BuLL. AUSTRAL. MATH. Soc. 11182, 11168, 11361
VoL. 58 (1998) [15-31]

ON APPROXIMATION MEASURES OF ¢-LOGARITHMS

TAPANI MATALA-AHO AND KEIJO VAANANEN

oo

Using Padé approximations of the g¢-logarithmic series ) 2™/(1—g¢") we ob-
n=1

tain new approximation measures for values of g-logarithms and for the series

(=]
> 1/ukn, k=1,2,..., where (u,) is a recurrence sequence, satisfying

Un42 = TUnq1 + Sun, 71,8 € Z)\ {0}

1. INTRODUCTION

The present work considers irrationality measures of the values of the g-logarithm

o0 zn
lq(z) = z W’ O < ,2,‘0 3 ,q,u < 1,

n=1
where g and z are elements of an algebraic number field K and v is a place of K. The
function {4(2) is connected with another g-logarithm

n
Lo@) =3 s Ml > 1, 2L, <lal,,
by the equation
Lo(2) = lq(2/9).
The arithmetic properties of the values of these and related functions are considered
recently in a series of papers (1, 3,4, 5,6,7,9, 10, 11, 12, 13]. Here we are able to
improve the earlier irrationality measures both in the Archimedean and p-adic case.

We shall introduce two proofs for our result. Both of these use certain improvements of
the usual Padé approximations. As an application we obtain an irrationality measure

1
Z_:u— 1,2,...,

where (u,) is a recurrence sequence satisfying

of the series

Un42 = TUpy + SUR, T,8€ Z \ {0}’

with certain initial values in Q(\/r2 + 45), including the Fibonacci sequence.
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2. REsuLTS

Let d = [K: Q] and d, = [K, : Q,] for a place v of K. If the finite place v of K
lies over a prime p, we write v | p, for an infinite place v of K we write v | co. We
normalise the absolute value | |, of K so that

if v|p, then |p|,=p"",

if v]|oo, then |z|, =|[z|,

where | | denotes the ordinary absolute value in €. We then have the product formula

H |a|:" =1, Veek".
v

The absolute height h(a) of a € K is defined by
xdy/d
h(@) = [ les™",

where
|a|: = ma.x{l, |alv}‘

Further, if v is a place of K and ¢ € K*, we shall use the notation

_ dlogh(q)

1 A= A(v,q) = .
¢y (v,q) 4, logal,

Clearly A > 1,if |g], > 1, and in this case A = 1, if |¢|,, <1 forall w #v. If |q], < 1,

then
dl 1
A(’U’Q) - _ETO'g_h(g_)_l = —A(’U, _))
v Oglq'u q

since h(q) = h(1/q) by the product formula.

We now consider the approximation of the values of /; in K, by the elements of
K.

THEOREM 1. Let v be any place of K, and suppose that q,a € K satisfy
0<lql,,lal, <1, g, #1 forall w]oo.

Let
() = min 1+ 2y
A= 01 T+ 27 + M1+ 3/72 + 72)°
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3] Measures of g-logarithms 17

where the minimum is taken over all v € (0,1] satisfying 1+2y+A(1 + 3/7% +~?%) > 0.
Then there exist positive constants I'g = T'g(a, q) and Hy = Hy(a, q) such that for any

feK
llg(c) — 0], > H~dm()/dy—To(log H)~ '/ loglog H

where H = max{h(8), Ho}.

By using the equalities L,(2) = l1/4(2/q) and A(v,q) = —A(v,1/q) we get from
Theorem 1 the following.

COROLLARY 1. Let v be any place of K, and suppose that q,a € K satisfy
|q|u > 17 0 < |a|v < |q|u ? Iqlw # 1 for aII w | 0.

Then there exist positive constants I'y = T'y(e,q) and H, = Hy(«,q) such that for any

ek
|L¢1(a) - 9‘ > I{_dm(_’\)/d"_r‘l(l‘-"gH)'-l/2 loglog H
v 1

where H = max{h(6), H1}.
In the case |a|, < |g|, this result improves Theorem 2 of Bundschuh and Vaindnen
(5], where the bound corresponds to the value v =1.

