

that if w ∈ Ap with 1 < p < ∞, then w ∈ Ar for all r > p and w ∈ Aq for some

1 < q < p. We thus use qw ≡ inf{q > 1 : w ∈ Aq} to denote the critical index of w

and set weighted measure w(E) =
∫

E
w(x) dx. For any cube I and λ > 0, we denote

by λI the cube concentric with I whose each edge is λ times as long. It is known that

for w ∈ Ap, p ≥ 1, w satisfies the doubling condition.

Given a weight function w on R
n, as usual we use L

q
w(R

n), 0 < q < ∞, to express

the space of all functions satisfying

‖ f ‖q

L
q
w
≡
∫

Rn

| f (x)|qw(x) dx <∞,

when q = ∞, L∞
w will be taken to mean L∞ and ‖ f ‖L∞

w
= ‖ f ‖L∞ . Similarly to the

classical Hardy spaces, the weighted Hardy space H
p
w(R

n), 0 < p ≤ 1 can be defined

by the area function.

For 0 < p ≤ 1, let ψ(x) be a radial Schwartz function supported on the unit ball

and satisfying

∫ ∞

0

|ψ̂(tξ)|2 dt

t
= 1 for all ξ ∈ R

n \ {0},
∫

Rn

ψ(x)xαdx = 0 for given multi-index α with |α| ≤ N.

Set ψt (x) = t−nψ(x/t). For f ∈ S ′(R
n), the space of tempered distributions, the

Lusin area function is defined by

S( f )(x) =
(∫ ∞

0

∫

|x−y|<t

|ψt ∗ f (y)|2 dydt

tn+1

) 1/2

,

and the Littlewood–Paley g function is defined by

g( f )(x) =
(∫ ∞

0

|ψt ∗ f (x)|2 dt

t

) 1/2

.

It follows from [12, p. 89] that g( f )(x) ≤ CS( f )(x), and it is well known that

‖S( f )‖L2
w
≤ C‖ f ‖L2

w
for w ∈ A2. The weighted Hardy space H

p
w(R

n) consists of

those tempered distributions f ∈ S ′(R
n) for which S( f ) ∈ L

p
w(R

n) with quasi-

norm ‖ f ‖p

H
p
w
= ‖S( f )‖p

L
p
w
. The space can also be defined in terms of non-tangential

maximal function, radial maximal function, and wavelet characterization [4, 5, 7].

We can characterize the element in H
p
w in terms of atoms as well.

Definition On R
n, let 0 < p ≤ 1 ≤ q ≤ ∞, p < q, and w ∈ Aq. For s ∈ Z

satisfying s ≥ [n(qw/p − 1)], a real-valued function a ∈ L
q
w is called a w-(p, q, s)-

atom if the following hold:

(i) a is supported on a cube I,

(ii) ‖a‖L
q
w
≤ w(I)1/q−1/p,
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(iii)
∫ n

R
a(x)xα dx = 0 for every multi-index α with |α| ≤ s.

It is known that the atomic decomposition of H
p
w can be expressed as follows.

Theorem A ([4, 10]) Let 0 < p ≤ 1 ≤ q ≤ ∞, p < q, and w ∈ Aq. For each

f ∈ H
p
w(R

n), there exist a sequence {ai} of w-(p, q, s)-atoms, s ≥ [n(qw/p − 1)], and

a sequence {λi} of real numbers with
∑ |λi |p ≤ C‖ f ‖p

H
p
w

such that f =
∑
λiai both

in the sense of distributions and in H
p
w norm. Moreover,

‖ f ‖H
p
w
≈ inf

{(∑

i

|λi |p
) 1/p

:
∑

i

λiai

is a decomposition of f into w-(p, q, s)-atoms
}
.

3 Proofs of Main Results

Let ψ be the function given in Section 2 and

S∞(R
n) =

{
f ∈ S (R

n) :

∫

Rn

f (x)xα dx = 0 for any multi-index α
}

with the same topology as S (R
n). It is known that S∞(R

n) is dense in L2
w (see [14,

Chapter 7, Theorem 1]). To prove Theorem 1.1, we need the Calderón reproducing

formula for weighted L2.

