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ON APPROXIMATION MEASURES OF q-LOGARITHMS

TAPANI MATALA-AHO AND KEIJO VAANANEN

oo

Using Pade approximations of the q-logarithmic series ^ •*"/(! ~ <?") w e °b-
n=l

tain new approximation measures for values of g-logarithms and for the series
oo

X] l/u*n i fc = 1,2,... , where (un) is a recurrence sequence, satisfying
n = l

Wn+2 = run+i + sun, r , s£Z\{0} .

1. INTRODUCTION

The present work considers irrationality measures of the values of the g-logarithm

n = l

where q and z are elements of an algebraic number field K and v is a place of K. The
function lq(z) is connected with another q-logarithm

n^ 1

by the equation
Lg(z) = h/q{z/q).

The arithmetic properties of the values of these and related functions are considered
recently in a series of papers [1, 3, 4, 5, 6,7, 9,10, 11, 12, 13]. Here we are able to
improve the earlier irrationality measures both in the Archimedean and p-adic case.
We shall introduce two proofs for our result. Both of these use certain improvements of
the usual Pade approximations. As an application we obtain an irrationality measure
of the series

n=l Ukn

where (un) is a recurrence sequence satisfying

un+2 = run+1 + sun, r,seX\{0},

with certain initial values in Q[\/r2 + 4s) , including the Fibonacci sequence.
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16 T. Matala-Aho and K. Vaananen [2]

2. RESULTS

Let d = [K: Q] and dv = [K« : Qv] for a place t; of K. If the finite place v of K
lies over a prime p, we write v | p, for an infinite place v of K we write v | oo. We
normalise the absolute value | \v of K so that

if v\p, then \p\v = p ~ \

if t; | oo, then \x\v = |x | ,

where | | denotes the ordinary absolute value in C. We then have the product formula

The absolute height h(a) of a € K is defined by

a)=[[\a\v

v

where

\a\*v =max{l , | a | u } .

Further, if v is a place of K and q £ K*, we shall use the notation

d\ogh(q)
(1) X = X(v,q) =

log \q\v'

Clearly A ̂  1, if \q\v > 1, and in this case A = 1, if Igl^ < 1 for all w ^ v. If \q\v < 1,

then
^f.. _ N _ d\ogh(q)q) ( 1\

since /i(g) = h(l/q) by the product formula.

We now consider the approximation of the values of lq in K^ by the elements of

K.

THEOREM 1. Let v be any place of K, and suppose that g , a £ K satisfy

0 < \q\v , \a\v < 1, \q\w ?1 for all w\ 00.

Let
2m(\) = mm

27 + A(l + 3/TT2
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[3] Measures of g-logarithms 17

where the minimum is taken over all 7 € (0,1] satisfying l + 27+A(l + 3/TT2 + 7 2 ) > 0.
Then there exist positive constants F o = T0{a,q) and Ho = H0(a,q) such that for any

\lq(0t) - 6\ > i

where H = max{/i(#), i?o} •

By using the equalities Lq(z) = lx/q{z/q) and X(v,q) = —X(v,l/q) we get from
Theorem 1 the following.

COROLLARY 1 . Let v be any place of K, and suppose that q, a e K satisfy

\q\v>l, 0 < |a|,, < |g|o , \q\w^l for all w | 00.

Then there exist positive constants T\ = Tx(a, q) and Hi = -Hi(a, q) such that for any

eeK
\Lq(a) - 9\ > j y 1 / 2

where H =

In the case \a\v < \q\v this result improves Theorem 2 of Bundschuh and Vaananen

[5], where the bound corresponds to the value 7 = 1 .

THEOREM 2 . If X = -1 in Theorem 1, then for any 6 € K

1/ (a) _ Q\ > ^ -

where H = max{/i(0),HO} •

An analogous case coming from Corollary 1 is

COROLLARY 2 . If X = 1 in Corollary 1, then for any 9 € K

-2d/(3—v
pq \a) ~ °\v

 > n

where H = max{h(6),Hi}.

Since

-3,9461d/dv

n=l

Corollary 1 gives immediately part \a\v < \q\v of the following .