THEOREM 2. If A= —1 in Theorem 1, then for any 8 € K
|lq(a) _ 0|v > H—2d/(3—\/5+12/1|‘2’du—r‘o(log I:I)'-]'/2 loglog H > H_319461d/dv,

where 'H = max{h(6), Ho}.
An analogous case coming from Corollary 1 is

COROLLARY 2. If A=1 in Corollary 1, then for any 8 € K
|Lq(e) — 6], > Fp-20/ (3=V/5+12/x%) dy—T1 (log H) /2 loglog H H-3.94614/dy.

where H = max{h(6), H:}.

Since

Z
Lq(z) = Z y |Z|v < Iqlv’

-z

Corollary 1 gives immediately part |af, < |g|, of the following .
THEOREM 3. Let v be any place of K, and suppose that ¢,a € K* satisfy

lgl,>1, lgl,#1 forall w|oo, and a#¢, VjeZ*.
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Then there exist positive constants I'y = '2(c,q) and Hy = Hz(a,q) such that for any
ek

oo

1
D
n=1

where H = max{h(6), H2} .
If K = Q, this theorem implies the following sharpening of the the result of Bor-

-0

—dm(—\)/dy—T2(log H) /2 10glog H
qn — > H v 2 R

v

wein [3, 4] and the irrationality measure 4,310... of Corollary 1 of Bundschuh and
Védninen [5] and Théoréme 2 of Duverney [6].

COROLLARY 3. Suppose that q € Z\ {0,%1}, and a € Q* satisfles a # ¢7,
j € Z*. Then there exists a positive constant Hy = Hy(w,q) such that for any

r/seQ
o0
1 T
Z n_a_; >S—3,9461,
n=1q

where S = max{s, Ho}.

To give our next application we consider a recurrence sequence (u,) satisfying
Un42 = TUpi1 + SUn, 1,8 € Z\ {0},

where D = r2 + 4s > 0 is not a perfect square, such that for some ¢ € Q(\/l_))

w=e((57)" - (7))

Then we have the following

THEOREM 4. Let (u,) be as above and suppose that k € Z*, and either s = 1
or s = £2 and r is even. Then there exists a positive constant Hz = Hs{r,c, k) such
that for all 6 € Q(\/l_))

1

> — -0

nel Ukn

> H-T:8921

where H = max{h(6), H3}.

A particular case r = s =1, ¢ =1 /\/5 gives the Fibonacci sequence (F}).
Therefore Theorem 4 is a sharpening of Corollary 2 of [5]. Further, we note that in
the case s = 1 very recently in [7] even the transcendence of certain series involving
elements of the sequence (u,) is proved. For example the numbers

1 = 1
2 and ) —
n=1 Uzn-1 n=1 Un
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5] Measures of g-logarithms 19

are transcendental.
If above |s| > 2, then we can give the following qualitative result.

THEOREM 5. Let (u,) and k be as in Theorem 4 but suppose now that |r| > s2.

Then -
1
> .= ¢e(vD).

n=1

3. PADE APPROXIMATIONS
-We now consider the function l4(z), where ¢ € K satisfies |¢f, < 1. Further,
suppose that |g|,, # 1 for all w | co.
To prove the above results we first give (n,n) Padé approximations for the series

@ 2:(” =100,

where (¢)y =1, (c), = (1—c)(1—cg)...(1—cg® 1), n € Z*. These are obtained in
[9]. For convenience we introduce g-binomial coefficients defined by
1)
ko (9)i(@nsk
It is well-known that
n n
= — k<
[k] €Zlgl, and deg, [k] k(n—k), 0<k<n,

see for example, Andrews [2].

LEMMA 1. [9] Let

" my[2n-k+1 k
3) @n(2) = (2) (—2)*,
( ,;) [k] [ n ] 7
and
(4) Rp(2) = 22n+1gn +"-———(2 §Z):l¢( z),

(o] n+1 n+2
¢(Z) — Z (q )i(q )izi.

B ico (9);(g*"*3);
Then there exists a polynomial P,(z) of degree € n such that
(5) Qn(2)f(2) — Pa(2) = Ra(z).

