A SUMMABILITY PROBLEM

ву M. S. MACPHAIL

In a paper by Wilansky and the writer [4] there were five questions left open, four of which have been answered by Beekman and the writer, [1], [3]. We shall consider the fifth one, namely, "If $\Lambda_A^{\perp} = I_A$, must $\Lambda_D^{\perp} = I_D$ for every matrix D with $c_D = c_A$?" Here A is a conservative summability matrix with column limits $a_1, a_2, \ldots, c_A = \{x = \langle x_k \rangle : Ax \in c\}, I_A = \{X \in c_A : \sum a_k x_k \text{ converges}\}, \Lambda_A^{\perp} = \{x \in I_A : \lim_A x = \sum a_k x_k\}.$

A method A such that $\Lambda_D^{\perp} = I_D$ for every method D with $c_D = c_A$ will be said to have property E. There are simple examples of methods having the property, for instance, Bennett [2, Proposition 4] has shown that Λ_A^{\perp} is invariant if I_A is, so if $\Lambda_A^{\perp} = I_A$ and I_A is invariant, then A has property E. We shall give an example of a method A which has $\Lambda_A^{\perp} = I_A$ but which does not have property E, so the broad answer to the question is negative. To show what is possible, however, we shall also give an example of a method where I_A is not invariant, so the Bennett proposition does not apply, nevertheless property E holds. As D varies (with $c_D = c_A$), I_D and Λ_D^{\perp} vary while remaining equal to each other. So invariance of the equation $\Lambda_A^{\perp} = I_A$ is a property possessed by some matrices but not by all.

Before giving our first example, we recall a few facts about the method

where $\langle t_n \rangle$ is any sequence in ℓ . We have $c_J = c$, and for any conservative method A, if D = JA we have $c_D = c_A$. Moreover, for all $x \in c_A$, we have $\lim_{D} x = \lim_{n} y_n + \sum t_n y_n$, where $y_n = \sum_k a_{nk} x_k$. In particular, $d_k = \lim_{D} e^k = a_k + \sum_n t_n a_{nk}$, where $e^k = \langle 0, 0, \dots, 0, 1, 0, \dots \rangle$ (1 in the kth place).

421

Received by the editors September 7, 1978 and, in revised form, April 20, 1979.

EXAMPLE 1. Let $A = 1$	0	0	0	0	0	•••
0	0	0	0	0	0	•••
-1	-1	0	0	0	0	•••
0	0	0	0	0	0	•••
-2	1	1	0	0	0	•••
0	0	0	0	0	0	•••
0	2	-1	-1	0	0	•••
0	0	0	0	0	0	•••
0	0	-2	1	1	0	•••
•			•	•	•	

Evidently $\Lambda_A^{\perp} = I_A = c_A$. Define J and D as above, with

 $\langle t_n \rangle = \langle 1, 0, \frac{1}{2}, 0, \frac{1}{4}, 0, \ldots \rangle.$

Then $d_k = 0$ for each k. If we choose a sequence $\langle y_1, 0, y_3, 0, \ldots \rangle$ with $\lim_n y_n = 0$, $\sum t_n y_n \neq 0$, and determine x from the system of equations $y_n = \sum_k a_{nk} x_k$ $(n = 1, 2, \ldots)$, we have $x \in c_A = c_D$, $\sum d_k x_k = 0$, $\lim_D x \neq 0$, so E does not hold for A.

LEMMA. Let the method A be such that $\lim_A x = 0$ for all $x \in c_A$. Then A has property E if and only if the following condition holds:

(E') For every $\langle t_n \rangle \in \ell$, $\langle x_k \rangle \in c_A$ such that $\sum_k \sum_n t_n a_{nk} x_k$ converges, we have

$$\sum_{k} \sum_{n} t_{n} a_{nk} x_{k} = \sum_{n} \sum_{k} t_{n} a_{nk} x_{k}.$$

Proof. The general continuous linear functional on c_A under the FK topology is given by [5, equation (4)]

$$f(x) = \mu \lim_{A} x + \sum_{n} t_{n} \sum_{k} a_{nk} x_{k} + \sum_{k} \alpha_{k} x_{k}$$
$$= \mu \lim_{A} x + \sum_{n} t_{n} \sum_{k} a_{nk} x_{k} + \sum_{k} \left(f(e^{k}) - \mu a_{k} - \sum_{n} t_{n} a_{nk} \right) x_{k}$$

where $\langle \alpha_k \rangle \in c_A^\beta$, $\langle t_n \rangle \in \ell$.