THEOREM 3 . Let v be any place of K, and suppose that q, a £ K* satisfy

\i\v>1> I C ^ 1 fora11 w l °° ' and a^q>,VjeZ+.
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18 T. Matala-Aho and K. Vaananen [4]

Then there exist positive constants F2 = T2(a,q) and H2 = H2(a,q) such that for any
6eK

^ — 9

where H = max{h(6),H2) •

If K = Q, this theorem implies the following sharpening of the the result of Bor-
wein [3, 4] and the irrationality measure 4,310. . . of Corollary 1 of Bundschuh and
Vaananen [5] and Theoreme 2 of Duverney [6].

COROLLARY 3 . Suppose that q e Z\ {0, ±1}, and a e Q* satisfies a ^ qj,
j € Z + . Then there exists a positive constant H2 = H2(a,q) such that for any
r/s €

00 1

Zv X r

n = l

-3,9461

where S = max{s, H2} •

To give our next application we consider a recurrence sequence (un) satisfying

un+2 = run+i + sun, r,s € Z \ { 0 } ,

where D = r2 + 4s > 0 is not a perfect square, such that for some c € Q( A

<r + \/D\n

un = c 2) ~ i.'-T2) )
Then we have the following

THEOREM 4 . Let (un) be as above and suppose that k € Z+, and either s = ±1
or s = ±2 and r is even. Then there exists a positive constant H3 = H3(r,c,k) such
that for all 9 6 Q(y/I>)

E
n = l

Ukr,
-9 >

where H = max{h(9),H3}.

A particular case r — s = 1, c = l/V§ gives the Fibonacci sequence (Fn).
Therefore Theorem 4 is a sharpening of Corollary 2 of [5]. Further, we note that in
the case s = ±1 very recently in [7] even the transcendence of certain series involving
elements of the sequence (un) is proved. For example the numbers

and
n = l
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[5] Measures of g-logarithms 19

are transcendental.

If above \s\ ̂  2, then we can give the following qualitative result.

THEOREM 5 . Let (un) and k be as in Theorem 4 but suppose now that \r\ > s2.
Then

3. PADE APPROXIMATIONS

We now consider the function lq(z), where q £ K satisfies \q\v < 1. Further,
suppose that \q\w ̂  1 for all w | oo.

To prove the above results we first give (n, n) Pade approximations for the series

(2) /W = ^ ^

where (c)0 = 1, (c)n = (1 - c)(l - eg) . . . (l - eg""1), n € Z + . These are obtained in
[9]. For convenience we introduce g-binomial coefficients defined by

It is well-known that

€ Z [ 9 ] , a n d d e g q [ ^ ] = k ( n - k ) , O ^ k ^ n ,

see for example, Andrews [2].

LEMMA 1 . [9] Let

and

(4) Rn{z) =

i=0 WtVii /t

TAen there exists a polynomial Pn(
z) of degree ^ n suci that

(5) Qu(z)f(z) - Pn(z) = Rniz).

Clearly Qn(z) E I>[z,q], but generally Pn{z) is not a polynomial in q. However
we obtain the following
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20 T. Matala-Aho and K. Vaananen [6]

LEMMA 2 . Let

Dn(q) = l.c.m {l-q,l-q\...,l- q^1} ,

and denote qn(z) = Dn(q)Qn{z), pn{z) = Dn(q)Pn(z) and rn(z) = Dn(q)Rn{z). Then

qn,pn e%[z,q] and

(6) qn(z)f(z)-pn(z)=rn(z).

PROOF: We denote

n n oo

Qn(z) = 5>fc«
fc, Pn(z)=^bkz

k, f(z) = ^ckz
k.

fc=0 fc=0 fc=0

Then

by (5). Thus it is clear that our lemma is true.

4. ITERATION AND ESTIMATION

The function f{z) satisfies the functional equation

(7) m(z)f(qz) = n(z)f(z)+r,

where
m(z) = q(z-l), n{z) = z - l , r = 1 - q.

We now apply this functional equation (7) to the equation (6).

For this let us denote, for any function g(z),

fc-i

g(z)Q = l, g(z)k=Y[g(qiz), Vfc €
t=0

fk{z) = m(z)kf(q
kz), Vfc€N,

t=0

If

then (7) imphes

fk(z) = m{z)k_x m{qk-1z)f{qkz) - n{qk-xz)fk.l{z)+m{z)k_l r.

Thus we deduce, for all k € N,

(8) fk(z)=ak(z)f(z)+bk(z)t
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[7] Measures of g-logarithms 21

where

(9)
bo(z) = 0,

fc-i

H

bk(z) = n(qk-1z)bk-1(z) + m{z)k_1 r, Vfc € Z+.