Clearly Q.(z2) € Z[z,q], but generally P,(z) is not a polynomial in g. However
we obtain the following
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LEMMA 2. Let
Dn(q)=l.c.m{l—q,l—qz,...,l—q"“},

and denote ¢,(z) = Dn(q)@n(2), Pn(2) = Dn(q)Pa(2) and ro(2) = Dn(q)Rn(2). Then
dn,Pn € Z|z,q] and

(6) Qn(z)f(z) - pn(z) = rn(z)'

PROOF: We denote

Qn(z) =D arz®, Pu(e) =) _bis*, f(z)=) 2"
k=0 k=0 k=0

Then 0 @
i n—j74+1 @) Lok
= B e[ 0
i+=k jH=k J n (@),
by (5). Thus it is clear that our lemma is true. 0

4. ITERATION AND ESTIMATION

The function f(z) satisfies the functional equation

(7 m(2)f(gz) = n(2)f(2) +r,

where
m(z) =¢(z-1), n(z)=2-1, r=1-g¢.

We now apply this functional equation (7) to the equation (6).
For this let us denote, for any function g(z),

k-1
9(2)o=1, 9(2),=]]9(d’?), VEezZ*.
i=0

If
fe(z) = m(2),.f(¢*2), Vk€N,

then (7) implies
Fi(2) = m(2),_, m(d* 12) f(¢¥2) = n(¢*'2) fi1(2) + m(2),_, T
Thus we deduce, for all k£ € N,

(8) Jx(2) = ax(2) f(2) + br(2),
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where -
ax(z) = n(2), = [ (2 - 1),
) =0

bO(z) - 0,
bi(2) = n(g* '2)bk-1(2) + m(z),_, r, VkeZ*.

From (6) we now obtain
0 (4% 2) frc(2) — m(2) ¢ Pa(9%2) = m(2) g 7 (d52),
and therefore (8) implies
(10) gn,k f(2) — Pn,k = TnK,
where
tnk = ax(2)g.(q%2),

(11) Pk = ~bk(2)an (0% 2) + m(2) g Pn(d¥2),

Tk = m(2)g s (qKz).

LEMMA 3. In (10) ¢n K, Pnx € Z[2,q] and the degrees of these polynomials

satisfy
maxdeg,{qn,k, Pn,k} < K +n,

3
maxdeg,{qn, K, Pn i} < (1 + F) n? + K% + O(nlogn)

forall K < n.

ProOF: The bound K +n for maxdeg,{gn K, Pnk} follows immediately from
the definition of these polynomials.
To get the bound for deg, we first note that the polynomial

T.(q) = ﬁ H (qu/d _ 1)u(d)’

v=1 d|v
where u(d) denotes the Mébius function, has the property

MEZ[q], v=12,...,n,

g -1
see {5] and [8]. Further,
3 2
deg, T, = " + O(nlogn).
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Therefore we may take above
Dn(q) = Tos1(9)-

Secondly, since K +n < 2n and ord Tk 2 2n + 1, we have by (11)
DPnK = [Qn Kf(z)] n+K — [aK(Z)D (Q)Qn (q z)f(z)]n+K7

[e] m

where [Z bkz"] = Y brz*. Using the notations of the proof of Lemma 2 and (9)
= m k=0

we therefore obtain an inequality

max degg{gn,k, Pn,k}

( ) + max degq {Dn(q)a;a* i}

0<1<n
+1 ni{2n—j+1 () +k;j 1-g¢
<(%2) e {5 [0 0
ogign
. j .3
( >+max{g(n ) +n(n —]+1)+(’;)+K]+Fn2}+0(nlogn)
ogign

< (1 + —3—2>n2 + K? + O(nlogn).
™

Lemma 3 is thus valid. 0

Next we estimate |gn, K(a)lw and |pp, K(a)|w. The estimates are slightly different
in finite and infinite places, and therefore we introduce the notation

0; if w is finite ,
o(w) =
1 if w| oo.

LEMMA 4. Let K = [yn], where 0 < v £ 1, and suppose that a € K. For any
place w of K we have

3 *
18100100} s ol (@], < ( (1 + 55 4972 + O(n1og ) ) gl
+ (1 + y)nlog|al;, + §(w)O(n).