Lemma 3.1 Let w ∈ A2. If f ∈ L2
w. Then

f (x) =

∫ ∞

0

ψt ∗ ψt ∗ f (x)
dt

t
,

where the integral converges in L2
w.

Proof First we would like to point out that the Fourier transform was the main tool

to get the classical Calderón reproducing formula on L2. Obviously, this method

cannot be applied to get this lemma. One may imagine L2
w as a space of homogeneous

type and hence, Lemma 3.1 would follow directly from the Calderón reproducing

formula on spaces of homogeneous type as given in [8]. This, however, does not work

because convolutions given in Lemma 3.1 are taken in the Lebesgue measure without

weight w. The proof of Lemma 3.1 is based on the classical Calderón reproducing

formula in which, for f ∈ S∞(R
n), the integral converges in S (R

n) (see [3, p. 122,

Theorem 3]). That shows Lemma 3.1 for f ∈ S∞(R
n) because the L2

w norm is

dominated by a certain seminorm of S (R
n).

For general f ∈ L2
w and given η > 0, since S∞(R

n) is dense in L2
w, there exists
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g ∈ S∞(R
n) such that f = g + b with ‖b‖L2

w
≤ η. Then

∥∥∥ f −
∫ K

ε

ψt ∗ ψt ∗ f ( · )
dt

t

∥∥∥
L2

w

≤

∥∥∥g −
∫ K

ε

ψt ∗ ψt ∗ g( · )
dt

t

∥∥∥
L2

w

+ ‖b‖L2
w

+
∥∥∥
∫ K

ε

ψt ∗ ψt ∗ b( · )
dt

t

∥∥∥
L2

w

.

Since w−1 ∈ A2, by a duality argument and the Littlewood–Paley theory on L2
w, there

exists a constant C independent of ε and K such that

∥∥∥
∫ K

ε

ψt ∗ ψt ∗ b( · )
dt

t

∥∥∥
L2

w

≤ sup
‖h‖

L2
w−1

≤1

(∫

Rn

∫ K

ε

|ψt ∗ b(y)|2 dt

t
w(y) dy

) 1/2

×
(∫

Rn

∫ K

ε

|ψt ∗ h(y)|2 dt

t
w−1(y) dy

) 1/2

≤ sup
‖h‖

L2
w−1

≤1

(∫

Rn

∫ K

ε

|ψt ∗ b(y)|2 dt

t
w(y) dy

) 1/2

‖g(h)‖L2

w−1

≤ C
(∫

Rn

∫ K

ε

|ψt ∗ b(y)|2 dt

t
w(y) dy

) 1/2

≤ C‖g(b)‖L2
w
≤ C‖b‖L2

w
.

Hence

∥∥∥ f −
∫ K

ε

ψt ∗ ψt ∗ f ( · )
dt

t

∥∥∥
L2

w

≤
∥∥∥g −

∫ K

ε

ψt ∗ ψt ∗ g( · )
dt

t

∥∥∥
L2

w

+ (1 + C)η

≤ Cη as ε→ 0 and K → ∞.

Since η is arbitrary, the proof of Lemma 3.1 is complete.

Proof of Theorem 1.1 For k ∈ Z, let

Ωk = {x ∈ R
n : S( f )(x) > 2k},

Bk =
{

dyadic cube Q : w(Q ∩ Ωk) >
1

2
w(Q) and w(Q ∩ Ωk+1) ≤ 1

2
w(Q)

}
.
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It is clear that if a cube Q ∈ Bk, then Q 6∈ B j for j 6= k. For each dyadic cube Q, we

denote its tent by

Q̂ = {(x, t) : x ∈ Q and
√

n|Q|1/n < t ≤ 2
√

n|Q|1/n}.

For f ∈ L2
w, by Lemma 3.1 we claim

f (x) =
∑

k∈Z

∑

Q̃∈Bk

∑

Q⊂Q̃
Q∈Bk

∫

Q̂

ψt (x − y)ψt ∗ f (y)
dydt

t
,

where Q̃ ∈ Bk are maximal dyadic cubes in Bk and the series converges in L2
w, and

hence a subsequence converges almost every x ∈ R
n.