Prom (6) we now obtain

qn(q
Kz)fK(z) - m{z)K pn(q

Kz) = 02(2)^ ^ (g^z ) ,

and therefore (8) implies

(10) Qn,Kf{z) - pn,x = rn,K,

where

qn,K= aK(z)qn(q
Kz),

(H) Pu,K = ~bK(z)qn(q
Kz)+m(z)K pn(q

Kz),

rn,K= m(z)K rn(q
Kz).

LEMMA 3 . In (10) qn,K, Pn,K € l\z,q] and the degrees of these polynomials
satisfy

m&xdegz{qn,K, pn,K} ^ K + n,

( 3 N
maxdegg{gn,Ar, Pn.if} ^ ( 1 + ^ 1 n2 + i<T2+O(nlogn)

for all K ^ n.

PROOF: The bound .K' + n for maxdeg2{qn,K, PU,K} follows immediately from
the definition of these polynomials.

To get the bound for degq we first note that the polynomial

where n(d) denotes the Mobius function, has the property

see [5] and [8]. Further,

deg ,T n = - ^ n 2 + O ( n l o g n ) .
7TZ
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22 T. Matala-Aho and K. Vaananen [8]

Therefore we may take above
Dn{q)=Tn+l(q).

Secondly, since K + n ^ In and ord rnK ^ 2n + 1, we have by (11)

pn,K = [qn,Kf(z)]n+K = [aK(z)Dn(q)Qn(q
Kz)f(z)]n+K,

[ oo *] m

^ bkZk = 5Z bkzk. Using the notations of the proof of Lemma 2 and (9)
J

m k=0

we therefore obtain an inequality

t?ni/c, pn,x}

\2n- j + l

2"1)+ i?^i {j(n ~ j ) + n ( n ~ j + T) + (2) + Kj + ^nj+ o{-n losn)

l + - ^ ) n2 + K2 + O(n log n).

Lemma 3 is thus valid. U

Next we estimate l^n..^(<*)!„, a n ^ IPn.^Co;)!^. The estimates are slightly different
in finite and infinite places, and therefore we introduce the notation

{ 0; if w is finite ,

1; if w I 00.

LEMMA 4 . Let K = [yn], where 0 < 7 < 1, and suppose that a € K. For any

place w of K we have

\og\qniK(a)\w,\og\Pn,K(<*)\w ^ ( ( l + J , +72)"2 +O(nlogn)) log|C

The constants in O-notations are independent of a.

PROOF: Since qniK{a),pn,K(<x) € Z[a,g], the bound follows immediately from
Lemma 3 for finite places w.
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[9] Measures of g-logarithms 23

If w | oo, then

and

(see [9]).

Further, using our assumption \q\w ^ 1 and the result

of [8], we can estimate

max
0<l<n

From the expression of pn,K given in the proof of Lemma 3 we thus get the truth of
our lemma in this case, too. D

In our next lemma we shall estimate the remainder term rntK • In this lemma and
also later in this paper c* = Ci(a, q) and Cj = Ci(q), i = 1,2, . . . , denote positive
constants.

LEMMA 5 . Let K = [771], 0 < 7 ̂  1, and suppose that a € K satisfies la^ < 1.
Then there exists c\ such that for all n ̂  ci we have

iog\rn>K(a)\v < (1 + 27)n2log \q\v + 2nlog\a\v + C-^n + logc2.

PROOF: Using the definition of rn<K we obtain

rn,K(a) = »"(«)«• rn(qKa)

i=0

where

00 (nn+l\ (nn+2\ . 00 r . /_n+2\

By our assumption Ig^ < 1 it follows that the inequality

holds for all n ^ c\. By noting that IT, ,^)^ ^ e°2n and using the above expression

for TntK we now immediately get the truth of Lemma 5. D
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24 T. Matala-Aho and K. Vaananen [10]

LEMMA 6. Let

If a £ K* satisfies aq{ ^ 1, Vi e N, then

pn+i,K(z)

A n , i f ( a ) ^ 0 for all l^K ^ n.