The constants in O-notations are independent of «.

PROOF: Since g¢n k(@),pn k(a) € Z[a,q], the bound follows immediately from
Lemma 3 for finite places w.
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If w| oo, then
k
(2], < 2*(lalg,) @

and

I[:] |w < 2n(|‘1|;)deg"[z] = zﬂ(lql;)k(n—k)

(see [9)).
Further, using our assumption |g|,, # 1 and the result

T (@)|,, < (lgl%,) 28 T @Ot

of [8], we can estimate

Tnv1(q)
max 1-— ql+1

ogign

w
From the expression of p, x given in the proof of Lemma 3 we thus get the truth of
our lemma in this case, too. 0
In our next lemma we shall estimate the remainder term 7, ;. In this lemma and
also later in this paper ¢; = ¢i(a,q) and C; = Ci(q), 7 = 1,2,..., denote positive
constants.
LEMMA 5. Let K =[yn], 0 <y < 1, and suppose that a € K satisfies |a|, < 1.
Then there exists ¢, such that for all n > ¢, we have

log|rn,k(@)|, < (1 + 27)n?loglg|, + 2nlog|al, + Cin + logca.
PrOOF: Using the definition of r, ¥ we obtain

Tn,k(Q@) = m(@)g Tn (qKa)

_ KK—l i K _\2n+1 ﬂ2+n(q)n(q)n+l K
=q H (¢ = 1)Trti(g) (") q Wﬂq a),
i=0 2n+1
where
o0 n+1 . n+2 . i o0 i n+2 . i
o) =2, i, ) -2 | s 0"

By our assumption |g], < 1 it follows that the inequality
|#(a )], < 2"

holds for all n > ¢;. By noting that |T,(g)|, < €“2™ and using the above expression
for r, k we now immediately get the truth of Lemma 5. 0
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LEMMA 6. Let

(In,K(Z) pn,K(Z)

A, k(2) = .
,K() qn+1,K(z) pn+1,K(z)

If o € K* satisfies ag* # 1, Vi € N, then
Apk(e)#0 forall 1<K <n.

PRroOOF: The determinant

_ Qn(2) Pp(2)
Qn41(2)  Pnsr(2)

is a polynomial in 2 of degree < 2n +1. On the other hand

An(2)

Ap(2) = _(Qn(z)Rn+1(z) - Qn+1(z)Rn(Z))
has an order of zero > 2n + 1 at z = 0, and therefore

2n + 3] (ngl) (Q);(‘I)nﬂ qn2+nz2n+1
n+1 (q )2n.+1

_ _ . 2n+3
N

Anla) = |

Since, by (11),

Ap k(@) = gn k(@)Pnt1,k () — gns1,x (@) Pn,x (@)
=ak(®) ¢ (¢%a) (~bk(a) gns1(a% @) + m(a) g Pns1(¢%a))
— ax (@) gns1(¢¥a)(-bk(a) gn(¢¥a) + m(a) k pn(d¥a))
=m(a)x n(a)x Dn(q) Dnt1(9) An(qKa),

the lemma follows. 0

5. GENERAL THEOREM

In the consideration of the arithmetic properties of g-hypergeometric functions we
often construct sequences having bounds analogous to the above Lemmas 4 and 5. We
shall now formulate and prove a general theorem which together with such bounds
implies irrationality measure. For this let v be a place of K and suppose that ,q € K
satisfy 0 < |e], , lg|, < 1. Further, assume that for some ¢ € K, there exists a sequence

Tn =qn® — Pny Gn,Pn € Zx|a, g),
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satisfying for all n > ¢3 the following conditions:

(1) GnPr+1 — Pngn+1 #0;
(i) log|ral, < Bn?loglgl, + Nnlogla|, + Casn(logn)’ + c4,
where B and NN are absolute positive constants and § =0 or § = 1;
(iii) For any place w of K
max{log |gn/,, ;108 |Pnl,, } < (An2 + Cyn(log n)é) log |ql2,
+ Mnlog|all + 6(w)Cyn(logn)’,
where A and M are absolute positive constants.

