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Abstract

The Revised® Report on the Algorithmic Language Scheme added a mechanism to the Scheme
programming language for creating new record types procedurally. While many programming lan-
guages support user defined, structured data types, these are usually handled syntactically, so that
the compiler can make choices at compile time about the memory layout of these data types. The
procedural record types in Scheme, however, can be constructed at run time, making the efficient
run-time representation of record types important to ensure good run-time performance. The run-
time representation used in our implementation provides an extended model for record types allowing
record types to represent foreign scalar data types, e.g., machine word integers, and allows the base
record type to be extended to create non-R6RS record-type systems. This article describes our run-
time representation for record types, how the garbage collector handles foreign scalar data types,
and includes extended record type systems both for an object-oriented programming model and a
representation of foreign structured data types.

1 Introduction

The record-type system introduced by the Revised® Report on the Algorithmic Language
Scheme (R6RS) (Sperber et al., 2009) added the ability to create user-specified, aggregate
data types, similar to structs or records in other languages. Record types can be created
either through a procedural interface or through a syntactic interface. The two are designed
to allow the syntactic interface to macro-expand into the procedural interface, with the
procedural interface acting as the primitive interface to record-type creation. The record
system also provides an inspection interface similar to the reflection interface in some
object-oriented programming languages.

To support run-time creation and inspection of record types, each record type has an
associated record-type descriptor (RTD), which is a run-time representation of the record
type. The RTD can be used by the procedural interface to create:

e a predicate for identifying instances of this record type,

e accessors for accessing the fields of this record type,

e mutators for mutating the mutable fields, if any, of this record type, and

e a record constructor descriptor, which can be used in turn to create constructor
procedures for the record type.
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The record type system also supports inheritance, and an RTD is used to represent the
parent record type when a new record type is created.

The record constructor descriptor (RCD) is created using an RTD, an optional parent
RCD, and an optional protocol procedure. The parent RCD is used when a record type
inherits from an existing record type. It allows the child RCD to utilize the parent record
type’s RCD protocol when specifying the parent record type’s fields. The protocol in
an RCD allows a programmer to specify how instances of this record type should be
initialized. When a parent record type uses a protocol, the child record type is responsible
only for satisfying the interface of the parent record type’s protocol. Thus, the child need
not be aware of changes to the parent record type, as long as the interface remains the
same. This is similar to a constructor in an object-oriented programming language but
supports functional rather than imperative field initialization. The protocol allows fields to
be calculated from the input to the protocol or for default values to be specified. Within a
protocol, the record instance being constructed can be modified or otherwise manipulated
before it is returned, allowing, for example, the construction of cyclic structures or the
storing of instances in a database.

Both the RTDs and the RCDs are data structures that must be represented at run time. In
our implementation, both are represented as records, with an RTD record type to represent
RTD records and an RCD record type to represent RCD records. A special base RTD
represents the bottom of the RTD inheritance hierarchy and all record types are built from
the base RTD. This provides a record meta-layer, similar to the object meta-layer in the
Common Lisp Object System (DeMichiel & Gabriel, 1987). The R6RS record system is
just one possible record system built upon this meta-layer. We have used this flexibility
to create both an object-oriented programming system and a flexible system for accessing
structured foreign-types, called ftypes.

Our implementation extends the R6RS record system to allow record types to contain
foreign scalar data types, such as raw integers, floating-point numbers, and other foreign
scalar data types. Since these types are represented natively (based on the application
binary interface of the machine) each RTD must contain enough information to inform
the garbage collector which fields are Scheme object types and which are foreign data
types. This feature is used by the ftype system in order to represent pointers into foreign
memory that the garbage collector is not responsible for maintaining.

This article discusses the run-time representation of record types in Chez Scheme (Dyb-
vig, 2009) with a description of an efficient implementation of the procedural interface for
the record system. It also presents the interaction of the record system with the garbage
collector, including how foreign scalar fields are handled by the collector. Finally, we
present the object-oriented programming system and the ftype system and describe how
these systems are built using the record system meta-layer.

The remainder of this article is organized as follows. Section 2 reviews the RO6RS record
system. Section 3 describes Chez Scheme specific extensions to the R6RS record system.
Section 4 describes our representation of RORS record types and how the garbage collector
handles records with our extensions. Section 7 describes our procedural implementation
of the record system. Section 8 provides an overview of compiler optimizations used to
improve performance of procedural record types. Section 9 describes the object system
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and foreign-type interface built on top of the record system. Sections 10 and 11 discuss
related work and conclusions.

2 R6RS record types

This section presents an overview of the procedural, syntactic, and inspection interfaces to
the RO6RS record system and can be skipped by readers who are already familiar with the
record system.

We start by looking at how to create a simple color record type that contains r, g, and
b fields, using the procedural interface.
(define color-rtd

(make-record-type-descriptor ’color #f #f

#f #f ’#((mutable r) (mutable g) (mutable b))))

(define color-rcd (make-record-constructor-descriptor color-rtd #f #f))
(define make-color (record-constructor color-rcd))
(define color? (record-predicate color-rtd))
(define color-r (record-accessor color-rtd 0))
(define color-r-set! (record-mutator color-rtd 0))
(define color-g (record-accessor color-rtd 1))
(define color-g-set! (record-mutator color-rtd 1))
(define color-b (record-accessor color-rtd 2))
(define color-b-set! (record-mutator color-rtd 2))

The color record-type descriptor (RTD) specified here does not inherit from any other
RTD, indicated by the first #£. It is generative, so make-record-type-descriptor
creates a new (and unique) RTD each time it is called, indicated by the second #£. In
particular, if the code appears in a loop, a new RTD is constructed on each iteration of
the loop. The RTD is not sealed, meaning it can be a parent RTD to other record types,
indicated by the third #£. The RTD is not opaque, meaning the RTD can be extracted from
an instance of the record type and used to inspect or even modify its fields, indicated by
the fourth #£. Finally, the RTD specifies three mutable fields r, g, and b.

Creating the constructor for the color record type requires a record-constructor de-
scriptor (RCD). The RCD specified here is the default RCD. The default RCD specifies
that there is no parent RCD and no protocol. It creates a constructor procedure that expects
one argument for each field in the record and initializes each field to the value of the
corresponding argument. The constructor for the color record type is generated with the
RCD. The predicate, accessors, and mutators for the color record type are generated with
the RTD and, in the case of the accessors and mutators, the index of the field. The index is
zero based, starting from the first field of this record type. If the record type inherits from
a parent record type, the index is still zero based, and accessing the fields of a instance
of this record contributed by the parent RTD is done using the accessors from the parent.
Because fields are identified by indices, two or more fields can have the same name.

Most record types, including the color record type, can be created using the more
convenient syntactic interface:

(define-record-type color (fields (mutable r) (mutable g) (mutable b)))
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The define-record-type form can be implemented as a macro, and this occurrence
might expand into the procedural-interface code shown above. The only difference, in
this case, is that the color-rtd and color-rcd variables are not directly visible via
the syntactic interface, though the syntactic interface does provide syntactic forms for
obtaining the RTD and RCD from a record name. In addition to the fields clause, the
define-record-type form can specify:

e its generativity with the nongenerative clause,

e whether it is sealed with the sealed clause,

e whether it is opaque with the opaque clause,

e a parent record type with the parent or parent-rtd clauses, and

e arecord protocol with the protocol clause.

To avoid duplicate bindings for accessors and mutators, the fields of a record specified via
the syntactic interface must be distinctly named, though a child’s field names need not be
distinct from its parent’s field names.

2.1 Protocols and inheritance

Record inheritance in the R6RS record system is designed to allow child record types to be
created and used without specific knowledge of parent fields. This is why field indices for a
child record type begin at zero even when the parent record type has one or more fields. It is
also one reason why protocols exist. Protocols provide an expressive way to abstract record
creation, but this ability could be simulated by embedding the creation procedure within
another procedure. More importantly, they free code that allocates a child record type
from needing to know about the parent’s fields, how to initialize them, and other actions
required when an instance of the parent record type is created. The child protocol needs
to know only the arguments expected by the parent protocol. This is especially convenient
when a parent record type is modified during program development, since code that deals
with child record types need not change as long as the parent protocol remains backward
compatible.

A protocol is analogous to a constructor or initialization method in object-oriented
programming and serves a similar purpose, with an appropriately more functional style.
One use for a record protocol is to specify default values for fields that do not need to be
specified when an instance of the record is created. Protocols are not limited to this, though,
and can be used, e.g., to check for valid constructor arguments, register records with some
global database, or mutate the record being constructed to create cycles.

For instance, imagine we want to create an immutable color record that also stores a
name. We could create a variation on the color record described above, like the following:

(define-record-type color (fields name r g b))

The color record type is generative, is not sealed, is not opaque, and has four immutable
fields: name, r, g, and b. In our representation, we always want name to be a symbol and
r, g, and b to be fixnums between 0 and 255. These restrictions could be enforced through

https://doi.org/10.1017/50956796814000203 Published online by Cambridge University Press


https://doi.org/10.1017/S0956796814000203

Run-time representation of record types 679

a protocol as follows:

(define-record-type color
(fields name r g b)
(protocol
(lambda (new)
(lambda (name r g b)
(unless (symbol? name)
(error ’make-color "name must be a symbol" name))
(unless (and (fixnum? r) (fixnum? g) (fixnum? b))
(error ’make-color "RGB values must be fixnums" r g b))
(unless (and (<= 0 r 255) (<= 0 g 255) (<= 0 b 255))
(error ’make-color "RGB value outside range" r g b))
(new name r g b)))))

The protocol keyword specifies that this object has a protocol expression. Because the
color record type does not inherit from any other record types, its protocol is passed a
procedure to build the record that accepts one argument for each field in color. In this
case, the protocol expression returns a procedure with one argument for each field in the
color record type. This procedure performs the checks and creates a new color record
instance.

Another feature we might like is to store each color record in a global list of colors. If the
record definition for color is at the top-level of a library or program, this works without
any changes. However, since the record type is generative, if it was moved into a context
where it could be executed more than once, it might lead to the global list containing
instances of many color record types with the same shape, but different RTDs. To avoid
this, we mark color nongenerative.!