Assume the claim for the moment. Let aQ̃(x) and λQ̃ be defined by

aQ̃(x) = C−1w(5
√

nQ̃)( 1
2
− 1

p
)

{∑

Q⊂Q̃
Q∈Bk

∫

Q̂

w(Q)|ψt ∗ f (y)|2 dydt

tn+1

}−1/2

×
∑

Q⊂Q̃
Q∈Bk

∫

Q̂

ψt (x − y)ψt ∗ f (y)
dydt

t

λQ̃ = Cw(5
√

nQ̃)( 1
p
− 1

2
)

{∑

Q⊂Q̃
Q∈Bk

∫

Q̂

w(Q)|ψt ∗ f (y)|2 dydt

tn+1

} 1/2

,

where the constant C is the same as the one in (3.1).

We first verify that aQ̃(x) is a w-(p, 2,N)-atom. It is easy to see that aQ̃(x) is sup-

ported on 5
√

nQ̃ and the vanishing moment conditions follow from the assumption

of ψ. To verify the size condition of atom, by the duality between L2
w and L2

w−1 ,

∥∥∥∥
∑

Q⊂Q̃
Q∈Bk

∫

Q̂

ψt ( · − y)ψt ∗ f (y)
dydt

t

∥∥∥∥
L2

w

= sup
‖h‖

L2
w−1

≤1

〈∑

Q⊂Q̃
Q∈Bk

∫

Q̂

ψt ( · − y)ψt ∗ f (y)
dydt

t
, h

〉

≤ C sup
‖h‖

L2
w−1

≤1

∑

Q⊂Q̃
Q∈Bk

∫

Q̂

|Q||ψt ∗ h(y)||ψt ∗ f (y)|dydt

tn+1
.
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The last inequality is due to the definition of Q̂ and hence, if (y, t) ∈ Q̂, |Q| ≈ tn.

It is clear that

|Q| =
∫

Q

w(x)1/2w(x)−1/2 dx ≤ w(Q)1/2[w−1(Q)]1/2,

so

∥∥∥∥
∑

Q⊂Q̃
Q∈Bk

∫

Q̂

ψt (· − y)ψt ∗ f (y)
dydt

t

∥∥∥∥
L2

w

≤ C sup
‖h‖

L2
w−1

≤1

(∑

Q⊂Q̃
Q∈Bk

∫

Q̂

w(Q)|ψt ∗ f (y)|2 dydt

tn+1

) 1/2

×
(∑

Q⊂Q̃
Q∈Bk

∫

Q̂

w−1(Q)|ψt ∗ h(y)|2 dydt

tn+1

) 1/2

.

For any Q ∈ Bk and (y, t) ∈ Q̂, we have Q ⊂ {x ∈ R
n : |x − y| < t}, and hence

∑

Q⊂Q̃
Q∈Bk

∫

Q̂

w−1(Q)|ψt ∗ h(y)|2 dydt

tn+1

≤
∫ ∞

0

∫

Rn

w−1({x ∈ R
n : |x − y| < t})|ψt ∗ h(y)|2 dydt

tn+1

=

∫ ∞

0

∫

Rn

∫

|x−y|<t

|ψt ∗ h(y)|2w−1(x) dx
dydt

tn+1

=

∫

Rn

S(h)2(x)w−1(x) dx ≤ C‖h‖2
L2

w−1
.

Therefore,

(3.1)

∥∥∥∥
∑

Q⊂Q̃
Q∈Bk

∫

Q̂

ψt ( · − y)ψt ∗ f (y)
dydt

t

∥∥∥∥
L2

w

≤ C

(
∑

Q⊂Q̃
Q∈Bk

∫

Q̂

w(Q)|ψt ∗ f (y)|2 dydt

tn+1

) 1/2

,

which proves the size condition.
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To show {λQ̃} ∈ ℓp, doubling condition of w and Hölder’s inequality yield

(3.2)
∑

k∈Z

∑

Q̃∈Bk

|λQ̃|p ≤ C
∑

k∈Z

∑

Q̃∈Bk

w(Q̃)(1− p
2

)

×
(∑

Q⊂Q̃
Q∈Bk

∫

Q̂

w(Q)|ψt ∗ f (y)|2 dydt

tn+1

) p/2

≤ C
∑

k∈Z

( ∑

Q̃∈Bk

w(Q̃)

) (1− p
2

)

×
(∑

Q∈Bk

∫

Q̂

w(Q)|ψt ∗ f (y)|2 dydt

tn+1

) p/2

.

