A SUMMABILITY PROBLEM

BY
M. S. MACPHAIL

In a paper by Wilansky and the writer [4] there were five questions left open, four of which have been answered by Beekman and the writer, [1], [3]. We shall consider the fifth one, namely, "If $\Lambda_{A}^{\perp}=I_{A}$, must $\Lambda_{D}^{\perp}=I_{D}$ for every matrix D with $c_{D}=c_{A}$?" Here A is a conservative summability matrix with column limits $a_{1}, a_{2}, \ldots, c_{\mathrm{A}}=\left\{x=\left\langle x_{k}\right\rangle: A x \in c\right\}, I_{\mathrm{A}}=\left\{X \in c_{\mathrm{A}}: \sum a_{k} x_{k}\right.$ converges $\}, \Lambda_{\mathrm{A}}^{\perp}=$ $\left\{x \in I_{\mathrm{A}}: \lim _{\mathrm{A}} x=\sum a_{\mathrm{k}} x_{k}\right\}$.

A method A such that $\Lambda_{D}^{\perp}=I_{D}$ for every method D with $c_{D}=c_{A}$ will be said to have property E. There are simple examples of methods having the property, for instance, Bennett [2, Proposition 4] has shown that Λ_{A}^{\perp} is invariant if I_{A} is, so if $\Lambda_{A}^{\perp}=I_{A}$ and I_{A} is invariant, then A has property E. We shall give an example of a method A which has $\Lambda_{A}^{\perp}=I_{A}$ but which does not have property E, so the broad answer to the question is negative. To show what is possible, however, we shall also give an example of a method where I_{A} is not invariant, so the Bennett proposition does not apply, nevertheless property E holds. As D varies (with $c_{D}=c_{A}$), I_{D} and Λ_{D}^{\perp} vary while remaining equal to each other. So invariance of the equation $\Lambda_{A}^{\perp}=I_{A}$ is a property possessed by some matrices but not by all.

Before giving our first example, we recall a few facts about the method

$$
J=\begin{array}{ccccc}
1 & 0 & 0 & 0 & \cdots \\
t_{1} & 1 & 0 & 0 & \cdots \\
t_{1} & t_{2} & 1 & 0 & \cdots \\
t_{1} & t_{2} & t_{3} & 1 & \cdots \\
. & . & . & .
\end{array}
$$

where $\left\langle t_{n}\right\rangle$ is any sequence in ℓ. We have $c_{J}=c$, and for any conservative method A, if $D=J A$ we have $c_{D}=c_{A}$. Moreover, for all $x \in c_{A}$, we have $\lim _{D} x=\lim _{n} y_{n}+\sum t_{n} y_{n}$, where $y_{n}=\sum_{k} a_{n k} x_{k}$. In particular, $d_{k}=\lim _{D} e^{k}=$ $a_{k}+\sum_{n} t_{n} a_{n k}$, where $e^{k}=\langle 0,0, \ldots, 0,1,0, \ldots\rangle$ (1 in the k th place).

Example 1. Let $A=\begin{array}{lllllll}1 & 0 & 0 & 0 & 0 & 0 & \cdots\end{array}$

0	0	0	0	0	0	\cdots
-1	-1	0	0	0	0	\cdots
0	0	0	0	0	0	\cdots
-2	1	1	0	0	0	\cdots
0	0	0	0	0	0	\cdots
0	2	-1	-1	0	0	\cdots
0	0	0	0	0	0	\cdots
0	0	-2	1	1	0	\cdots

Evidently $\Lambda_{\mathrm{A}}^{\perp}=I_{\mathrm{A}}=c_{\mathrm{A}}$. Define J and D as above, with

$$
\left\langle t_{n}\right\rangle=\left\langle 1,0, \frac{1}{2}, 0, \frac{1}{4}, 0, \ldots\right\rangle .
$$

Then $d_{k}=0$ for each k. If we choose a sequence $\left\langle y_{1}, 0, y_{3}, 0, \ldots\right\rangle$ with $\lim _{n} y_{n}=$ $0, \sum t_{n} y_{n} \neq 0$, and determine x from the system of equations $y_{n}=\sum_{k} a_{n k} x_{k}$ $(n=1,2, \ldots)$, we have $x \in c_{A}=c_{D}, \sum d_{k} x_{k}=0, \lim _{D} x \neq 0$, so E does not hold for A.

Lemma. Let the method A be such that $\lim _{A} x=0$ for all $x \in c_{A}$. Then A has property E if and only if the following condition holds:
(E^{\prime}) For every $\left\langle t_{n}\right\rangle \in \ell,\left\langle x_{k}\right\rangle \in c_{\mathrm{A}}$ such that $\sum_{k} \sum_{n} t_{n} a_{n k} x_{k}$ converges, we have

$$
\sum_{k} \sum_{n} t_{n} a_{n k} x_{k}=\sum_{n} \sum_{k} t_{n} a_{n k} x_{k} .
$$