(define *colors* ’())

(define-record-type color
(nongenerative)
(fields name r g b)
(protocol
(lambda (new)
(lambda (name r g b)
(unless (symbol? name)
(error ’make-color '"name must be a symbol" name))
(unless (and (fixnum? r) (fixnum? g) (fixnum? b))
(error ’make-color "RGB values must be fixnums" r g b))
(unless (and (<= 0 r 255) (<= 0 g 255) (<= 0 b 255))
(error ’make-color "RGB value outside range" r g b))
(let ([c (new name r g b)])
(set! *colors* (cons c *colors*))

c)))))

Generative record definitions are rarely required, sometimes lead to confusion with type mismatches on
seemingly identical types, and generally have more run-time overhead. Despite this, the language designers
chose to make generativity the default. Programmers should therefore develop the habit of including a
nongenerative clause in every record definition.
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With this definition of the color record type, each new color is recorded in a global list of
colors.

Specifying colors by RGB value is convenient, but if we are working on a web project,
we might want to create colors that store the HTML hexadecimal representation as well as
the RGB values. We can derive a new web-color record type from color to accomplish
this.

(define-record-type web-color

(parent color)

(fields hex-color)

(nongenerative)

(protocol

(lambda (pargs->new)
(lambda (name r g b hex-color)
(let ([new (pargs->new name r g b)])
(new hex-color))))))

The web-color record type indicates that it inherits from color by naming color in the
parent clause. It also provides a protocol. The first difference evident in the web-color
protocol is that instead of being passed a procedure that takes all of the fields for the parent
and the child record, it receives a procedure pargs—->new that expects the parent-protocol
arguments. This procedure returns another procedure that expects the child-field values (in
this case, just the value of hex-color) and returns a new instance of the record type with
the parent fields initialized according to the parent protocol and the child fields initialized
to the supplied child field values. When a new web-color is created, it should be added
to the global *colorsx* list, just as a new color record is added. Since the protocol for
color is invoked as part of the process of creating the new web-color, the web-color
protocol not need to do so directly.

The web-color protocol requires the user of the web-color record type to supply the
color twice, once as a web color and once as a set of RGB values. This might lead to
inconsistencies, since the web color string and the RGB values might specify different
colors. The protocol could verify consistency, but a better option is to generate one rep-
resentation from the other and save the programmer from the inconvenience of specifying
the color twice. We can do so as follows with an appropriately defined rgb->hex-color
(not shown):

(define-record-type web-color

(parent color)

(fields hex-color)

(nongenerative)

(protocol

(lambda (pargs->new)
(lambda (name r g b)
((pargs->new name r g b) (rgb->hex-color r g b))))))

The protocol specified above converts r, g, and b values to the hexadecimal string repre-
sentation. This value is then filled in for the hex-color field of the web-color record
type. We could just as easily have the protocol accept a hexadecimal string and perform
the reverse conversion, or even use a case-lambda form (Sperber et al., 2009) to allow
either r, g, and b values or a hexadecimal string.
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Now that we have a set of record types defined, we define some color records, find the
color named red in the color list, and extract its hex—color and r values:

(make-web-color ’red 255 0 0)
(make-web-color ’green 0 255 0)
(make-web-color ’blue O 0 255)

(define red (find (lambda (c) (eq? (color-name c) ’red)) *colorsx*))

(web-color-hex-color red) = "#FF0000"
(color-r red) = 255

2.2 The inspection interface

It is possible to determine information about the type of a record instance using the inspec-
tion interface, as the following example demonstrates.

(define red-rtd (record-rtd red))

(record-type-descriptor? red-rtd) = #t
(record-type-name red-rtd) = web-color
(record-type-generative? red-rtd) = #f
(record-type-uid red-rtd) = web-color
(record-type-sealed? red-rtd) = #f
(record-type-opaque? red-rtd) = #f
(record-field-mutable? red-rtd 0) = #f
(record-type-field-names red-rtd) = #(hex-color)
(define p-rtd (record-type-parent red-rtd))

(record-type-name p-rtd) = color

These operations allow a program (e.g., a portable debugger) to retrieve information about
the record type, and when combined with the procedural interface for creating record
accessors and mutators, also allow the program to retrieve or even modify the contents
of the record instance. If the record type of a record instance is opaque, the record-rtd
procedure raises an exception, effectively preventing inspection of the record and its type.

3 Extensions to R6RS record types

Our implementation of the R6RS record system supports an alternative interface that pre-
dates the R6RS. In addition to having a slightly different model for the procedural and
syntactic interfaces from the RO6RS record system, the alternative interface supports records
with foreign scalar data type fields. This allows a record to store raw integers, un-tagged
floating point numbers, and raw machine pointers, in addition to Scheme data types. Record
types that make use of these features cannot be built using the standard R6RS interface, and
instead rely on the alternative interface. Internally, there is no difference between record
types created through the R6RS interface and those created using the alternative interface,
and it is possible for record types created using the alternative interface to inherit from
R6RS records and vice versa. There is, however, one small difference between the two:
because the R6RS syntax does not support foreign scalar data types, our system does not
support creating an RCD for a record that includes foreign scalar data types. If we were to
extend the R6RS syntax to support this, it should be possible to also extend the RCD and
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protocols implementation to support it. The RCD is not supported because the protocol-
handling code does not provide the functionality to check and convert Scheme data into
foreign scalar data. A constructor procedure can still be created for these record types
using the older record system’s procedural or syntactic interface.

Record types created using the alternative interface are never opaque or sealed. Record
types created using the alternative syntactic record interface are always nongenerative,
unlike those created through the RORS interface, which can be generative or nongenerative.

With the alternative procedural interface, make-record-type is used to create an RTD.
Since RCDs are not supported by the alternative interface, record constructors are created
directly from the RTD and always accept one argument for each field. The example below
creates a record constructor with a field that has a default value by wrapping the record-
constructor procedure with a procedure that supplies the default value.

(define EX1-rtd
(make-record-type "EX1"
> ((mutable float a) (mutable integer-32 b)
(mutable c) (mutable d)))))
(define make-EX1
(let ([rcons (record-constructor EXi-rtd)])
(lambda (a b c)
(rcons a b c #£))))
(define EX1?7 (record-predicate EX1-rtd))
(define EX1-a (record-accessor EXi1-rtd 0))
(define EX1-b (record-accessor EXi1-rtd 1))
(define EX1-c (record-accessor EXi1-rtd 2))
(define EX1-d (record-accessor EXi-rtd 3))
(define set-EX1-a! (record-mutator EX1-rtd 0))
(define set-EX1-b! (record-mutator EX1-rtd 1))
(define set-EX1-c! (record-mutator EX1-rtd 2))
(define set-EX1-d! (record-mutator EX1-rtd 3))

This creates a new record type, EX1, with four fields:

a, a mutable field that contains a float foreign scalar,

b, a mutable field that contains an integer-32 foreign scalar,
¢, a mutable field that contains a Scheme object, and

d, a mutable field that contains a Scheme object.

The procedure wrapping the constructor sets d to the default value #£.

The syntactic interface is invoked through the define-record form. The EX1 record
type can also be created using the syntactic interface, including creating a constructor with
the default value for the d field.

(define-record EX1

((mutable float a) (mutable integer-32 b) (mutable c))
(((mutable d) #£)))

The define-record form creates

e a constructor procedure, make-EX1 in this case;
e apredicate, EX17 in this case;
e an accessor for each field, EX1-a, EX1-b, EX1-c, and EX1-d in this case; and
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e a mutator for each mutable field, set-EX1-a!, set-EX1-b!, set-EX1-c!, and
set-EX1-d! in this case.

It also creates a compile-time binding for the identifier EX1, which allows the RTD for this
record type to be retrieved with record-type-descriptor or used as a parent in other
define-record or define-record-type forms.

When a record type contains foreign scalar fields, as EX1 does, the generated record-
constructor procedure verifies that the argument supplied for each foreign-type field is
valid for that foreign type and converts the value to the appropriate foreign representation
before storing the value in the field. Likewise, the mutator created for a foreign-type field
verifies that the supplied value is valid for the foreign type and converts it to the foreign
representation before storing it. An accessor for a foreign-type field is responsible for
performing the opposite conversion.

Our newly created EX1 record type can be used as follows:

(define exl (make-EX1 5 100 "bob")) =

Exception: invalid value 5 for foreign type float
(define ex1l (make-EX1 4.75 100 "bob"))

(EX17? ex1) = #t
(EX1-a ex1) = 4.75
(EX1-b ex1) = 100
(EX1-c ex1) = "bob"
(EX1-d ex1) = #f
(set-EX1-b! exl (expt 2 33)) =

Exception: invalid value 8589934592 for foreign type integer-32

(EX1-b ex1) = 100
(set-EX1-b! ex1 1024)
(EX1-b ex1) = 1024

The checks for the a field in the make-EX1 constructor prevent us from using 5 as the value
for a floating point field (though 5.0 would have worked). Similarly, if we try to set the
value of the b field to 233, the check in the set-EX1-b! mutator recognizes that this value
is outside the valid range for this field and raises an exception to this effect, preventing the
field value from being changed.

4 Record type representation

For each new record type, a new record type descriptor (RTD) is created. The RTD for a
record type is the central repository of information about that record type. It is used by the
procedural interface to create a predicate procedure, field accessors, and field mutators for
the record type. It is also used by the inspection interface to retrieve information about
the record, including field names, information about fields, and the parent record type
(represented as an RTD). Internally, the RTD is used as a type tag to differentiate a given
record from built-in Scheme data types and other records that are not in the inheritance
hierarchy of the record’s RTD. It is also used by the garbage collector to determine the
size of record instances, which fields contain Scheme data types, and which of those are
mutable.

Each record instance has a slot for each field defined by the record type (and its parent,
if the record type inherits from another record type) and an extra slot to store its RTD. If
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the record type contains foreign data type fields, adjacent fields are packed into the same
slot when they are smaller than a single machine-sized word. If the foreign data type fields
are not adjacent, they are each padded to occupy a full machine-sized word slot to provide
proper alignment for the Scheme object fields. A foreign field may also take up more than
one slot, if it is larger than the machine-sized word. The Scheme object fields, however,
are always word-aligned. The slot for the RTD is used to determine the type of the record
instance, which differentiates it from built-in Scheme types and from other record types.
The RTD stored in the record can also be retrieved through the inspection interface to allow
a program, such as a debugger or meta-circular interpreter, to determine information about
the record.

