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Dihedral Groups of Order 2p of
Automorphisms of Compact Riemann
Surfaces of Genus p − 1

Qingjie Yang and Weiting Zhong

Abstract. In this paper we prove that there is only one conjugacy class of dihedral group of order 2p in
the 2(p − 1) × 2(p − 1) integral symplectic group that can be realized by an analytic automorphism
group of compact connected Riemann surfaces of genus p − 1. A pair of representative generators of
the realizable class is also given.

1 Introduction

The problem we consider in this paper is the realizability of dihedral groups D2p of
order 2p, where p is an odd prime, in SP2(p−1)(Z), the 2(p−1)×2(p−1) symplectic
group over the ring of integers Z, by analytic automorphisms of compact connected
Riemann surfaces of genus p − 1. This is a special case of a more general problem.

Let S be a connected compact Riemann surface of genus g (g ≥ 2) without bound-
ary and let G be a subgroup of Aut(S), the group of analytic automorphisms of S.
Then G induces a faithful group action on H1(S) = H1(S,Z), the first homology
group of S,

G∗ : H1(S) −→ H1(S).

Let a1, a2, . . . , ag , b1, b2, . . . , bg be a canonical basis of H1(S), that is, a basis for which
the intersection matrix is

J =

(
0 Ig

−Ig 0

)
,

where Ig is the identity matrix of degree g. For any element σ∗ in G∗, let X be the
matrix of σ∗ with respect to this basis. Since σ∗ preserves the intersection numbers,
X′ JX = J, where X′ is the transpose of X.

Definition 1.1 The set of 2n×2n unimodular matrices X in M2n(Z) such that

X′ JX = J

is called the symplectic group of genus n over Z and is denoted by SP2n(Z). Two sym-
plectic matrices X, Y of SP2n(Z) are said to be conjugate or similar, denoted by X ∼ Y ,
if there is a matrix Q ∈ SP2n(Z) such that Y = Q−1XQ. Two subgroups G, H of
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SP2n(Z) are said to be conjugate or similar, denoted by G ∼ H, if there is a matrix
Q ∈ SP2n(Z) such that H = Q−1GQ = {Q−1XQ | X ∈ G}.

If we fix a canonical basis of H1(S), there is a natural group monomorphism

Ψ : Aut(S)→ SP2g(Z);

see Farkas and Kra [3, p. 286]. Clearly, for any given subgroup G of Aut(S), the groups
Ψ(G) with respect to different canonical basis are conjugate in SP2g(Z).

Definition 1.2 A subgroup H of SP2g(Z) is said to be realizable if there is subgroup
G of Aut (S) for some Riemann surface S of genus g such that Ψ(G) = H with respect
to some canonical basis of H1(S).

A question that naturally arises is “Which subgroups H of SP2g(Z) can be real-
ized?”

Note that Aut(S) is finite, so we only need to consider finite subgroups of SP2g(Z).
The case of cyclic groups of order p of SPp−1(Z), where p ≥ 5 is an odd prime, was
solved by Sjerve and Yang. They gave a complete list of realizable conjugacy classes
of p-torsion in SPp−1(Z); see [11]. We have solved the problem for cyclic subgroups
of SP4(Z), see [13]. In this paper we address the question of which classes of dihedral
subgroups of order 2p of SP2(p−1)(Z) can be realized by a dihedral group action on
some Riemann surface of genus p − 1.

Let D2p be the dihedral group of 2p elements and let T,R ∈ D2p be two fixed
generators of order p and 2. Let

C =



0 −1
1 0 −1

1
. . .

...
. . . 0 −1

1 −1

 , U =


1

1
. . .

1



be two (p − 1)× (p − 1) matrices, where C is the companion matrix for Φp(x), the
cyclotomic polynomial of p-th unit roots, and U is an anti-diagonal matrix whose
anti-diagonal entries are 1. Then C p = U 2 = (CU )2 = I. Let X and Y ,

X =

(
C

C ′−1

)
, Y =

(
U

U

)
,

be two 2(p − 1) × 2(p − 1) matrices. It is easy to verify that X and Y are integral
symplectic matrices and satisfy the relations Xp = Y 2 = (XY )2 = I. Therefore, the
group 〈X,Y 〉 generated by X and Y is a dihedral subgroup of order 2p of SP2(p−1)(Z).