To estimate the last term in (3.2), we define the weighted Hardy–Littlewood max-

imal function by

Mw f (x) = sup
x∈Q

1

w(Q)

∫

Q

| f (x)|w(x) dx.

Let Ω̃k = {x ∈ R
n : Mw(χΩk

)(x) > 1
2
}. Then Ωk ⊂ Ω̃k. Since Mw is of weak type

(1, 1) with respect to w(x)dx, w(Ω̃k) ≤ Cw(Ωk) which yields

C22kw(Ωk) ≥ 22k+2w(Ω̃k) ≥
∫

Ω̃k\Ωk+1

[S( f )(x)]2w(x)dx

=

∫ ∞

0

∫

Rn

∫

Rn

|ψt ∗ f (y)|2χ{x∈Ω̃k\Ωk+1:|x−y|<t}w(x) dx
dydt

tn+1

≥
∑

Q∈Bk

∫

Q̂

∫

Rn

|ψt ∗ f (y)|2χ{x∈Ω̃k\Ωk+1:|x−y|<t}w(x) dx
dydt

tn+1
.

For any Q ∈ Bk and (y, t) ∈ Q̂, we have Q ⊂ Ω̃k and Q ⊂ {x ∈ R
n : |x − y| < t}.

That yields

∫

Rn

χ{x∈Ω̃k\Ωk+1:|x−y|<t}w(x) dx ≥ w(Q ∩ (Ω̃k\Ωk+1))

= w(Q) − w(Q ∩ Ωk+1)

≥ w(Q)/2,

and hence

(3.3)
∑

Q∈Bk

∫

Q̂

w(Q)|ψt ∗ f (y)|2 dydt

tn+1
≤ C22kw(Ωk).
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Note that
∑

Q̃∈Bk
w(Q̃) ≤ w(Ω̃k) ≤ Cw(Ωk), since Q̃’s are disjoint and contained

in Ω̃k. Plugging (3.3) into (3.2), we get

∑

k∈Z

∑

Q̃∈Bk

|λQ̃|p ≤ C
∑

k∈Z

w(Ωk)(1− p
2

)2kpw(Ωk)
p
2 ≤ C‖S( f )‖p

L
p
w
= C‖ f ‖p

H
p
w
.

We return to the proof of the claim. This is equivalent to showing

∥∥∥
∑

|k|>M

∑

Q∈Bk

∫

Q̂

ψt ( · − y)ψt ∗ f (y)
dydt

t

∥∥∥
L2

w

−→ 0 as M → ∞.

By the same proof as in (3.1) and (3.3), we obtain

∥∥∥
∑

|k|>M

∑

Q∈Bk

∫

Q̂

ψt (· − y)ψt ∗ f (y)
dydt

t

∥∥∥
L2

w

≤ C
( ∑

|k|>M

∑

Q∈Bk

∫

Q̂

w(Q)|ψt ∗ f (y)|2 dydt

tn+1

) 1/2

≤ C
( ∑

|k|>M

22kw(Ωk)
) 1/2

.

The last term tends to zero as M goes to infinity because

∑

k∈Z

22kw(Ωk) ≤ C‖ f ‖2
L2

w
<∞.

Proof of Corollary 1.2 For each w-(p, q,N)-atom a supported on I, by Hölder’s in-

equality,

‖a‖p

L
p
w
≤ ‖ap‖

L
q/p
w

w(I)1−p/q
= ‖a‖p

L
q
w
w(I)1−p/q ≤ 1.

Applying Theorem 1.1, for f ∈ L2
w ∩ H

p
w we have f =

∑
λiai almost everywhere,

where the ai ’s are w-(p, 2,N)-atoms and
∑ |λi |p ≤ C‖ f ‖p

H
p
w
. Thus,

‖ f ‖p

L
p
w
≤
∑

|λi |p‖a‖p

L
p
w
≤
∑

|λi |p ≤ C‖ f ‖p

H
p
w
.