RTDs are themselves represented using records. This means that each RTD is an instance
of the RTD record type and has a slot for the RTD record type. This sets up a hierarchy
that is rooted at the base RTD. The base RTD has itself in its RTD slot.

RTDs have eight fields: parent, size, Scheme object field (pointer) mask (pm), mutable
Scheme object field (pointer) mask (mpm), name, fields, flags, and unique identifier (UID).
The parent field stores the parent RTD, if there is one, and #£, if there is not. The size field
indicates the size of an instance of this record type in bytes. The Scheme object mask (pm)
field is a bit mask that indicates which slots hold Scheme object fields and which hold one
or more scalar foreign fields. The mutable Scheme object field mask (mpm) is a bit mask
that indicates which Scheme object fields are mutable. The name field records the name
specified for the field. The fields field contains a list of entries each describing a field of
this record type; each entry contains the name of the field, a flag to indicate if the field
is mutable, the type of the field, and a precomputed byte-offset into the record instance
where the field can be found. The mutable indicator in the fields field and the mutable
bits in the Scheme object mutable pointer mask (mpm) might differ, since mutable foreign
scalar data fields are marked as mutable in the fields list, but not in in the Scheme object
mutable pointer mask, since while the field is mutable, it is not a Scheme object. The flags
field records whether the record type is generative, whether the record type is opaque, and
whether the record type is sealed. Finally, the UID field records the UID for this record
type. For record types where no UID was provided, i.e., generative records, a new globally
unique symbol is created when the record-type descriptor is constructed.

The base RTD has no parent, and all of its fields are immutable Scheme objects. The
name and UID are both the Scheme symbol $base-rtd. It is nongenerative, not opaque,
and not sealed. The field entries for the base RTD describes its own fields and those that
must be present in any other RTD, i.e., the RTD fields described above. Figure 1 shows the
layout of the base RTD.

When a new record type is created, a new RTD, i.e., an instance of the RTD type, is
constructed. For example, an RTD for the color record type from Section 2 can be seen in
Figure 2. The RTD slot points to the base RTD, since the color RTD is an instance of the
RTD record type. The parent field is #£ since the color record type does not inherit from
any other record type, and the fields list contains entries for the name, r, g, and b fields,
which are all immutable Scheme object fields. The flags value, 0, reflects the fact that the
color record type is nongenerative, not opaque, and not sealed. The UID is a generated
symbol based on the name (“‘color”); this symbol is generated once and for all during
macro expansion, since the record type is nongenerative.
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((parent #f scheme-object 9) (size #f scheme-object 17)
(pm #f scheme-object 25) (mpm #f scheme-object 33)
(name #f scheme-object 41) (fields #f scheme-object 49)
(flags #f scheme-object 57) (uid #f scheme-object 65))

A

base-rtd # 72 -1 0 $base-rtd 0 $base-rtd

RTD parent size pm mpm name fields flags uiD

Fig. 1. The base RTD.

base-rtd
((name #f scheme-object 9) (r #f scheme-object 17)
(g #f scheme-object 25) (b #f scheme-object 33))
color-rtd #f 40 -1 0 color 0 #{color}
RTD parent size pm mpm name fields flags uiD

Fig. 2. The color RTD.

A

base-rtd

color-rtd

color record red 255 0 0

RTD name r g b
Fig. 3. A color record.

The structure of a color record can be seen in Figure 3. As expected, the structure of the
color record is similar to the structure of the RTDs that we have already seen, since RTDs
are records. The color record has five total slots, one for the RTD pointer and one for each
of the four fields: name, r, g, and b. The color record in the example is the color record
for red, where the name is the Scheme symbol red, the r field contains 255, indicating
maximum red saturation, and the remaining fields are O indicating no saturation of green
or blue.

Figure 4 shows the RTD for the web-color record type. The web-color record type
inherits from the color record type, so the parent field has a pointer to the color RTD.
The RTD slot for the web-color record type is still the base RTD. The fields field of
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base-rtd
((name #f scheme-object 9) (r #f scheme-object 17)
(g #f scheme-object 25) (b #f scheme-object 33)
(hex-color #f scheme-object 41))
web-color-rtd 48 -1 0 color 0 #{color}
RTD parent size pm mpm name fields flags uiD
Fig. 4. The web-color RTD.
base-rtd
color-rtd
web-color-rtd
web color record red 255 0 0 #FF0000

RTD name r g b hex-color

Fig. 5. A web-color record.

the web-color record contains the precalculated locations the full set of fields, both those
from the color record type and the web-color record type. This was a somewhat arbitrary
design decision to simplify various operations; the fields field could instead hold only
entries for the child fields.

An example web-color record can be seen in Figure 5. This record has a slot for the
RTD, a slot for each of the four fields of its parent, and a slot for its single additional field,
the hex-color field. The record hierarchy is entirely captured by the structure of the RTD,
so there is no need for any additional slots in the record representation. Since the record
system supports only single inheritance, fields inherited from a parent RTD share the same
memory layout as the records of the parent RTD. This allows accessors generated for the
parent to access fields of the child type, without translating the field offsets. The example
web-color record is also for the color red, with the additional hex-color field filled with
the string #FF0000.
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i

base-rtd
((a #t float 9) (b #t integer-32 13)
(c #t scheme-object 17) (d #t scheme-object 25))
EX1-rtd #f 32 13 12 EX1 0 #HEX1}
RTD parent size pm mpm name fields flags uiD

Fig. 6. The EX1 RTD.

In these examples, all of the fields have been immutable Scheme object fields, so the
Scheme object mask (pm), mutable Scheme object field mask (mpm), mutability flag, and
field type are the same in all record types and fields. Figure 6 shows the example from
Section 3. The first difference between the EX1 RTD and the other RTDs we have looked
at is the Scheme object mask. In the case of the EX1 RTD the mask is 13 or 1101 in binary.
The bit mask can be read from right to left, with the right most 1 corresponding to the first
machine-word-sized slot, which holds the RTD. The bit is set (1) to indicate the machine-
word sized slot contains a Scheme object and unset (0) to indicate it contains foreign
scalar data. Since the RTD is a Scheme object, it is marked with a 1. The second machine-
word-sized slot holds both the float field a and the integer-32 field b. This is because
these numbers were generated on the 64-bit version of our system, where the float and
integer-32 can be packed into the same 64-bit word. The next two 1s correspond to the
fields c and d which are both Scheme object fields.

The mutable Scheme object field mask is also different from our first two example RTDs.
The value is 12 or 1100 in binary. Here, the first slot, which contains the RTD, is marked as
0 because it is immutable. The second slot, which contains the a and b fields is also marked
as 0, because while it contains two mutable fields, these fields contain foreign data. The
third and forth slots, which contain the c and d fields, are both marked with 1, because
they contain mutable Scheme objects. The Scheme object field mask and mutable Scheme
object field mask are used by the garbage collector, as we discuss in Section 5.

Figure 7 shows an example of an EX1 record. The record has four machine-word-sized
slots, one for the RTD, one shared by the a and b fields, one for the c field, and one for the
d field. Here, the a field contains the raw floating point number 4.75, the b field contains
the raw 32-bit integer number 100, the c field contains a pointer to the Scheme string
"bob", and the d field contains the Scheme object #f. Scheme object fields are always
aligned in the machine-word-sized slots, because they are always represented by a tagged
machine-word pointer.

5 Garbage collection of record types

A discussion of the full storage management system is beyond the scope of this article.
It is useful to understand the basics, however, in order to better illustrate how records are
handled within the garbage collector. Our system uses a generational, copying garbage
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ol

base-rtd
EX1-rtd
Ilbob"
EX1 record 4.75| 100 l #f
RTD a b c d

Fig. 7. An EX1 record.

collector. New objects are allocated in a single, per thread, allocation area,” which allows
efficient inline, lock-free allocation. The garbage collector is triggered asynchronously
once a user-definable amount of allocation has occurred. When the garbage collector runs,
objects in the common allocation area are separated into different heap segments based on
the object type or properties of the object type (Dybvig et al., 1994). A dirty vector is used
to track cross generational links that lead from an older generation to a newer generation.
These “reverse” generational links can exist only in Scheme objects with mutable fields,
such as pairs, vectors, and records with mutable Scheme object fields.

When collecting a record, the garbage collector uses the Scheme object field mask (pm)
to determine which fields contain Scheme objects, and hence which contain pointers that
must be traced during the garbage collection process. The Scheme object mutable field
mask (mpm) determines which fields that contain Scheme objects are mutable, and hence
which could be added to the dirty vector. The garbage collector also uses these two bit
masks to determine the segment a record should be copied to.

When the garbage collector determines that a record is live, it is copied into one of four
heap areas, based on the field types and mutability.

Any record can be copied to the impure record area. The collector expects objects in
this area to be record objects that might contain a combination of Scheme object and
scalar foreign data fields, with Scheme object fields that might be mutable. Since the area
generally combines Scheme object pointers and scalar foreign data, the collector must
walk each bit in the Scheme object field mask to determine which “slots” contain Scheme
fields, and should be swept as part of the collection. It must also have a dirty vector to
retain reverse-generational links. This makes this a general, but somewhat inefficient, area
in which to store record objects.

In order to mitigate this inefficiency, certain record objects are placed in one of three
other areas, depending on the properties of the record type. When a record object contains

2 1In the single-threaded version there is a single new-object allocation area; in the multi-threaded version, each
language-level thread corresponds to an operating-system thread with its own allocation area.
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a mix of Scheme object and foreign data fields, and the Scheme object fields are all
immutable, the record object is stored in the pure record area. The collector must still
use the Scheme object field mask to determine which “slots” should be swept, but it no
longer needs a dirty vector, since the area cannot contain reverse generational links.

When a record contains only Scheme object fields and one or more of those fields is
mutable, the record object is put in the impure area. Since all of the fields are Scheme
objects, the collector can simply sweep all of the pointers in this area. Other Scheme objects
that contain only Scheme objects, such as pairs, can also be stored in this area. This area
requires a dirty vector, since it can contain reverse generational links.