THEOREM. Let the above assumptions be satisfied and suppose that B+ A > 0.
Then there exist c¢s and cg such that for any 6 € K

- - -1/2 ]
|<P—9L, > H dB/dy(B+AA)—cs(log H) (log log H) ,

where H = max{cs,h(8)}. f B+ A =0, 6§ =0 and

_ dlogh(a)

N+AM>0, A=—"—L,
+ d, log |al,

then there exists Cs such that ¢ is not an element of K if
(N + AM)loglal;* > Cs.

PROOF: Let
L=¢p-80.

From the assumption ¢,pp4+1 — Prgn+1 7 0 it follows that for a given 7o 2> ¢3 we
may choose m=7 or m+1 such that

1 —
A= 6 e K.
gn —Pn
Of course
A=r(n)—gq,L.
We now prove that with a suitable choice of @
(12) [r(m)], < 27 |4, .

Suppose, on the contrary, that

|r(n)|u > 2750 Al -
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Then, by the product formula and the estimates of our theorem,
dv (Br*1 Nnl Csn(logn)’
S \Bn oglgl, + Nnloglal, + Can(logn)” + c7

dy d
> Z1oglal, = 3 Zloglal,
wHv

dy . i
z - ; _d ((An2 + C4n(10g n)‘s) log |q|w + Mnlog |alw
w#v

+ 6(w)Can(logn)® + 6(v) log 2 + log |0|;)
Using the definition of the height we now obtain
log h(6) 2 —%’an log |g}, — (An2 + C4n(log n)‘s) log h(q)
- %’Nn log |a],, — Mnlogh(c)

d, du
- 703n(logn)6 - wz;év 7(5(10)041;(10gn)‘s —cg

=(B+ /\A)%”-n2 log lql;1 + (N + AM)(—ldf-nlog |al;1
dy
- (04(1 + log h(q)) + 7(03 - 6(v)C4))n(log n)® - cs.
By denoting (dy/d)Cs = C4(1 + log h(q)) + (dv/d)(Cs — 6(v)Ca) we have

d _ d _
log h(6) > (B + AA)—~n?logq|;" + (N + AM)—2nlog|al;’
(13) d d

- %”C’sn(logn)'s — cg.
Let us first consider the case B+ XA =0 and § =0. If
(N + AM)log e, > Cs,
choose 7 to be the smallest integer satisfying
log H < édﬂ ((N + AM) log |oz|;1 - Cs)n — cs,

where H = ma.x{ce, h(H)} and cg is large enough to imply n > c3. With this choice
of n we have a contradiction in (13). Therefore (12) is true, which gives

(14) lgn L], > 275 |A|, > 0.
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This means that ¢ € K.
Suppose now that B + AA > 0, and deduce from (13) an inequality

(15) logh(8) > (B + /\A)%'n2 log |q|;1 — con(log n)‘s.

Let again H = max{cs, h(f)} where cg is such that the inequality

. d, -
(16) logH < (B + /\A)—(Tn2 log |q|, 1 _ con(logn)’

will be satisfied for all n from some point on and- define @ to be the smallest of these
integers. We choose cg large enough to give n > c3. With this choice of n we have a
contradiction in (15). This implies (12) and thus again (14) is true.

Taking logarithms in (14) and using the assumptions of our theorem we obtain

log|L], > log|A|, — log|gn|, — 6(v)log2

d d
> - Zw —1 nl., — 2
e E 1 log|Al,, — log|gn|, — 6(v) log

v wFv

> -—;(log h(6) + An?log h(g)) — cron(logn)°.
From our choice of n and inequality (16) it follows that
) d, 2 -1 s
0 H > (B+1A4) 2 (n ~ 2" log lal;” - co(m — 2)(1og (n — 2))

and

(B+ )\A)%"n2 loglgl;" <logH + cun(logn)®.