PROOF: The determinant

A M =
Qn+1(z) Pn+1(z)

is a polynomial in z of degree ^ 2n + 1. On the other hand

A»(*) = -(Qn(z)Rn+1(z) - Qn+l(z)Rn(z))

has an order of zero ^ 2n + 1 at z = 0, and therefore

n )2n+i

Since, by (11),

= aK(o) qn(q
Ka) (-bK(a) qn+1(q

Ka) +m(a)K pn+1(q
Ka))

- aK{a) qn+i(qKa)(-bK(a) qn(q
Ka) +m{a)K pn(q

Ka))

= m(a)K n(a)K Dn(q) Dn+1(q) An(q
Ka),

the lemma follows. D

5. GENERAL THEOREM

In the consideration of the arithmetic properties of g-hypergeometric functions we
often construct sequences having bounds analogous to the above Lemmas 4 and 5. We
shall now formulate and prove a general theorem which together with such bounds
implies irrationality measure. For this let v be a place of K and suppose that a, q € K
satisfy 0 < laj^ , \q\v < 1. Further, assume that for some ip € K,, there exists a sequence

rn = qn<p -pn, qn, Pn e Z K [ Q , q),
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[11] Measures of ^-logarithms 25

satisfying for all n ^ c3 the following conditions:

(i) qnpn+i -pnqn+i 7^0 ;
(ii) log | rn \v ^ Bn2 log \q\v + Nn log \a\v + C3n(log n)* + c4,

where B and N are absolute positive constants and 6 = 0 or 6 = 1;
(iii) For any place «; of K

max{log \qn\w , l o g I p ^ } ^ (An2 + C4n(logn)*) log | 9 |^

+ M n log | a | ; + 5(w)C4n(log n ) ' ,
where A and M are absolute positive constants.

THEOREM. Let the above assumptions be satisfied and suppose that B + XA > 0.
Then there exist c$ and c^ such that for any 6 € K

\<p-6\ > #

where H = max{c6, h{9)}. If B + XA = 0, 6 = 0 and

AT + A M X ) ,

then there exists C5 such that tp is not an element of K if

{N + AM) log |a |7 x > C5.

P R O O F : Let

L = <p - 6.

From the assumption qnpn+i - pnQn+i ^ 0 it follows that for a given n ^ c3 we
may choose n = n or n + 1 such that

A =

Of course
A = r(n) - qnL.

We now prove that with a suitable choice of n

(12) |r(n) |w<2-*M|A|

Suppose, on the contrary, that
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26 T. Matala-Aho and K. Vaananen [12]

Then, by the product formula and the estimates of our theorem,

dv-j- (BU2 log \q\v + Nn log \a\v + C3n(log n)6 + c7)

^ ~ £ ~T (C^7*2 + C4n(l°g n) ) l°g \i\*w + - ^ n log IQ

+ 8{w)Cin{\ogn)5 + S(v) log 2 + log \9\*w}.

Using the definition of the height we now obtain

log/i(6>) ^ -^-Bn2log\q\v - (An2 + C4n(logn)*) logft(g)

—-jNnlog\a\v - Mn\ogh(a)

^ ^ . . . . . . . . .. ^ _ c g

- ( C 4 ( l + logfc(?)) + y ( C 3 - S(v)C4))n(lognf - c8.

By denoting (dv/d)C5 = C 4 ( l + log/i(?)) + {dv/d)(C3 - S(v)C4) we have

^C5n(logn) - c8.
a

Let us first consider the case B + \A = 0 and 6 = 0. If

choose n to be the smallest integer satisfying

logtf < ^

where H = max{c6, h{8)} and c6 is large enough to imply n ^ c3. With this choice
of n we have a contradiction in (13). Therefore (12) is true, which gives

(14) \qnL\v > 2-*M \A\v > 0.
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[13] Measures of (/-logarithms 27

This means that <p £ K.

Suppose now that B + XA > 0, and deduce from (13) an inequality

(15) log h(6) >(B + XA) ^-n2 log \q\^ - c9n(log n)S.

Let again H = max{c6, h(9)} where c& is such that the inequality

(16) log JEf < (B + A A ) ^ n 2 log \q\^ - c9n(logn)s

will be satisfied for all n from some point on and- define n to be the smallest of these
integers. We choose c§ large enough to give n ^ C3. With this choice of n we have a
contradiction in (15). This implies (12) and thus again (14) is true.