When a record contains only Scheme object fields and all of the fields are immutable,
it is stored in the pure area. This is the most efficient place to store records, since all of
the “slots” are known to be Scheme objects and, hence, can be swept without checking the
Scheme object field mask. There is also no need for a dirty vector, since the area cannot
contain reverse generational links.

The garbage collector uses the Scheme object field mask (pm) to determine whether a slot
contains Scheme object data. When a field contains Scheme object data, the field is treated
as any other Scheme object, and if the Scheme object is a pointer, i.e., not an immediate
value, it must be followed during the garbage collection process, since it is still live and
needs to be copied into the new generation, and the pointer updated to point to the new
location of this Scheme object. When a slot in the record is marked as a foreign data type,
the value is simply copied to the new location of the record. The mask serves an important
purpose, because without it a slot in the record might be mis-identified as a Scheme object,
causing the garbage collector to attempt to follow an invalid Scheme object pointer.

When older-generation impure-record areas are marked in the dirty vector as possibly
containing reverse generational pointers and scanned by the collector, the collector uses the
mutable Scheme object field mask (mpm) in each scanned record object’s RTD to determine
which fields to trace.

6 Reading and writing records

Like most built-in Scheme objects, records and RTDs can be written via the Scheme printer
and read via the Scheme reader. Records written by the printer can be read by the reader
only when the RTD for the record is loaded and attached to the same UID that was used
when the record was written. This is because a record instance written by the printer
includes only the record fields and the UID of the record type and not the RTD itself.
Our system also provides a mechanism that allows Scheme records to be written with a
programmer-defined writer procedure.? The default record writer prevents an RTD written
using the printer from being read with the reader to avoid potential problems of reading
machine specific information into a different version of Scheme or a Scheme running on a
different machine type, which might require different machine specific information.

Our system also provides a method for writing Scheme data in binary form through the
fast loading (FASL) format. Records that are written through the FASL format can always

3 Tt is often helpful to define a record writer to hide some fields or to format the record in some special way, even
though the record can no longer be recreated by the Scheme reader.
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be read in using the FASL reader, because the RTD is also written out to the file. The
FASL format contains information about the version and machine type of the Scheme that
created the file, which is what enables us to write the machine-specific information about
an RTD to the file. If more than one record instance of the same record type is written to
the file, the RTD is written to the file only once—just like any other object with multiple
occurrences. When a record is loaded through the FASL system, and its RTD is already
loaded in the current Scheme system, it is checked for compatibility but not duplicated.
The UID attached to each RTD makes this possible and only nongenerative records have
the potential to have conflicting definitions attached to the same name. If a nongenerative
record has changed between Scheme sessions and a data file with an older format is loaded,
the compatibility check causes an exception to be raised.

7 An efficient procedural implementation

The layout of RTDs and records is just one part of building an efficient run time for
the record system. Record constructor, predicate, accessor, and mutator procedures must
also be written to ensure efficiency. When an RTD is constructed, the implementation
precalculates record sizes and field offsets to avoid repeating these calculations each time a
record instance is created or a field is accessed or mutated. It also special-cases the creation
of record constructors with just a few arguments to avoid the use of “rest” argument lists
and apply.

The first step in creating a record type is to create the record-type descriptor (RTD). The
make-record-type-descriptor procedure begins by checking that the newly specified
record type is valid. If the record type is nongenerative, this includes checking to see if
the RTD already exists. If the RTD exists, the arguments are checked to ensure the RTD
matches those specified. If the RTD does not exist or the record type is generative, a new
RTD must be created. If a parent RTD is specified, the inheritance hierarchy is traversed to
gather the full field list for the new record type. Once the full field list is known, the total
size of the record type and the byte offset for each field is calculated. This information is
used to fill in the fields of the RTD discussed in the previous section.

The make-record-constructor-descriptor procedure is used to create a record-
constructor descriptor (RCD) from an RTD. It first checks that it is given a valid RTD and
that the fields of the RTD are all Scheme object fields. If the record type contains foreign
data type fields, an RCD cannot be created, but a constructor can be made directly with an
extended version of the record-constructor procedure that operates on either an RTD
or an RCD. When a parent RCD is specified, it also checks that it is an RCD for the parent
RTD, and that a protocol procedure is also specified. The RCD is represented by a record
and contains the RTD, parent RCD, and protocol.

Generating the record constructor procedure is one of the more complicated parts of
implementing the record system. The combination of protocols and inheritance means that
the constructor must first gather up the values for all of the fields by calling each protocol
procedure in the hierarchy in turn, then construct the new record instance, and finally return
the record instance through each protocol procedure. The implementation for this is shown
in Figure 8.
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(define record-constructor
(lambda (rcd)
(unless (rcd? rcd)
(error ’record-constructor "not a record constructor descriptor" rcd))
(let* ([rtd (rcd-rtd rcd)] [protocol (rcd-protocol rcd)]
[flds (rtd-flds rtd)] [nflds (length flds)])
(define rc
(case nflds
[(0) (lambda () ($record rtd))]
[(1) (lambda (t0) ($record rtd t0))]
[(2) (lambda (tO0 t1) ($record rtd tO t1))]
[(3) (lambda (t0 t1 t2) ($record rtd tO0 t1 t2))]
[(4) (lambda (tO t1 t2 t3) ($record rtd tO t1 t2 t3))]
[(6) (lambda (tO t1 t2 t3 t4) ($record rtd tO t1 t2 t3 t4))]
[(6) (lambda (tO t1 t2 t3 t4 t5) ($record rtd t0 t1 t2 t3 t4 t5))]
[else (lambda xr
(unless (fx=7 (length xr) nflds)
(error #f "incorrect number of arguments" rc))
(apply $record rtd xr))1))
(if protocol
(protocol
(cond
[(rtd-parent rtd) =>
(lambda (prtd)
(lambda pp-args
(lambda vals
(let £ ([prcd (rcd-prcd rcd)] [prtd prtd]
[pp-args pp-args] [vals vals])
(apply
(cond
[(and prcd (rcd-protocol prcd)) =>
(lambda (protocol)
(protocol
(cond
[(rtd-parent prtd) =>
(lambda (prtd)
(lambda pp-args
(lambda new-vals
(f (rcd-prcd prcd) prtd pp-args
(append new-vals vals)))))]
[else (lambda new-vals
(apply rc
(append new-vals vals)))]1)))]
[else (lambda new-vals
(apply rc (append new-vals vals)))])
pp-args)))))]
[else rcl))
rc))))

Fig. 8. The record-constructor procedure.
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First, a procedure for constructing the final record instance is defined as rc. If the
number of fields is small (six or fewer), it creates this procedure with an exact number
of arguments and calls the internal record constructor $record with the RTD and the
values of the fields. If the number is larger than six, it defaults to using a rest argument
and calls $record with apply. This procedure also checks to make sure the correct number
of arguments are received. If the RCD does not specify a protocol, rc is the constructor.
Otherwise, the protocol procedure must be called. If no parent RTD is specified, the rc
is passed to the protocol as the procedure to construct the final record. If a parent RTD is
specified, the procedure must traverse each level of the inheritance hierarchy until it reaches
the base of the hierarchy or finds a parent that does not specify a protocol. At each stage of
this recursion the parent protocol is called on a constructed procedure until values for all
the fields in the record type are gathered and the record instance can be constructed. The in-
ternal record-creation primitive $record is responsible for allocating and filling the fields.

When a record type has foreign data type fields, an RCD cannot be created for the record
type. Instead, the record constructor procedure is generated directly from the RTD. This
is similar to the internal rc procedure in Figure 8, since without the RCDs, there are no
protocols. However, any foreign data type field needs to be checked to ensure that the
constructor argument is a Scheme object that can be converted into the appropriate type
and then the conversion must take place. This is handled by checking each argument that
fills a foreign field and performing the conversion before the field value is set.

The record-accessor procedure takes an RTD and an index into the field list con-
structed by make-record-type-descriptor. It uses the find-f1d helper to find the
field offset as shown in Figure 9. It then constructs the accessor procedure using the
field RTD to check that the argument to the accessor is a valid record instance and the
precalculated field offset to reference the field. The type check uses an extended version of
record? that takes an RTD as a second argument. The find-f1d helper checks that the
first argument to record-accessor is an RTD and that the index is a non-negative fixnum.
The list of fields is then retrieved from the RTD, and if there is a parent RTD, the index is
adjusted to select the correct field from the child fields. The field offset is precalculated by
make-record-type-descriptor so it is simply retrieved from the field descriptor in the
RTD with the £1d-byte accessor. The accessor procedure returned has the RTD and the
offset in its closure, so it does not need to calculate it when it is called.

Like the record-accessor procedure, the record-mutator procedure requires in-
formation about the field. It uses the find-f1d helper to find the field, but must perform
an additional check to ensure the field is mutable before returning the mutator procedure.
It also replaces the mem-ref operation of the record-accessor with a mem-set!. The
implementation of this is in Figure 10.

The record-accessor and record-mutator for a foreign data type field are slightly
more complicated than those for Scheme object fields. The accessor must convert the
foreign data representation into a Scheme object representation. The mutator must check
that the new value is a valid Scheme object for the foreign field type and convert the value
to the foreign representation. The conversions are managed through the foreign reference
and foreign set procedures (Dybvig, 2009).

The record-predicate procedure uses the RTD to determine if it should call the built-
in $sealed-record? predicate or the record? predicate for the RTD. Its implementation
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(define find-fld
(lambda (who rtd idx)
(unless (record-type-descriptor? rtd)
(error who "not a record type descriptor" rtd))
(cond
[(and (fixnum? idx) (£x>=7 idx 0))
(let ([flds (rtd-flds rtd)] [prtd (rtd-parent rtd)])
(let ([real-idx (if prtd (fx+ (length (rtd-flds prtd)) idx) idx)])
(when (fx>=7 real-idx (length f1ds))
(error who "invalid field index for type" idx rtd))
(list-ref flds real-idx)))]
[else (error who "invalid field specifier" idx)])))
(define record-accessor
(lambda (rtd idx)

(let ([offset (fld-byte (find-fld ’record-accessor rtd idx))])
(lambda (x)

(unless (record? x rtd) (error #f "incorrect type" x rtd))
(mem-ref x offset)))))

Fig. 9. The record-accessor procedure and the find-£f1d helper.