By combining the above estimates, we get

d AA -1/2 s
z2-——|1-—— H — c5(log H .
log|L|, > T ( n /\A) log cs(log H)™/"“(loglog H)
This proves our theorem. 1]

6. PROOFS OF THE RESULTS

To prove Theorem 1 we note that using lemmas 4, 5 and 6 we may apply the above
general Theorem, where we now take

3
(p=f(a), A=1+ﬁ+727 B=1+2y, M=1+y, N=2
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The use of the equality l,(a) = af(a)/(1 — ¢) then immediately implies the truth of

Theorem 1.
If A= —1 in Theorem 1 we see that the choice
_ V5+12/n2 -1
2
satisfies B+AA =B - A =2y —3/n%2 -2 > 0 and gives a minimal value
2 142y
T <A for g

Thus Theorem 2 follows from Theorem 1.

In the case |o|, < |g|, Theorem 3 follows from Corollary 1. The case |af, > lq|,
follows from our second proof which we shall sketch in the next paragraph.

To prove our Theorem 4 we note that in the case » > 0 (the case r < 0 is analogous)

Un =c((r+\/1_7)"_ (r—\/ﬁ)n) _ ot

2 2 a®

where
o= 2 _ r++vD

r—vD' ° r-VD
Thus

21 1

—_—_— = — k

(17) ngl . chk (a )

Here ¢ is an integer in Q(\/ﬁ), A=2A(1],9) =1 and |a| < |g|- Thus Theorem 4
follows from Corollary 2.
In Theorem 5 we assume |r| > s% + 1, which implies

rl+vD|_ (r+vD)’
Ir|—vD| 4s|

> s|.

(18) lgl =

In order to estimate
1/2 sdy,/d
h(a) = la"/* TT laly™’

wioo
it is enough to consider only those finite valuations w | p, where p | s, because sq is
an integer in K = Q(\/_ﬁ) . Also we note that K,, = Q, and d,, = 1 for all w|p|s.

Thus, if wy,ws | p, w1 # wa, then

Iqlwl Iq|uJ2 1)

|q|wl b IQ|w2 s ll/s‘p'
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Readily
[] max{1,lql,, } max{1,ql,,} < sl,
ptoo
which gives
log|s| 4
A1+ £z
loglg| ~ 3
using (18). So we get
142 2
A< tor = 1.33943985. .. .

max -
0<y<1 1+3/m2+92 53 12/n% -1

Hence we may apply Corollary 1 and (17) to get
= 1
(19) 3 — Q(\/l_)).

n=1

We note that a less restrictive condition
Ir] > Is|* — s/ |s|*, a=1.97302
instead of |r| > s + 1 also gives (19).

7. A SKETCH OF THE SECOND PROOF

Our results can also be proved using another approach presented in [5, 11, 13].
Here we consider linear forms in the values of the g-exponential function

> Pk > z
Eq(z)=2———= 1+—1, lg,>1,

and its derivative. These linear forms are constructed in the Archimedean case using
the complex integral

1
IU(K) n) = % / K n 2;
l#ly=R Ho (z+¢%1) [1 (2 - ag”)

v= v=0

E (z)dz

where R = |q|:("+1)+K+l, K = [yn], 0 < ¥ < 1. For finite v we consider the
corresponding Schnirelman integral. In [5] the choice v = 1 is used, but this is not
always the best choice. If we now work carefully through Lemmas 1-3 of [5] with our
choice of K and apply the proof of Theorem 2 of [5], we obtain the following result.

https://doi.org/10.1017/5000497270003197X Published online by Cambridge University Press


https://doi.org/10.1017/S000497270003197X

30 T. Matala-Aho and K. Viininen [16]

Let v and ¢ be as in Theorem 3, and suppose that a € K* satisfies a # —¢7,
Vj € Z*. Then there exist positive constants I's = I's(a,q) and Hs = Hs(a,q).such
that for all nonzero a = (a1, as) € K2

[01E4() + a2 B (@), > lal, H=4m(-0/4%-Tsles 1) Eoglog A,

where H = max{h(g), Hs}, lal, = max{|al|v , |a2|u} and the height of the vector a is
defined by

ha) = [ max{1, af*/*}.

The use of the equality

B _$
Eo(z) gt +a2

together with the above estimate now immediately implies the truth of our Theorem 3.
Using the earlier mentioned result

Z
L&)=Y —2—, Iz, <ldl,.

n
n=1q 2

we could now get from Theorem 3 the irrationality measure estimates of L,(a) and
l4(c) given in our results. This gives another proof for these results.
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