Main Theorem Let dihedral group D2p act on a Riemann surface S of genus
p − 1. There is a canonical basis a1, a2, . . . , ap−1, b1, b2, . . . , bp−1 of H1(S) such that
Ψ(D2p) = 〈X,Y 〉 with Ψ(T) = X and Ψ(R) = Y .
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Note that p − 1 is the minimal genus larger than or equal to two for a Riemann
surface that has D2p as its group of automorphisms; see Breuer [1], Michael [5], or
Yang [12].

2 Preliminaries

In this section we collect some preliminary material on Riemann surfaces. First we
describe how all group actions on Riemann surfaces occur, and then we specialize to
the case of the dihedral group of order 2p.

If G is a finite group acting topologically on a surface S by orientation preserv-
ing homeomorphisms, then the positive solution of the Nielsen Realization Problem
guarantees that there exists a complex analytic structure on S for which the action of
G is by analytic automorphisms (see [2, 4, 8, 10]). Thus there is no loss of generality
in assuming that the action of G is complex analytic to begin with, and we will tacitly
do so.

The orbit space S̄ = S/G of the action of G is also a Riemann surface, and the orbit
map p : S→ S̄ is a branched covering, with all ramifications occurring at fixed points
of the action. If x ∈ S̄ is a branch point, then each point in p−1(x) has a non-trivial
stabilizer subgroup in G.

It is known that there is a one-to-one correspondence between analytic conjugacy
classes of D2p actions on compact connected Riemann surface S of genus p − 1 and
short exact sequences

1 −→ Π −→ Γ
θ
−→ D2p −→ 1,

where Γ is a Fuchsian group of signature (0; p, p, 2, 2) and the kernel Π is a torsion
free subgroup of Γ. The short exact sequence corresponds to the induced action of
D2p on S = H/Π, where H denotes the upper half plane.

As an abstract group Γ has the presentation:

Γ = Γ(0; p, p, 2, 2) = 〈A1,A2,B1,B2 | Ap
1 = Ap

2 = B2
1 = B2

2 = A1A2B1B2 = 1〉;
see Jones and Singerman[7, p. 262] or Harvey [6]. The epimorphism θ : Γ → D2p

is determined by the images of the generators. The relations in Γ must be preserved
and the kernel of θ must be torsion free. Let T = θ(A1) and R = θ(B2). Then

θ : A1 7→ T, A2 7→ T p−u, B1 7→ Tu−1R, B2 7→ R,

where u = 1, 2, . . . , p − 1, is a fixed integer determined by θ.
The main tool we will use is the fundamental domain. We choose a particular

embedding of Γ in Aut(H), namely, Γ is the subgroup generated by A1,A2,B1,B2,
where A1,A2 are rotations by 2π/p and B1,B2 are rotations by π about the vertices
v1, v2, v3, v4 of a quadrilateral P whose angles are π/p, π/p, π/2, π/2, respectively,
ordered in the counterclockwise sense. A particular fundamental domain of Γ is
given by P ∪ R(P), where R(P) is a reflection of P in its side v1v4. Then fundamental
domain of Π consists of 2p copies of the fundamental domain of Γ that can be chosen
as the union

p−1⋃
i=0

Ai
1

(
P ∪ R(P) ∪ B2

(
P ∪ R(P)

))
,
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which is a hyperbolic polygon with 4p sides. Figure 1 illustrates a fundamental do-
main of Π for a particular embedding when p = 5. Label these sides e1, f1, g1,
h1, . . . , ep, fp, gp, hp, and orient them as indicated in Figure 1. In the following, the
subscripts will be in the set Zp = {1, 2, . . . , p}. For example, we write e j = ei if
j − i = kp for some integer k.

e1

f1

g1

h1

e2

f2

g2

h2

e3

f3

g3

h3

e4

f4

g4

h4

e5

f5

g5

h5

e′1
e′2

e′3

e′4

e′5

v1

v2

v3

v4
A1

A2

B1

B2

Figure 1: Fundamental Domain of Π.