Proof. The general continuous linear functional on c_{A} under the $F K$ topology is given by [5, equation (4)]

$$
\begin{aligned}
f(x) & =\mu \lim _{\mathrm{A}} x+\sum_{n} t_{n} \sum_{k} a_{n k} x_{k}+\sum_{k} \alpha_{k} x_{k} \\
& =\mu \lim _{\mathrm{A}} x+\sum_{n} t_{n} \sum_{k} a_{n k} x_{k}+\sum_{k}\left(f\left(e^{k}\right)-\mu a_{k}-\sum_{n} t_{n} a_{n k}\right) x_{k}
\end{aligned}
$$

where $\left\langle\alpha_{k}\right\rangle \in c_{A}^{\beta},\left\langle t_{n}\right\rangle \in \ell$.
Under our hypothesis this reduces to

$$
f(x)=\sum_{n} t_{n} \sum_{k} a_{n k} x_{k}+\sum_{k}\left(f\left(e^{k}\right)-\sum_{n} t_{n} a_{n k}\right) x_{k},
$$

or, with $f=\lim _{D}$,

$$
\lim _{D} x=\sum_{n} t_{n} \sum_{k} a_{n k} x_{k}+\sum_{k}\left(d_{k}-\sum_{n} t_{n} a_{n k}\right) x_{k} .
$$

It is now easily seen that $E^{\prime} \Rightarrow E$; to obtain $E \Rightarrow E^{\prime}$ we observe that every sequence $\left\langle t_{n}\right\rangle \in \ell$ is the sequence of coefficients in a representation of $\lim _{D}$ for a
matrix D with $c_{D}=c_{A}$, namely, $D=J A$ where

$$
J=\begin{array}{ccccc}
1 & 0 & 0 & 0 & \cdots \\
t_{1} & 1 & 0 & 0 & \cdots \\
t_{1} & t_{2} & 1 & 0 & \cdots \\
. & . & . & .
\end{array}
$$

Example 2. Let $A=\begin{array}{lllll}1 & 0 & 0 & 0 & \cdots\end{array}$

0	0	0	0	\cdots
-1	1	0	0	\cdots
0	0	0	0	\cdots
0	-1	1	0	\cdots
0	0	0	0	\cdots

Then

$$
\sum_{n} \sum_{k} t_{n} a_{n k} x_{k}=t_{1} x_{1}+t_{3}\left(x_{2}-x_{1}\right)+t_{5}\left(x_{3}-x_{2}\right)+\cdots
$$

and

$$
\begin{aligned}
\sum_{k} \sum_{n} t_{n} a_{n k} x_{k} & =\left(t_{1}-t_{3}\right) x_{1}+\left(t_{3}-t_{5}\right) x_{2}+\cdots \\
& =\lim _{p \rightarrow \infty}\left(\left(t_{1}-t_{3}\right) x_{1}+\left(t_{3}-t_{5}\right) x_{2}+\cdots+\left(t_{2 p-1}-t_{2 p+1}\right) x_{p}\right) \\
& =\lim _{p \rightarrow \infty}\left(t_{1} x_{1}+t_{3}\left(x_{2}-x_{1}\right)+\cdots+t_{2 p-1}\left(x_{p}-x_{p-1}\right)-t_{2 p+1} x_{p}\right)
\end{aligned}
$$

Since $t_{1} x_{1}+t_{3}\left(x_{2}-x_{1}\right)+\cdots+t_{2 p-1}\left(x_{p}-x_{p-1}\right)$ converges for $\left\langle t_{n}\right\rangle \in \ell,\left\langle x_{k}\right\rangle \in c_{A}$, the convergence of $\sum_{k} \sum_{n} t_{n} a_{n k} x_{k}$ for some $\left\langle x_{k}\right\rangle$ implies the existence of $L=$ $\lim _{p} t_{2 p+1} x_{p}$, as a finite number. But if $L \neq 0$ we get a contradiction of $\left\langle t_{k}\right\rangle \in \ell$, since $x_{p}=o(p)$. Hence $L=0$, and by the lemma A has property E.

To show that I_{A} is not invariant for A, we note first that $I_{A}=c_{A}$, and again define D with $c_{D}=c_{A}$ by $D=J A$ where

$$
J=\begin{array}{lllll}
1 & 0 & 0 & 0 & \cdots \\
t_{1} & 1 & 0 & 0 & \cdots \\
t_{1} & t_{2} & 1 & 0 & \cdots
\end{array}
$$

Now $d_{k}=t_{2 k-1}-t_{2 k+1}$, and as in the foregoing work, for $\sum d_{k} x_{k}$ to converge we require that $\lim _{p} t_{2 p+1} x_{p}$ exists finitely. We take $t_{q}=2^{-k}$ when $q=2 \cdot 9^{k}+1$ $(k=1,2, \ldots), t_{q}=0$ otherwise, and we take $x_{p}=p^{1 / 2}(p=1,2, \ldots)$. Then for $p=9^{k}$ we have $t_{2 \mathrm{p}+1} x_{\mathrm{p}}=2^{-k} 3^{k} \rightarrow \infty$, so $\left\langle x_{\mathrm{p}}\right\rangle \in c_{\mathrm{D}} \backslash I_{\mathrm{D}}$, and I_{A} is not invariant.

Acknowledgement. After this paper was submitted, a paper by S.-Y. Kuan appeared [Proc. Amer. Math. Soc. 71 (1978) 241-242], giving a different example to the same effect as our Example 1.

References

1. W. Beekman, Über einige Limitierungstheoretische Invarianten, Math. Z. 150 (1976), 195199.
2. G. Bennett, Distinguished subsets and summability invariants, Studia Math. 40 (1971), 225-234.
3. M. S. Macphail, Summability invariants, Math. Z. 153 (1977), 99-100.
4. M. S. Macphail and A. Wilansky, Linear functionals and summability invariants, Canad. Math. Buli. 17 (1974), 233-242.
5. A. Wilansky, Distinguished subsets and summability invariants, J. Analyse Math. 12 (1964), 327-350.

Department of Mathematics, Carleton University,
Ottawa, Ontario, K1S 5B6