Taking logarithms in (14) and using the assumptions of our theorem we obtain

log\L\v > loglAI, - log!<?„!„ - S(v)]og2

^ --£-(logh(6)+An2 logh(q)) - c10n(logn)s.
av

From our choice of n and inequality (16) it follows that

logH ^ (B + XA)-j(n - 2)2log|g|~1 — cg(n - 2)(log(n - 2))5

and

(B + *A)-jj-n2 log \q\~l ^ logH + cnn(logn)'5.

By combining the above estimates, we get

l0g|L|" > " £ {} - BTX
This proves our theorem. D

6. PROOFS OF THE RESULTS

To prove Theorem 1 we note that using lemmas 4, 5 and 6 we may apply the above
general Theorem, where we now take

<p = f{a), A = l + ^+-y2, B = l + 2ft M = l + -y, N = 2.
7T
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28 T. Matala-Aho and K. Vaananen [14]

The use of the equality lq(a) — a / ( a ) / ( l - q) then immediately implies the truth of
Theorem 1.

If A — - 1 in Theorem 1 we see that the choice

v/5 + 12/TT2 - 1
1 2

satisfies B + XA — B — A — 27 — 3/?r2 — 7 2 > 0 and gives a minimal value

2 < 3,9461 for
3 - V 5 + 12/7T2 2 7 3 / 7 r 7

Thus Theorem 2 follows from Theorem 1.

In the case \a\v < \q\v Theorem 3 follows from Corollary 1. The case \a\v > \q\v

follows from our second proof which we shall sketch in the next paragraph.

To prove our Theorem 4 we note that in the case r > 0 (the case r < 0 is analogous)

U» C [ { 2 ) - ( - — ) J = C ~ ^
where

Thus

n = l Kn

Here q is an integer in Q(VDY A = A(| | ,g) = 1 and \a\ < \q\. Thus Theorem 4

follows from Corollary 2.

In Theorem 5 we assume \r\ ^ s2 + 1, which implies

(18) >-> • - /H
\r\-VD 4|sl

In order to estimate

h(q) = M1/2 I I l9i:

it is enough to consider only those finite valuations w \ p, where p | s, because sq is

an integer in K = <Q>f y/D). Also we note that &„, = Qw and dw = 1 for all w | p \ s .

Thus, if wi,W2 | p, wi ^ W2, then
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[15] Measures of g-logarithms 29

Readily

f j max{l, |g|Wl} max{l, Iff^} < |«|,
ptoo

which gives

A^x + j e s M ^
log | 9 | 3

using (18). So we get

A < max - — \ * ^ = 2 = 1.33943985....
o<7<i 1 + 3/?r2 + 72 ^/5 + 12/TT2 - 1

Hence we may apply Corollary 1 and (17) to get

(19) n=l Ukn

We note that a less restrictive condition

\r\ > \s\a - s/ \s\a , a = 1.97302

instead of \r\ ^ s2 4-1 also gives (19).

7. A SKETCH OF THE SECOND PROOF

Our results can also be proved using another approach presented in [5, 11, 13].
Here we consider linear forms in the values of the g-exponential function

n=o n (qk - 1 )
fc=l

and its derivative. These linear forms are constructed in the Archimedean case using
the complex integral

h^n) = h I ir
Eq{z)dz

v=0 i/=0

where R = |a|
2("+1)+*"+1

 > K = fan], 0 < 7 < 1. For finite v we consider the
corresponding Schnirelman integral. In [5] the choice 7 = 1 is used, but this is not
always the best choice. If we now work carefully through Lemmas 1-3 of [5] with our
choice of K and apply the proof of Theorem 2 of [5], we obtain the following result.
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30 T. Matala-Aho and K. Vaananen [16]

Let v and q be as in Theorem 3, and suppose that a € K* satisfies a ^ — q>,
V? € Z+. Then there exist positive constants T5 = T5(a, q) and H5 = if5(a,q).such
that for all nonzero a = (oi, 02) € K2

where i? = max{/i(a), #5} , \a\v = maxjlax^ , |a2 |u} and the height of the vector a is
defined by

The use of the equality
0 0 1

together with the above estimate now immediately implies the truth of our Theorem 3.
Using the earlier mentioned result

L*M = fl-jr—z> \*\v<\<>
n=l q Z

we could now get from Theorem 3 the irrationality measure estimates of Lq{a) and
lq(a) given in our results. This gives another proof for these results.
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