The sides e j and h j , j = 1, . . . , p, are identified in the Riemann surface S = H/Π.

This can be seen from the fact that A j
1B2A1B2A1− j

1 ∈ Ker θ = Π and

e j

A1− j
1

−−−−−→ e1

B2

−−−−−→ e′p
A1

−−→ e′1
B2

−−−−−→ hp

A j
1

−−−−−→ h j .

Similarly, A j−1
1 B2B1Au− j

1 ∈ Π and

g j−u

Au− j
1

−−−−−→ gp

B1

−−−−−→ −gp

B2

−−−−−→ f1

A j−1
1

−−−−−−→ f j .

Therefore, the sides f j and g j−u are identified in S, for j = 1, . . . , p.
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Let α j = f j − g j , β j = e′j − e′j−u, γ j = e j − e j+u, j = 1, . . . , p. Then α1, . . . , αp,
β1, . . . , βp, γi , . . . , γp are closed paths on S. It is clear that

p∑
i=1

[αi] = 0,
p∑

i=1
[βi] = 0,

p∑
i=1

[γi]. = 0,

Here we use the notation [ ] to denote homology classes in H1(S). We see that
[β1], . . . , [βp−1], [γ1], . . . , [γp−1] forms a basis of H1(S); see Massey [9]. According
to the Figure 1, and [ f j+u − g j] = 0, we see that, for j = 1, . . . , p,

[e j − e j+u] + [ f j+1 − g j+1] + [ f j+2 − g j+2] + · · · + [ f j+u−1 − g j+u−1]

= [e j − e j+1] + [ f j+1 − g j+1] + [e j+1 − e j+2] + · · ·
+ [e j+u−2 − e j+u−1] + [ f j+u−1 − g j+u−1] + [e j+u−1 − e j+u]

= −[ f j+u − g j] + [e′j − e′j+u] = [e′j − e′j+u].

Thus we have

[β j+u] +
u−1∑
i=1

[α j+i] = [α j+1] + · · · + [α j+u−1] + [β j+u] = −[γ j](2.1)

or

[β j] = −
u−1∑
i=1

[α j−u+i]− [γ j−u](2.2)

where the sum
∑u−1

i=1 is zero if u = 1. Hence [α1], . . . , [αp−1], [β1], . . . , [βp−1]
forms a basis of H1(S).

3 Matrices of T∗ and R∗

Since
A1 : e j 7→ e j+1, e′j 7→ e′j+1, f j 7→ f j+1, g j 7→ g j+1

and θ(A1) = T, we get that T∗ on H1(S) has the form

T∗[α j] = [α j+1], T∗[β j] = [β j+1], T∗[γ j] = [γ j+1].

Also, θ(Ak
1B2Ak

1) = R. We see that the induced action R on S has the form

R : e j 7→ e′p+1− j , e′j 7→ ep+1− j , f j 7→ −gp+1− j , gi 7→ − fp+1− j

and then induced action R∗ on H1(S) is given by

R∗[α j] = [αp+1− j], R∗[β j] = [γp+1− j], R∗[γ j] = [βp+1− j].

Let Bk denote the (p − 1) × (p − 1) matrix CkU , where k is an integer. It is clear
that B0 = U , B2

k = I, and Bk = Bp+k.

Lemma 3.1 Let Tu and Ru denote the matrices of T∗ and R∗ with respect to the basis

α1, α2, . . . , αp−1, β1, β2, . . . , βp−1

respectively. Then

Tu =

(
C 0
0 C

)
, Ru =

(
B1 −

∑u−1
i=1 Bi+1

0 −Bu+1

)
.
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Proof Since T∗[αi] = [αi+1] and [αp] = −[α1]− · · · − [αp−1], we have

T∗([α1], . . . , [αp−2], [αp−1]) = ([α2], . . . , [αp−1], [αp])

= ([α2], . . . , [αp−1],−[α1]− · · · − [αp−1])

= ([α1], . . . , [αp−2], [αp−1])C.