Under our hypothesis this reduces to

$$f(\mathbf{x}) = \sum_{n} t_n \sum_{k} a_{nk} x_k + \sum_{k} \left(f(e^k) - \sum_{n} t_n a_{nk} \right) x_k,$$

or, with $f = \lim_{D}$,

$$\lim_{D} x = \sum_{n} t_{n} \sum_{k} a_{nk} x_{k} + \sum_{k} \left(d_{k} - \sum_{n} t_{n} a_{nk} \right) x_{k}.$$

It is now easily seen that $E' \Rightarrow E$; to obtain $E \Rightarrow E'$ we observe that every sequence $\langle t_n \rangle \in \ell$ is the sequence of coefficients in a representation of \lim_{D} for a

422

matrix D with $c_D = c_A$, namely, D = JA where

Then

$$\sum_{n} \sum_{k} t_{n} a_{nk} x_{k} = t_{1} x_{1} + t_{3} (x_{2} - x_{1}) + t_{5} (x_{3} - x_{2}) + \cdots$$

and

$$\sum_{k} \sum_{n} t_{n} a_{nk} x_{k} = (t_{1} - t_{3}) x_{1} + (t_{3} - t_{5}) x_{2} + \cdots$$

$$= \lim_{p \to \infty} ((t_{1} - t_{3}) x_{1} + (t_{3} - t_{5}) x_{2} + \cdots + (t_{2p-1} - t_{2p+1}) x_{p})$$

$$= \lim_{p \to \infty} (t_{1} x_{1} + t_{3} (x_{2} - x_{1}) + \cdots + t_{2p-1} (x_{p} - x_{p-1}) - t_{2p+1} x_{p})$$

Since $t_1x_1 + t_3(x_2 - x_1) + \cdots + t_{2p-1}(x_p - x_{p-1})$ converges for $\langle t_n \rangle \in \ell$, $\langle x_k \rangle \in c_A$, the convergence of $\sum_k \sum_n t_n a_{nk} x_k$ for some $\langle x_k \rangle$ implies the existence of $L = \lim_p t_{2p+1} x_p$, as a finite number. But if $L \neq 0$ we get a contradiction of $\langle t_k \rangle \in \ell$, since $x_p = o(p)$. Hence L = 0, and by the lemma A has property E.

To show that I_A is not invariant for A, we note first that $I_A = c_A$, and again define D with $c_D = c_A$ by D = JA where

Now $d_k = t_{2k-1} - t_{2k+1}$, and as in the foregoing work, for $\sum d_k x_k$ to converge we require that $\lim_p t_{2p+1} x_p$ exists finitely. We take $t_q = 2^{-k}$ when $q = 2 \cdot 9^k + 1$ (k = 1, 2, ...), $t_q = 0$ otherwise, and we take $x_p = p^{1/2}$ (p = 1, 2, ...). Then for $p = 9^k$ we have $t_{2p+1} x_p = 2^{-k} 3^k \to \infty$, so $\langle x_p \rangle \in c_D \setminus I_D$, and I_A is not invariant.

1980]

ACKNOWLEDGEMENT. After this paper was submitted, a paper by S.-Y. Kuan appeared [Proc. Amer. Math. Soc. 71 (1978) 241-242], giving a different example to the same effect as our Example 1.

M. S. MACPHAIL

References

1. W. Beekman, Über einige Limitierungstheoretische Invarianten, Math. Z. 150 (1976), 195-199.

2. G. Bennett, Distinguished subsets and summability invariants, Studia Math. 40 (1971), 225-234.

3. M. S. Macphail, Summability invariants, Math. Z. 153 (1977), 99-100.

4. M. S. Macphail and A. Wilansky, Linear functionals and summability invariants, Canad. Math. Buli. 17 (1974), 233-242.

5. A. Wilansky, Distinguished subsets and summability invariants, J. Analyse Math. 12 (1964), 327-350.

DEPARTMENT OF MATHEMATICS, CARLETON UNIVERSITY, OTTAWA, ONTARIO, K1S 5B6