Given f ∈ L2
w∩H

p
w, the L2

w boundedness and H
p
w boundedness of T give T f ∈ L2

w∩H
p
w

and, by the above estimate, ‖T f ‖L
p
w
≤ C‖T f ‖H

p
w
≤ C‖ f ‖H

p
w
. Since L2

w ∩ H
p
w is dense

in H
p
w, T can be extended to a bounded operator from H

p
w to L

p
w.

Proof of Corollary 1.3 Suppose that T is bounded from H
p
w to L

p
w. For a w-(p, 2,N)-

atom a, then a ∈ H
p
w. It follows from Theorem A that ‖Ta‖L

p
w
≤ C‖a‖H

p
w
≤ C .
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Conversely, Theorem 1.1 shows that for f ∈ H
p
w ∩ L2

w we have f =
∑∞

i=1 λiai in

L2
w, where ai ’s are w-(p, 2,N)-atoms and

∑
|λi |p ≤ C‖ f ‖p

H
p
w
. Since T is linear and

bounded on L2
w,

∥∥∥T f −
M∑

i=1

λiTai

∥∥∥
L2

w

=

∥∥∥T
(

f −
M∑

i=1

λiai

)∥∥∥
L2

w

≤ C
∥∥∥ f −

M∑

i=1

λiai

∥∥∥
L2

w

−→ 0 as M −→ ∞.

Hence, there exists a subsequence (we also write the same indices) such that T f =∑∞
i=1 λiTai almost everywhere. Fatou’s lemma yields

∫

Rn

|T f |pw(x) dx ≤ lim inf
M→∞

∫

Rn

∣∣∣
M∑

i=1

λiTai

∣∣∣
p

w(x) dx

≤
∞∑

i=1

|λi |p

∫

Rn

|Tai |pw(x) dx

≤ C‖ f ‖p

H
p
w
.

Since H
p
w ∩ L2

w is dense in H
p
w, T can be extended to a bounded operator from H

p
w

to L
p
w.

Proof of Corollary 1.4 If T is bounded on H
p
w, then by Theorem A,

‖Ta‖H
p
w
≤ C‖a‖H

p
w
≤ C.

For f ∈ H
p
w ∩ L2

w, we have the atomic decomposition f =
∑∞

i=1 λiai in L2
w. Let ψ

be the function given in Section 2. Then

ψt ∗ T f =

∞∑

i=1

λiψt ∗ Tai in L2
w.

Hence, there is a subsequence (we also write the same indices) such that

ψt ∗ T f =

∞∑

i=1

λiψt ∗ Tai almost everywhere.
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Fatou’s lemma and Minkowski’s inequality imply that

S(T f )(x) =
(∫ ∞

0

∫

|x−y|<t

|ψt ∗ T f (y)|2 dydt

tn+1

) 1/2

=

(∫ ∞

0

∫

|x−y|<t

lim inf
M→∞

∣∣∣∣
M∑

i=1

λiψt ∗ Tai(y)

∣∣∣∣
2

dydt

tn+1

) 1/2

≤ lim inf
M→∞

(∫ ∞

0

∫

|x−y|<t

∣∣∣
M∑

i=1

λiψt ∗ Tai(y)
∣∣∣

2 dydt

tn+1

) 1/2

≤
∞∑

i=1

|λi |
(∫ ∞

0

∫

|x−y|<t

|ψt ∗ Tai(y)|2 dydt

tn+1

) 1/2

=

∞∑

i=1

|λi |S(Tai)(x).

Hence

∫

Rn

[S(T f )(x)]pw(x) dx =

∫

Rn

lim inf
M→∞

( M∑

i=1

|λi |S(Tai)(x)
) p

w(x)dx

≤ lim inf
M→∞

∫

Rn

( M∑

i=1

|λi |S(Tai)(x)
) p

w(x) dx

≤
∞∑

i=1

|λi |p

∫

Rn

[S(Tai)(x)]pw(x) dx

=

∞∑

i=1

|λi |p‖Tai‖p

H
p
w
≤ C‖ f ‖p

H
p
w
.

Since H
p
w ∩ L2

w is dense in H
p
w, T can be extended to a bounded operator on H

p
w.
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