Similarly, T∗([β1], . . . , [βp−2], [βp−1]) = ([β1], . . . , [βp−2], [βp−1])C . Therefore,

Tu =

(
C 0
0 C

)
.

Note that R∗[αi] = [αp+1−i], and

R∗([α1], . . . , [αp−2], [αp−1]) = ([αp], [αp−1], . . . , [α3], [α2])

= ([α2], [α3], . . . , [αp−1], [αp])U

= ([α1], . . . , [αp−2], [αp−1])CU

= ([α1], . . . , [αp−2], [αp−1])B1.

Also note that R∗[β j] = [γp+1− j]. From (2.1), we have

R∗[β j] = −
u−1∑
i=1

[αi+1− j]− [βu+1− j], j = 1, 2, . . . , p − 1.

Then

R∗([β1], . . . , [βp−2], [βp−1])

= −
u−1∑
i=1

([αi], [αi−1], . . . , [αi−p+2])− ([βu], [βu−1], . . . , [βu−p+2])

= −
u−1∑
i=1

([αi−p+2], . . . , [αi])U − ([βu−p+2], . . . , [βu])U

= −
u−1∑
i=1

([α1], . . . , [αp−1])C i+1U − ([β1], . . . , [βp−1])Cu+1U

= −([α1], . . . , [αp−1])
u−1∑
i=1

C i+1U − ([β1], . . . , [βp−1])Cu+1U

= −([α1], . . . , [αp−1])
u−1∑
i=1

Bi+1 − ([β1], . . . , [βp−1])Bu+1.

Hence,

Ru =

(
B1 −

∑u−1
i=1 Bi+1

0 −Bu+1

)
.

4 Intersection Matrix

It is easy to see that the intersection numbers of [αi] and [α j] are zero. But the other
intersection numbers of [α1], . . . , [αp], [β1], . . . , [βp] are somewhat complex.

Let li j be the intersection number [αi]·[β j] of [αi] and [β j].We have the following
lemma.
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Lemma 4.1 We have that li j = li+1 j+1, l1 j = lp− j+2,1 = lp−1, j−2, and

(4.1) l1 j =


1, j = 1,

−1, j = u + 1,

0, otherwise.

Proof T∗ preserves the intersection number of closed chains. By Lemma 3.1,

li j = [αi] · [β j] = T∗
(

[αi]
)
· T∗
(

[β j]
)

= [αi+1] · [β j+1] = li+1 j+1.

Iterating this formula, we see that l1 j = lp− j+2,1 = lp−1, j−2.
If j 6= 1 and j 6= u + 1, it is clear that α1 and β j do not intersect, so l1 j = 0. If

j = 1 or j = u + 1, the intersection of α1 and β j is one point. The verification of
(4.1) is easy.

Let Lk, k = 1, . . . , p − 1, denote the (p − 1)× (p − 1) matrix

Lk =



1 · · · · · · 0 −1 0 · · · 0
...

. . .
. . .

...
...

. . .
. . . 0

...
. . . −1

0
. . . 0

−1
. . .

...
...

. . .
. . .

...
0 · · · −1 0 · · · · · · · · · 1


whose entries x(k)

i j are given by

x(k)
i j =


1, i = j,

−1, j − i = k or i − j = p − k,

0, otherwise.

According to Lemma 4.1, we have proved that the intersection matrix of

[α1], . . . , [αp−1] and [β1], . . . , [βp−1]

is Lu. That is

([α1], . . . , [αp−1])′ · ([β1], . . . , [βp−1]) = Lu.

Then

([β1], . . . , [βp−1])′ · ([α1], . . . , [αp−1]) = −L′u.

It is clear that Lk is a persymmetric matrix, and LkU = U L′k = U Lp−k. Also, we
have
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Lemma 4.2 For 1 ≤ i, k ≤ p − 1,

(C ′)−iLk = LkC
i =


Lk−i − Lp−i , i < k,

−Lp−k, i = k,

Lp+k−i − Lp−i , i > k.