(define record-mutator
(lambda (rtd idx)
(let ([fld (find-fld ’record-mutator rtd idx)])
(unless (fld-mutable? f1d)

(error ’record-mutator "field is immutable" idx rtd))
(let ([offset (fld-byte fld)1)
(lambda (x v)
(unless (record? x rtd) (error #f "incorrect type" x rtd))
(mem-set! x offset v))))))

Fig. 10. The record-mutator procedure.

(define record-predicate
(lambda (rtd)
(unless (record-type-descriptor? rtd)
(error ’record-predicate "not a record type descriptor" rtd))
(if (record-type-sealed? rtd)
(lambda (x) ($sealed-record? x rtd))
(lambda (x) (record? x rtd)))))

Fig. 11. The record-predicate procedure.

is shown in Figure 11. The $sealed-record? predicate is potentially faster, since it can
perform a simple eq? check between the RTD in the record instance and the RTD supplied.
The record? predicate must take into account the possibility of inheritance. The record
predicate returned has only the RTD in its closure.

This implementation is about as efficient as we can make it without further compiler
optimizations. Record accessors and mutators use precalculated indices. Constructors for

smaller records are special-cased to avoid some rest-list and apply overhead. Yet, many
sources of overhead remain.
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8 Compile-time optimization of procedural records

A constructor, predicate, accessor, or mutator created by the procedural interface must be
called via an anonymous call involving extraction of a code pointer from the procedure
and an indirect jump that together result in additional memory traffic and a potential
pipeline stall. A record predicate, accessor, or mutator must also extract the RTD and
(for an accessor or mutator only) the field index from its closure, resulting in additional
memory traffic. Record construction with default protocols similarly requires an indirect
procedure call to the constructor procedure and a memory reference to retrieve the RTD. A
constructor with programmer-supplied protocols additionally requires indirect calls to each
of the protocols involved. It also requires nested procedures and rest lists to be created for
each level of inheritance and additional allocation to combine the arguments into a single
list to which rc is eventually applied.

The implementation could special case constructors for records with even more fields,
and it could also special-case accessors and mutators with small field indices to avoid
retrieving the computed index from the closure, but these changes are not likely to have
much impact.

While the procedural implementation is efficient, generating record constructors, pred-
icates, accessors, and mutators at run time inhibits other compile-time optimizations, like
inlining, that can improve the performance considerably. In particular, we would like the
record system to provide performance on par with the performance of syntactic aggregate
data types, such as C’s structs.

One approach to these optimizations would be to focus on the syntactic interface and
optimize those record definitions that have a fully syntactic definition. The shape of a
record created entirely with the syntactic interface* is always known at compile time.

This approach would likely handle the majority of R6RS programs, but it would provide
no optimizations for programs that directly use the procedural interface. This also would
not help situations where programmers decide to define their own syntactic interfaces that
expand into the procedural interface.

A better approach is to expand the syntactic interface into the procedural interface and
use compiler optimizations to optimize the procedural interface. To this end, we have
extended our existing source optimizer (Waddell & Dybvig, 1997) to support optimizing
the procedural interface described in this section. The source optimizer performs copy
propagation, constant propagation, constant folding, and aggressive procedure inlining.
The optimizer uses effort and size counters to ensure the pass runs in linear time and
does not excessively expand the code. Constant folding for simple primitives is handled by
calling the built-in primitives at compile time, based on a table of primitives that indicates
when this is possible. For instance, the 1ist-ref primitive can be folded when the first
argument is a constant list, the second argument is a constant fixnum, and performing the
operation does not raise an exception. More complex primitives, i.e., those that require
additional checks on their arguments, generate A-expressions, or can be optimized only in
some specific cases, are handled by a set of primitive handlers.

4 That is, defined using define-reocrd-type with a parent, if any, specified using the parent form and also
defined entirely using the syntactic interface, or a record type defined using the define-record syntactic
form.
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When the shape of a record is known statically, either because it was created through
the syntactic interface, or because it was created using a constant fields vector and constant
parent RTD, the record type can be optimized such that:

record accessors can be reduced to a type check and a single memory reference,
record mutators can be reduced to a type check and a single memory set,

record predicates can be reduced to an inline type check, and

when the record protocol is simple enough, allocation for creating a new record
instance can be performed inline.’

These optimizations allow the Scheme procedural record system to perform on par with
more traditional, purely syntactic aggregate data structures, when the size and layout of
the data structure is known statically. We tested these optimizations over our existing
efficient interface, and found a 21.2% improvement in run-time performance on a set of
benchmarks, with improvements ranging from 0% to 54.4%, largely depending on how
heavily the benchmark made use of the record system. More information about the record
optimizations can be found in our Scheme Workshop paper (Keep & Dybvig, 2012).

9 Extending the base RTD

Using records to represent RTDs provides a simple record meta-layer that can be extended
to allow different record systems to be defined, similar to the object-meta-layer in the
Common Lisp Object System (DeMichiel & Gabriel, 1987). The R6RS record system (and
our extensions to it) create new record types by creating a new RTD that has the base RTD
as its RTD field and, when it inherits from an existing record, another RTD as its parent.
Since RTDs are themselves records, we can extend the base RTD to create a new type of
RTD. As with an extension of any other record, the new RTD type has all the fields of an
RTD, with any additional fields needed for the new RTD type. When we create new RTDs
of the new record type, their RTD field is filled with the extended base RTD in place of the
base RTD.

We have used this flexibility to create both an object-oriented programming system
(Waddell & Dybvig, 2004) and a system for representing structured foreign types (Keep &
Dybvig, 2011). The next two sections describe how we extend from the base RTD to create
these two systems.

9.1 An object system based on record types

Before describing the implementation of our object-oriented programming (OOP) system,
it is helpful to understand the basic features it provides. The OOP system is similar to many
OOP languages, such as Java or Ruby, that support single inheritance classes with a base
class, in our case named <root>. Similar to Java, our system also supports interfaces to
allow classes that do not share the same inheritance hierarchy to still implement methods
from the same interface. Interfaces define the set of methods that must be implemented

3 Record access and mutation can be further reduced to a single memory reference or a single memory set, if the
record type of the object is known statically.
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when a class implements this interface. Interfaces can also inherit, using single inheritance,
from existing interfaces. A class can inherit only from another class and an interface can
inherit only from another interface.

Each class definition creates a constructor for the class, a predicate for the class, a set
of accessors for the public instance variables of the class, a set of mutators for the public
mutable instance variables of the class, and a set of user defined methods. For instance, we
can create a class to store two-dimensional points as follows:

(define-class (<point-2D> x y) (<root>)
(ivars [public x x] [public y yl)
(methods
[point=7 (o) (and (= x (<point-2D>-x o)) (= y (<point-2D>-y 0)))]
[point+ (o)
(make-<point-2D> (+ x (<point-2D>-x 0)) (+ y (<point-2D>-y 0)))]
[point- (o)
(make-<point-2D> (- x (<point-2D>-x o)) (- y (<point-2D>-y 0)))]1))
The define-class form defines a new class named <point-2D>. The constructor expects
two arguments, x and y, specified immediately after the name: (<point-2D> x y). The
<point-2D> class does not inherit from any other class, so it specifies <root> as its base
class.® The class specifies two public instance variables x and y in the ivars clause that
take their values from the x and y values supplied to the constructor in the ivars clause.
The class also specifies the point=7 method for comparing this point to another point,
the point+ method for adding this point to another point, and the point- method for
subtracting another point from this point. All three methods expect a single additional
argument representing the other point involved in the operation.
We can use our newly defined class to perform calculations on our points:

(define ptl (make-<point-2D> 1 1))

ptl = #<instance of <point-2D>>
(<point-2D>7 ptl) = #t
(<point-2D>-x ptl) = 1
(<point-2D>-y pt1l) = 1
(define pt2 (make-<point-2D> 13 5))

(define pt3 (make-<point-2D> 1 1))

(point=? ptl pt2) = #f
(point=7 ptl pt3) = #t
(point=7 pt3 ptl) = #t
(define pt4 (point+ ptl pt2))

(<point-2D>-x pt4) = 14
(<point-2D>-y pt4) = 6
(define pt5 (point- pt2 pt3))

(<point-2D>-x pt5) = 12
(<point-2D>-y pt5) = 4

New instances of the <point-2D> class can be created with make-<point-2D>. The
<point-2D>? predicate tests to see if a Scheme object is an instance of the <point-2D>
class. The <point-2D>-x and <point-2D>-y accessors can retrieve the values of x and y

6 In our system, the base for every class must be specified explicitly, with <root> being the base class in the
system.
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from a <point-2D> object. The methods point=7, point+, and point- each expect the
first argument to be a <point-2D> object and one additional argument, corresponding to
the method definition in the <point-2D> class. The biggest syntactic difference between
our OOP system and languages like Java or Ruby, is the need to explicitly pass the object
to the accessor, mutator, and method procedures.
Classes also support inheritance, so we can define a new class to hold three-dimensional
points as follows:
(define-class (<point-3D> x y z) (<point-2D> x y)
(ivars [public z z])
(methods
[point=? (o) (and (super o) (= z (<point-3D>-z 0)))]
[point+ (o) (make-<point-3D>
(+ x (<point-2D>-x 0))
(+ y (<point-2D>-y 0))
(+ z (<point-3D>-z 0)))]
[point- (o) (make-<point-3D>
(- x (<point-2D>-x o))
(- y (<point-2D>-y o))
(- z (<point-3D>-z 0)))1))
The <point-3D> class inherits from the <point-2D> class. The constructor passes the
x and y arguments along to the constructor for <point-2D>. The <point-3D> adds the
instance variable z to hold the third dimension of the <point-3D> object in the ivars
clause. Since it inherits from the <point-2D> class, the x and y instance variables are also
a part of a <point-3D> object, though they are still accessed using the <point-2D>-x and
<point-2D>-y accessors, as we can see in the point+ and point- methods.
The <point-3D> class also overrides all three of the methods defined in the <point-2D>
class, using the super keyword to call point=? from <point-2D> to compare the values
in the x and y instance variables before checking the value in the z instance
variable.
With the <point-3D> class defined, we can now create <point-3D> objects:

(define pt1-3d (make-<point-3D> 1 1 1))

pt1-3d = #<instance of <point-3D>>
(<point-2D>7 pt1-3d) = #t
(<point-3D>?7 pt1-3d) = #t
(<point-2D>-x pt1-3d) = 1
(<point-2D>-y pt1-3d) = 1
(<point-3D>-z pt1-3d) = 1
(define pt2-3d (make-<point-3D> 13 5 9))

(define pt3-3d (make-<point-3D> 1 1 1))

(point=? pt1-3d pt2-3d) = #f
(point=? pt1-3d pt3-3d) = #t
(point=? pt3-3d pt1-3d) = #t

(define pt4-3d (point+ pt1-3d pt2-3d))
(<point-2D>-x pt4-3d) = 14

(<point-2D>-y pt4-3d) = 6
(<point-3D>-z pt4-3d) = 10
(define pt5-3d (point- pt2-3d pt3-3d))
(<point-2D>-x pt5-3d) = 12
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(<point-2D>-y pt5-3d) = 4
(<point-3D>-z pt5-3d) = 8

The <point-3D> objects work similarly to <point 2D> objects with the x and y instance
variables accessed through the <point-2D>-x and <point-2D>-y accessors and the z
field accessed through the <point-3D>-z accessor. A <point-3D> object can also be
treated as a <point-2D> object, as can be seen from how the <point-2D>7 predicate
responds when given a <point-3D> object. This might not be exactly the functionality
we want, however. For instance, it sets up the potentially confusing situation where a
<point-2D> object judges a <point-3D> object equal to the <point-2D> object, while
the <point-3D> object raises an exception when the point=7 method is called with a
<point-2D> object.

(point=7 ptl pt1-3d) = #t
(point=7 pt1-3d ptl) =
Exception in <point-3D>-z: not applicable to #<instance of <point-2D>>

The <point-3D> version of the point=7 method could be altered to operate the same way
as the <point-2D> version of the method, but we may not want a two-dimensional point to
ever be equal to a three-dimensional point. However, we might still want to use point="7,
point+, and point- as the names of the fields, so that we can build functionality that
works over both two-dimensional and three-dimensional points. This is where an interface
could be used instead:

(define-interface point [point=? (o)] [point- (o)] [point+ (o)1)
(define-class (<point-2D> x y) (<root>)
(ivars [public x x] [public y yl)
(implements point)
(methods
[point=7 (o) (and (= x (<point-2D>-x 0)) (= y (<point-2D>-y 0)))]
[point+ (o)
(make-<point-2D> (+ x (<point-2D>-x 0)) (+ y (<point-2D>-y 0)))]
[point- (o)
(make-<point-2D> (- x (<point-2D>-x 0)) (- y (<point-2D>-y 0)))]1))
(define-class (<point-3D> x y z) (<root>)
(ivars [public x x] [public y y] [public z z])
(implements point)
(methods
[point=7 (o) (and (= x (<point-3D>-x 0))
(= y (<point-3D>-y o))
(= z (<point-3D>-z 0)))]
[point+ (o) (make-<point-3D> (+ x (<point-3D>-x o))
(+ y (<point-3D>-y o))
(+ z (<point-3D>-z 0)))]
[point- (o) (make-<point-3D> (- x (<point-3D>-x o))
(- y (<point-3D>-y o))
(- z (<point-3D>-z 0)))1))

Using the point interface, both the <point-2D> and <point-3D> objects can implement
the same interface for checking the equivalence of points, adding points, and subtract-
ing points, without having <point-3D> inherit from <point-2D>. It is worth noting
that object equivalence is a well known problem in object-oriented programming (Bloch,
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p ((parent #f scheme-object 9) (size #f scheme-object 17)
base-rtd (pm #f scheme-object 25) (mpm #f scheme-object 33)
(name #f scheme-object 41) (fields #f scheme-object 49)
(flags #f scheme-object 57) (uid #f scheme-object 65)
(interfaces #f scheme-object 73))

?

~ _ _ root- #root-
root-vtable-rtd 80 1 0 vtable-rtd 1 vtable-rtd}
RTD parent size pm mpm name fields flags uiD

Fig. 12. Root vtable RTD.

2008), and for a given program, we might desire a different notion of equivalence for this
case.

9.1.1 Object, class, and interface representations

This contrived example illustrates the use of classes, inheritance, and interfaces in our OOP
system. With this understanding in hand, we are ready to discuss the implementation. The
OOP system has three types of items: objects, classes, and interfaces.

We would like to keep the representation of our objects as minimal as possible to avoid
storing redundant pointers in the object data structure. Since the values of the instance
variables are the only things that differ from one object to another object of the same
class, it makes sense to store only the values of these instance variables along with some
representation of the object’s class. This is similar to our record representation where the
RTD represents the record type and a record stores a pointer to the RTD along with a slot
for each field. However, unlike the record system, we also need a place to store pointers to
the implementations of each method that operates on this object, and there is currently no
place to store this information in the RTD. In object-oriented languages, this information
is often stored in the virtual method table (vtable).

Fortunately, we can extend the base RTD to create a new kind of RTD that can be the
basis for our object vtable. We do this by creating a new record that inherits from the
base RTD. Figure 12 shows the root vtable RTD. The root vtable RTD adds a new field,
interfaces to the base RTD fields, since every vtable RTD needs an interfaces field.
When a new class is created, a new vtable RTD is created that extends the vtable RTD for
the base class. The <root> object uses the root vtable RTD as its vtable RTD.

Figure 13 shows the RTD for the first version of the <point-2D> class. The vtable RTD
for the <point-2D> class is a normal record RTD that inherits from the root vtable
RTD. It adds the fields point=7, point+, and point- to the fields list of the root vtable
RTD. These additional RTD fields are filled with the methods defined for the <point-2D>
class.

The vtable RTD specifies the fields of an object RTD, and the hierarchy of objects is
handled through the record inheritance system in the object RTD’s parent field. A class
that inherits from the <root> class has the special $instance record type as the parent
RTD. A class that inherits from another class with have that objects RTD as its parent.
Thus, in the first example the parent of the <point-2D> RTD is the $instance RTD, and
the parent of the <point-3D> RTD is the <point-2D> RTD.
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base-rtd

((parent #f scheme-object 9) (size #f scheme-object 17)
(pm #f scheme-object 25) (mpm #f scheme-object 33)
(name #f scheme-object 41) (fields #f scheme-object 49)
(flags #f scheme-object 57) (uid #f scheme-object 65)
root-vtable-rtd (i
(i

interfaces #f scheme-object 73) (point=? #f scheme-object 81)
point+ #f sceme-object 89) (point- #f scheme-object 97))

[

. point-2D #{<point-2
<point-2D> vtable RTD 104 -1 7168 | o e 1 D:—wable}
RTD parent size pm mpm name fields flags uib

Fig. 13. The <point-2D> vtable RTD.
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base-rtd

$instance RTD #f 8 -1 0

$instance 0 #{$instance}

RTD parent size pm mpm name fields flags uiD

Fig. 14. The $instance RTD.

base-rtd

root-vtable-rtd ‘

S$instance RTD

<point-2D> vtable RTD ‘

((x #t scheme-object 9)
(y #t scheme-object 17))

| i
RTD parent size pm mpm name fields flags UID interface point=?

Fig. 15. The <point-2D> RTD.

|

<point-2D> RTD ‘ | ‘ 80 | -1 | 0

po“:t(fD- *("?K‘(:’ZD #<proc> | #<proc> | #<proc>

point+ point-

Figure 14 shows the $instance RTD. Since the <root> class has no instance variables,
the field list is empty.

With the $instance RTD and the <point-2D> vtable RTD, the <point-2D> RTD
shown in Figure 15 can be created. The <point-2D> RTD contains the extra interfaces
field, along with the point=7, point+, and point- fields. The interfaces field stores a
list of interface records (discussed later in this section), one for each interface implemented
by this class. Since the first <point-2D> example does not implement any interfaces,
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[<point-2D> vtable RTD |

A
$instance RTD

<point-2D= RTD

<point-2D> object 1 2

RTD X ¥
Fig. 16. A <point-2D> object.

this field contains an empty list. The point=7, point+, and point- fields in the RTD
each hold a pointer to the procedure that implements this method for the class. When one
class inherits from another class, the vtable for the new class inherits from the parent class
vtable RTD, so the fields for each method are in the child class as well. When the child
overrides a method of the parent, it replaces the procedure pointed to by this method entry,
with its own procedure. A call to the super method is handled during the expansion of the
define-class form by looking up the internal name for the super method’s procedure.

Figure 16 shows a <point-2D> object. Since the methods for the <point-2D> object
are stored in the vtable RTD for the object, the <point-2D> object stores only the values
for x and y. In this case, the object stores the values 1 for x and 2 for y.

The representation of objects is the most involved part of the OOP system, but a rep-
resentation for classes and interfaces is still needed. In order to more easily handle inher-
itance, the define-class and define-interface forms both store information in the
compile-time environment. This information is attached to the identifier used as the name
for the class or interface definition. The macros that implement the define-class and
define-interface forms can then look up information for the parent class or interface
when they are expanded. This allows the work of determining the full instance variable list,
method list, vtable RTD for the base class, and initialization information to be completed
at expand time.

A class in the OOP system is represented at compile time by a simple record. The class
record type has nine fields, class formals, base formal bindings, instance variable bind-
ings, method information, vtable RTD, compile-time RTD, vtable expression, interfaces,
initialization procedure.

The class formals field records the formals listed in the class definition following the
name. For instance, in the <point-2D> class the class formals are x and y, and in the
<point-3D> class the class formals are x, y, and z.

The base formal bindings field stores the binding of each base class formal to the
corresponding base class argument. For instance, in the first <point-3D> example, where
it inherits from the <point-2D> class, the x and y listed after the base class identifier are
the base class arguments, while the x and y listed in the class definition for <point-2D>
are the base formals. When a base class itself inherits from a class with arguments, the base
class formals include the entire set of bindings.
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The instance variable bindings contains the full list of bindings between each instance
variable of the object and its initial value. This includes the bindings for the instance
variables of this class, along with the instance variables inherited from its base class. For
instance, the <point-2D> class has two instance variable bindings, one binding instance
variable x to class formal x and one binding instance variable y to class formal y. The
<point-3D> class that inherits from it has the bindings from <point-2D> along with the
binding of instance variable z to class formal z.