Proof We only prove the case that LkC i = Lk−i − Lp−i , 1 ≤ i < k ≤ p − 1. From
the definition of Lk, we have

Lkε j =


ε j − εp+ j−k, 1 ≤ j < k,

εk, j = k,

ε j − ε j−k, k < j ≤ p − 1,

where ε j , j = 1, . . . , p − 1, is the j-th basic unit vector whose j-th component is 1
and all other components are 0. Therefore, Lk(ε1 +ε2 + · · ·+εp−1) = εp−k.Note that

Cε j =

{
ε j+1, 1 ≤ j < p − 1,

−(ε1 + ε2 + · · · + εp−1), j = p − 1.

By mathematical induction, we have

C iε j =


εi+ j , 1 ≤ j < p − i,

−(ε1 + ε2 + · · · + εp−1), j = p − i,

εi+ j−p, p − i < j ≤ p − 1.

Hence

LkC
iε j =



εi+ j − εp+i+ j−k, 1 ≤ j < k− i,

εk, j = k− i,

εi+ j − εi+ j−k, k− i < j < p − i,

−εp−k, j = p − i,

εi+ j−p − εi+ j−k, p − i < j ≤ p − 1.

When 1 ≤ j ≤ k− i − 1,

(LkC
i + Lp−i − Lk−i)ε j = (εi+ j − εp+i+ j−k) + (ε j − εi+ j)− (ε j − εp+i+ j−k) = 0.

When j = k− i,

(LkC
i + Lp−i − Lk−i)εk−i = εk + (εk−i − εk)− εk−i = 0.

When k− i + 1 ≤ j ≤ p − i − 1,

(LkC
i + Lp−i − Lk−i)ε j = (εi+ j − εi+ j−k) + (ε j − εi+ j)− (ε j − εi+ j−k) = 0.

When j = p − i,

(LkC
i + Lp−i − Lk−i)εp−i = εp−k + εp−i − (εp−i − εp−k) = 0.

When p − i + 1 ≤ j ≤ p − 1,

(LkC
i + Lp−i − Lk−i)ε j = (εi+ j−p − εi+ j−k) + (ε j − εi+ j−p)− (ε j − εi+ j−k) = 0.

Thus LkC i + Lp−i − Lk−i = 0.
For other cases, the method is similar.
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Now we compute the intersection matrix of [β1], . . . , [βp−1]. From (2.2), we have(
[β1], . . . , [βp−1]

)
= −

u−1∑
i=1

(
[α1−u+i], . . . , [αp−1−u+i]

)
−
(

[γ1−u], . . . , [γp−1−u]
)

= −
u−1∑
i=1

(
[α1], . . . , [αp−1]

)
C i−u −

(
[γ1−u], . . . , [γp−1−u]

)
.

Since the paths β j and γk−u have no intersection for any j and k, the intersection
matrix of [β1], . . . , [βp−1] is(

[β1], . . . , [βp−1])′ · ([β1], . . . , [βp−1]
)

= −
u−1∑
i=1

(C ′)i−u([α1], . . . , [αp−1])′ · ([β1], . . . , [βp−1])

= −
u−1∑
i=1

(C ′)i−uLu = −
u−1∑
i=1

(Li − Lp+i−u)

= −
u−1∑
i=1

Li +
u−1∑
i=1

L′u−i = −
u−1∑
i=1

Li +
u−1∑
i=1

L′i

=
u−1∑
i=1

(L′i − Li).

Hence the intersection matrix of the basis [α1], . . . , [αp−1], [β1], . . . , [βp−1] is

Mu =

(
0 Lu

−L′u
∑u−1

i=1 (L′i − Li)

)
.

We see that [α1], . . . , [αp−1], [β1], . . . , [βp−1] is not a canonical basis.

5 Proof of Main Theorem

We need some more properties of Lk and Bk to prove the Main Theorem.

Lemma 5.1 For any 1 ≤ k ≤ p − 1,

(i) C−iBkC i = Bk−2i ,
(ii) LkBkL−1

k = −U ,
(iii) (C ′)iLkC i = Lk,
(iv) B′iLkBi = Lp−i .

Proof (i) By definition,

C−iBkC
i = C−iCkUC i = C−iCkC−iU = Ck−2iU = Bk−2i .

(ii) From Lemma 4.2, LkBkL−1
k = (LkCk)(U L−1

k ) = −Lp−k(L′k)−1U = −U .
(iii) This is the special case of Lemma 4.2.
(iv) B′iLkBi = (C iU )′L′k(C iU ) = UC ′iLkC iU = U LkU = Lp−k.

Now we can prove the Main Theorem by showing that there is an invertible inte-
gral matrix Q such that Q−1TuQ = X, Q−1RuQ = Y , and Q′MuQ = J.
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Proof of Main Theorem By Lemma 5.1, we see that C−(p+1)/2BkC(p+1)/2 = Bk−1.
Let

Q1 =

(
C(p+1)/2

C(p+1)/2

)
.

Then by Lemma 5.1, we have

Q−1
1 TuQ1 = Tu, Q−1

1 RuQ1 =

(
U −

∑u−1
i=1 Bi

0 −Bu

)
, Q′1MuQ1 = Mu.

Note that LkBkL−1
k = −U . Let Q2 =

( I
L−1

u

)
. Then

Q−1
2 TuQ2 = X, Q−1

2

(
U −

∑u−1
i=1 Bi

0 −Bu

)
Q2 =

(
U −(

∑u−1
i=1 Bi)L−1

u

0 U

)
,

and

Q′2MuQ2 = Q′2

(
0 Lu

−L′u
∑u−1

i=1 (L′i − Li)

)
Q2 =

(
0 I
−I A′ − A

)
,

where A = L′−1
u (

∑u−1
i=1 Li)L−1

u . Let Q3 =
(

I −A
0 I

)
. Then Q−1

3 =
(

I A
0 I

)
and

Q−1
3

(
C

C ′−1

)
Q3 =

(
C AC ′−1 −CA
0 C ′−1

)
,

Q−1
3

(
U −(

∑u−1
i=1 Bi)L−1

u

0 U

)
Q3 =

(
U AU −UA− (

∑u−1
i=1 Bi)L−1

u

0 U

)
,

Q′3

(
0 I
−I A′ − A

)
Q3 = J.

Using Lemma 5.1 again, we have

AC ′−1 −CA = L′−1
u

( u−1∑
i=1

Li

)
L−1

u C ′−1 −CL′−1
u

( u−1∑
i=1

Li

)
L−1

u

= L′−1
u

( u−1∑
i=1

Li

)
CL−1

u − L′−1
u C ′−1

( u−1∑
i=1

Li

)
L−1

u

= L′−1
u

( u−1∑
i=1

(LiC −C ′−1Li)
)

L−1
u = 0

and

AU −UA−
( u−1∑

i=1
Bi

)
L−1

u

= L′−1
u

( u−1∑
i=1

Li

)
L−1

u U −U L′−1
u

( u−1∑
i=1

Li

)
L−1

u −
( u−1∑

i=1
Bi

)
L−1

u

= L′−1
u

[( u−1∑
i=1

Li

)
L−1

u U Lu − L′uU L′−1
u

( u−1∑
i=1

Li

)
− L′u

( u−1∑
i=1

Bi

)]
L−1

u

= L′−1
u

[
−
( u−1∑

i=1
Li

)
Bu + B′u

( u−1∑
i=1

Li

)
− Lp−u

( u−1∑
i=1

Bi

)]
L−1

u
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= L′−1
u

[
−
( u−1∑

i=1
Li

)
+ B′u

( u−1∑
i=1

Li

)
Bu −

( u−1∑
i=1

Lp−uBi

)
Bu

]
BuL−1

u

= L′−1
u

[
−

u−1∑
i=1

Li +
u−1∑
i=1

Lp−i −
u−1∑
i=1

Lp−uC p+i−u
]

BuL−1
u

= L′−1
u

[
−

u−1∑
i=1

Li +
u−1∑
i=1

Lp−i −
u−1∑
i=1

(Lp−i − Lu−i)
]

BuL−1
u = 0.

Here we also use Lemma 4.2 for Lp−uC p+i−u. If we let Q = Q1Q2Q3, then

Q−1TuQ = X, Q−1RuQ = Y, Q′MuQ = J.

This concludes the proof.
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