The method information stores information about methods, including their public name,
the arity of the method, the original formals list for the method, along with a flattened list
of formals,” and an internal name for the method.

The vtable RTD is the RTD used to represent the object vtable RTD. It is used as the
RTD for the object RTD (as described above).

The compile-time RTD is a compile-time representation of the object RTD. It is used to
precalculate the offsets of instance variables in the object representation, so that references
to instance variables can be rewritten into a low-level reference into the object record. This
compile-time RTD can also be used at run time, but only when the class has no methods
and no interfaces, which need to be filled out in the RTD at run time.

The vtable expression contains the code to build the run-time representation of the object
RTD. When there are no methods and no interfaces, this is simply the quoted compile-time
RTD. When there are interfaces implemented or member methods of the class, these are
recorded in the extra fields of the vtable, as described above.

The interfaces field contains the full list of implemented interface identifiers. This in-
cludes both the interfaces implemented by this method, as well as those implemented by
any ancestor in the inheritance hierarchy.

The initialization procedure is the code for a procedure that is called to initialize the
fields of a newly created object. This is built by including the initialization code for instance
variables with the initialization procedure for the base class.

Like a class, an interface is represented in the compile-time environment using a simple
record. The interface record type has two fields: an interface RTD field and a method
information field. The interface RTD field stores the RTD for the interface record that
is stored in the interfaces field of a vtable RTD for classes that implement this interface.
The method information field, similar to the class field, stores method name, arity, formals,
a flattened formals list, and an internal name for the method.

9.1.2 Class and interface methods

In our OOP system, each method defined by a class or interface has a corresponding
Scheme procedure through which the method is invoked. These procedures, however,
cannot be redefined each time a class implements an interface or overrides a method, or the
previously defined procedure would be lost. Instead, a Scheme procedure is created only
when a new method is defined by an interface or class. Since a single Scheme procedure
might invoke many different object methods, the implementation of the individual methods
and the implementation of the procedure are kept separate. The Scheme procedure is,

7 The formal list may not be a flat list, if this is a variable arity method.
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hence, simply a wrapper that determines the method to call from the vtable RTD of the
object on which the procedure is invoked. The vtable is represented at compile time using
a simple association list, but could use a hash table if the implemented method lists become
too long.

The wrapper procedure for a class method tests to make sure that the object it is passed
is compatible with this method, then accesses the method in the vtable RTD for the object.
Since the vtable RTD for each class is a record that extends the vtable RTD of its parent
class, the location of the method to call is at the same memory offset for any shared
methods. This is one of the advantages of a single inheritance model. For instance, the
implementation for the point=7 wrapper of the first <point-2D> class is implemented as
follows:

(define point=7
(lambda (self o)
(unless (<point-2D>?7 self)
(errorf ’point=? "not applicable to ~s" self))
((<point-2D>-vtable-point=7 (record-rtd self)) self o)))

The wrapper procedure for an interface method is slightly more involved, since different
classes may implement different sets of interfaces and in different orders. Thus, the first
step of the wrapper procedure is to invoke a common procedure used to locate the interface
record for this method within the vtable. In the current implementation this is a simple
linear search. Once the interface record is located the implementation for the method of this
class can be determined and invoked. For instance, the implementation for the point="7
wrapper of the point interface is implemented as follows:
(define point-iface-lookup
(lambda (who self)
(or (and (record? self)
(let ([rtd (record-rtd self)])
(and (root-vtable-record? rtd)
(exists
(lambda (iface) (point? iface))
(root-vtable-record-interfaces rtd)))))
(error who "not applicable to “s" self))))
(define point=7?
(lambda (self o)
((point-point=7 (point-iface-lookup ’point=? self)) self o0)))

In the interface wrapper method, the exists procedure searches for the first matching
interface in the interfaces field.

The checks performed in both of the point=7 procedures can be avoided, if the compiler
can determine the check is not needed.

9.2 A representation for foreign structured data

The foreign type or ftype system provides a way to interact with foreign data within
Scheme. Ftypes provide a convenient syntactic abstraction for declaring the structure of
foreign data, a set of operators for allocating and manipulating that data, and an efficient
implementation. The syntax supports all standard C data structures, including struct, union,
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array, pointer, function, bit-field, and scalar types, e.g., char, int, double. It also provides
a way to define type aliases. Overall, it is reminiscent of C’s typedef, although it goes
beyond typedef in allowing the specification of endianness and packing. The fields of
an ftype can be accessed individually, or the entire structure can be converted into an S-
expression representation for printing or debugging.

Ftypes can be used with the foreign function interface (FFI) to call functions through the
application binary interface (ABI). This can be particularly useful when a foreign function
takes a pointer to a data structure, or when data is returned through a pointer to a data
structure.

We start with a contrived example that demonstrates several ftype forms. The fun-type
ftype is an example of a function ftype, and the x-type ftype includes the full variety of
ftype forms.

(define-ftype fun-type (function (size_t) voidx*))

(define-ftype x-type
(struct
[a (union
[s (array 4 integer-16)]
[i (endian big (array 2 integer-32))]
[d (endian little double)])]
[b (bits
[x signed 4]
[y unsigned 4]
[z signed 3]
[_ signed 51)]
[c (packed
(struct
[ch char]
[~ integer-8]
[us unsigned-16]))]
[f (x fun-type)]
[next (* x-type)]))

The fun-type defines a function with a size_t argument that returns a void*. The
x-type defines a struct ftype with five fields. The a field is a 64-bit union that can be
accessed as an array of four 16-bit integers through the s field, an array of two big-endian
32-bit integers through the i field, or a single little-endian double value through the d field.
The b field is a 16-bit long bit-field split into the 4-bit signed x field, 4-bit unsigned y
field, and 3-bit signed z field. It also includes five bits of padding. The _ syntax is used
to represent a field that exists only for padding. Padding is needed because fields of the
bits form must total 8, 16, 32, or 64 bits. In a C compiler this would be determined
automatically, but here we decided to put the control of the bit layout for bit fields in the
hands of the programmer, especially since it is unclear what the padding should be if the
endianness of the bit-field is non-native. The need to explicitly specify padding up to the
size of the container is one way that ftype definitions differ from their C equivalents, where
this is managed implicitly. The c field specifies a packed struct with a single character field
ch and an unsigned-16 field us. Since the c struct is packed, it is not automatically
padded to align us on a 16-bit boundary. One byte of padding is explicitly specified to
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ensure us is aligned. The £ field is a pointer to a fun-type. Finally, the next field points
fo an x-type.

Ftype pointers for the fun-type and x-type are created with make-ftype-pointer.
(define my-f (make-ftype-pointer fun-type "malloc"))
(define my-x

(make-ftype-pointer x-type

(foreign-alloc (ftype-sizeof x-type))))

Here, the space pointed to by my-x is allocated from Scheme with foreign-alloc. The
foreign-alloc function allocates memory outside the Scheme heap and is similar to C’s
malloc function. An ftype pointer can also be the result of calling a foreign function, or
might point to a fixed address in memory, such as one mapped for a device.

The ftype-pointer? predicate can identify an object as an ftype and verify that an
ftype pointer has a specified ftype.

(ftype-pointer? my-f) = #t
(ftype-pointer? my-x) = #t
(ftype-pointer? x-type my-x) = #t
(ftype-pointer? x-type my-f) = #f

The fields of my-x can also be set.

(ftype-set! x-type (a d) my-x 2.5)
(ftype-set! x-type (b x) my-x -3)
(ftype-set! x-type (b y) my-x 4)
(ftype-set! x-type (b z) my-x -1)
(ftype-set! x-type (c ch) my-x #\a)
(ftype-set! x-type (c us) my-x 100)
(ftype-set! x-type (£f) my-x my-f)
(ftype-set! x-type (next) my-x (make-ftype-pointer x-type 0))
Once set, these values can be referenced.
(ftype-ref x-type (a i 1) my-x) = 1088
(ftype-ref x-type (b x) my-x) = -3

(ftype-ref x-type (b y) my-x) = 4
(ftype-ref fun-type () my-f) = #<procedure>

The ftype-&ref operation computes a pointer into an ftype structure, effectively pro-
viding controlled pointer arithmetic. The ftype-pointer-address procedure can also
access the memory address.

(define my-int16 (ftype-&ref x-type (a s 3) my-x))

my-int16 = #<ftype-pointer #x9DA7B36>
(ftype-ref integer-16 () my-int16) = 16388

(ftype-pointer-address my-int16) = #x9DA7B36

(ftype-pointer-address my-x) = #x9DA7B30

In addition to accessing elements of my-x individually, the entire structure can be converted
to an S-expression.

(ftype-pointer->sexpr my-x) =

(struct

[a (union
[s (array 4 0 0 0 16388)]
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[i (array 2 0 1088)]

[d 2.5]1)]
[b (bits

[x -3]

[y 41

[z -1]

[- -1
[c (struct

[ch #\a]

[- -]

[us 1001)]

[f (¢ (function "__libc_malloc"))]
[next nulll)

The ftype-pointer-ftype operation retrieves the specification of the ftype.

(ftype-pointer-ftype my-f) = (function (size_t) voidx)
(ftype-pointer-ftype my-x) =
(struct
[a (union
[s (array 4 integer-16)]
[i (endian big (array 2 integer-32))]
[d (endian little double)])]
[b (bits
[x signed 4]
[y unsigned 4]
[z signed 3]
[_ signed 51)]
[c (packed
(struct
[ch char]
[~ integer-8]
[us unsigned-16]))]
[f (x fun-type)]
[next (x x-type)l)

The basic run-time unit of the ftype mechanism is the ftype pointer. Two pieces of informa-
tion are needed for an ftype pointer. One piece is the memory address of the data. The other
piece describes the structure pointed to by the address, referred to as the ftype descriptor
(FTD). For a scalar ftype, this FTD determines how a value of the type is marshaled,
its size in bytes, and its alignment. For structs, unions, arrays, and bit-fields, it contains
information about the memory layout of fields and their types. Information about scalar
and pointer types allows the implementation to ensure safe access to structures pointed to
by an ftype pointer. Information about memory layout allows the implementation to build
efficient access and mutation code.

9.2.1 Implementing ftype descriptors

One way to implement an ftype pointer would be to use a Scheme record with two fields:
an address field and an FTD field.

(define-record-type ftype-pointer (fields address ftd))
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((parent #f scheme-object 9) (size #f scheme-object 17)
_____ pm #f scheme-object 25) (mpm #f scheme-object 33)

name #f scheme-object 41) (fields #f scheme-object 49)

(
. (
base-rtd (flags #f scheme-object 57) (uid #f scheme-object 65)
(
(

stype #f scheme-object 73) (size #f scheme-object 81)
alignment #f scheme-object 89))

base-ftd 96 -1 0 base-ftd 0 #{base-ftd}

RTD parent size pm mpm name fields flags uiD
Fig. 17. The base FTD.

In memory, this ftype pointer occupies three fields: an RTD field holding a record type
descriptor, an address field, and an FTD field. There are two downsides to this representa-
tion. First, ftype pointers need an RTD in addition to the address and FTD, meaning three
words of storage are needed. Second, in our system, addresses outside the fixnum range®
are represented with a bignum. When bignums are used, they must be converted back into
a machine-size word before being passed to a foreign function.

Fortunately, just as we extend RTDs to represent OOP-system vtables, we can also
extend RTDs to represent FTDs, effectively allowing us to combine two fields into one,
and we can use the record system’s support for foreign-type fields to represent the address
as a raw pointer, eliminating the potential costs of bignum addresses. An ftype descriptor
is created by inheriting from $base-rtd to create the base FTD. Figure 17 shows the
base-ftd record. This record extends $base-rtd with stype, size, and alignment
fields. The stype field stores an S-expression representation of the foreign type to support
inspection of an ftype pointer. The size field is used to indicate the size, in bytes, of the
ftype, while the alignment indicates if the scalar field is aligned at 8-bit, 16-bit, 32-bit, or
64-bit boundaries.

9.2.2 Representing ftype forms

The base-ftd is the root of the ftype system, but FTDs representing struct, union, pointer,
array, bits, and scalar types are also needed. Figures 18 and 19 shows the scalar-ftd and
the struct-ftd. The struct-ftd extends the base-ftd with a fields entry to list the
items in a foreign struct. Each entry in the fieldx list contains an identifier with the name
of the field, the offset of the field from the base pointer, and an FTD indicating the type of
the field.

The scalar-ftd extends the base-ftd with a swap? field, used to determine if the byte
order of the scalar is swapped for non-native endianness, and a type field corresponding
to the scalar foreign type it represents, e.g., integer-32, double, char.

The union-ftd, similar to the struct-ftd extends base-ftd with a field* entry to
represent the items in a union. Fields in the union-ftd contain two items: an identifier
with the name of the field and an FTD representing the type of the field. Offsets are not
needed for union fields, since elements of a union occupy the same space in memory.

8 Fixnums are 30 bits on 32-bit platforms and 61 bits on 64-bit platforms.
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((parent #f scheme-object 9) (size #f scheme-object 17)

(pm #f scheme-object 25) (mpm #f scheme-object 33)

(name #f scheme-object 41) (fields #f scheme-object 49)
; \ (

(

(

(

base-rtd

flags #f scheme-object 57) (uid #f scheme-object 65)

stype #f scheme-object 73) (size #f scheme-object 81)
alignment #f scheme-object 89) (swap? #t scheme-object 97)
type #t scheme-object 105))

base-ftd

-

scalar-ftd 112 -1 0 scalar-ftd 0 #{scalar-ftd}

RTD parent size pm mpm name fields flags uiD

Fig. 18. The scalar FTD.

R

base-rtd

((parent #f scheme-object 9) (size #f scheme-object 17)
(pm #f scheme-object 25) (mpm #f scheme-object 33)
(name #f scheme-object 41) (fields #f scheme-object 49)
(flags #f scheme-object 57) (uid #f scheme-object 65)
(
(

stype #f scheme-object 73) (size #f scheme-object 81)
alignment #f scheme-object 89) (field* #t scheme-object 97))

= A

struct-ftd 112 -1 0 struct-ftd 0 #struct-ftd}

base-ftd

RTD parent size pm mpm name fields flags uiD

Fig. 19. The struct FTD.

The bits-ftd also extends base-ftd with a field* entry to represent the items in the
bit-field. It also adds a swap? to indicate if a non-native endianness is used to layout the
bytes of the bit-field. Entries in the bits-ftd fields list contain four items: an identifier
with the name of the field, a flag indicating if the field is signed, the starting bit of the field,
and the ending bit of the field.

The array-ftd extends base-ftd with a 1ength field to record the length of the array
and an ftd field to indicate the type of items in the array.

The pointer-ftd extends base-ftd with an ftd field to indicate the type of the item
pointed to. The ftd field in a pointer is a mutable field to support ftypes with recursive or
mutually recursive structures.

Finally, the function-ftd extends the base-ftd with three fields: a conv field to
store the calling conventions, an arg-typex field to store a list of argument types, and
a result-type to store the result type. The conv field is only needed to support the
Windows operating system, where our system supports the standard calling convention
(__stdcall), the C declaration convention (__cdecl), and the COM calling convention
(—_com). On UNIX-like platforms our system supports only the standard C declaration
style calling conventions used by these operating systems, including Linux, Mac OS X,
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i

base-rtd
((address #f uptr 9))
fptr-rtd #t 16 1 0 fptr-rtd 0 #fptr-rtd}
RTD parent size pm mpm name fields flags uiD

Fig. 20. The base ftype pointer (fptr) RTD.

etc. Together these fields are used by make-ftype-pointer to create foreign-callable
ftype pointers and ftype-ref to create foreign procedures.

9.2.3 Representing packed, unpacked, and endian

The packed, unpacked, and endian forms are not represented by FIDs. Instead, the
packed and unpacked fields determine how the offsets of struct ftypes are calculated. In
an unpacked struct (the default), padding is added to ensure fields are placed along machine
defined alignment boundaries, as specified by the application binary interface (ABI). In
contrast, a packed struct adds no padding, so offsets are calculated based only on field size.
This gives programmers full control over the layout of a struct, but care must be taken not
to violate the host machine’s alignment requirements for retrieving items from memory.

Like the packed and unpacked forms, the endian form is used to determine how
an FTD is constructed. If the endianness is different from the native endianness of the
machine, a scalar field uses the swapped scalar FTD (one with the swap? flag set to #t)
and a bits field has its swap? flag set to #t.

9.2.4 Creating ftype pointers

FTDs represent the structure of an ftype pointer, but an ftype pointer is a record with an
FTD and a single address field. The fptr RTD shown in Figure 20 represents this single-
field record. The fptr record uses the existing record system’s ability to specify the type
of its fields to mark the address field as a raw, machine-word sized integer. This allows
any memory address to be stored in the address field without the potential need to use a
bignum. Both user defined FTDs and the scalar FTDs inherit from this record.

9.2.5 Scalar ftypes

Each scalar type is represented by a scalar-ftd that inherits from the fptr RTD. Fig-
ure 21 shows the FTD for a scalar double on the Intel x86. It is a scalar FTD, so the RTD
field is set to scalar-ftd and it inherits from the fptr RTD. The size and alignment
fields are both set to 8 on Intel 1386 based systems, following the 1386 ABI. Size and align-
ment are set to match the ABI for each supported platform. The double FTD in Figure 21
uses native endianness so the swap? field is set to #£. The type field is set to double. Each
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base-rtd

base-ftd ‘

KNI

((address #f uptr 9)) double

t

scalar-ftd ‘ | ‘ | | fptr-rtd ‘

double-ftd ' ‘ ‘ 16 ‘ 1 ‘ 0 double-rtd double

‘ 0 }o(daub\and)

RTD parent size pm mpm name fields flags uiD stype size alignment swap? type

Fig. 21. The double FTD.

scalar type has corresponding swapped and non-swapped FTDs. The swapped versions
are used when the endianness differs from the native machine endianness. Scalar FTDs
can be broken down into machine-dependent and machine-independent types. The short,
unsigned-short, int, unsigned, unsigned-int, long, unsigned-long, long-long,
unsigned-long-long, char, wchar, float, double, void*, wchar_t, size_t, and
ptrdiff_t types are machine-dependent and correspond to the like-named C types. The
iptr, uptr, fixnum, and boolean types are also machine-dependent, where uptr is an
equivalent to the void* type, iptr is a signed-integer the same size as the uptr, fixnum
is treated as an iptr, but kept in the fixnum range, and boolean is treated as an int
with Scheme #f converted to 0, and all other Scheme values convert to 1. The machine-
independent types are single-float, double-float, integer-64, unsigned-64,
integer-32, unsigned-32, integer-16, unsigned-16, integer-8, and unsigned-
8, where the single-float type corresponds to the 32-bit IEEE single-precision floating
point number, the double-float corresponds to the double precision 64-bit IEEE floating
point number, and the integer and unsigned types represent signed and unsigned integers
of the corresponding sizes.

9.2.6 User defined ftypes

When a new ftype is defined a new FTD specifying its structure is also created. For
instance, a new struct with two double fields is defined as follows:
(define-ftype two-doubles

(struct

[a double]
[b doublel))

This creates the FTD shown in Figure 22. The RTD is struct-ftd, since it is a new
type of struct, and it inherits from double-ftd since its first element is a double. This
illustrates how implicit inheritance in ftypes is implemented utilizing the single-inheritance
mechanism of the existing record system. The size field is 16 bytes, and the alignment
field is 8, indicating it must be aligned on an 8-byte boundary. Again, this follows the ABI
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(struct
[a double]
((address #f uptr 9)) [b double]) (@a0D) (b8 D)

RTD parent size pm mpm name fields flags uID stype size alignment field*

Fig. 22. The FTD for the two-doubles ftype.

two-double-fld‘ ‘ ‘ 16 ‘ 1 ‘ 0 double-rtd

‘ 0 }d(doub\e-rld)

for the Intel i386. The fields list contain two fields: a at offset O with FTD double-ftd
and b at offset 8 with FTD double-ftd.

9.2.7 Constructing ftype pointers

When an ftype is defined, the FTD is attached to the ftype name identifier. Information
about an ftype can be retrieved using this identifier. For instance, ftype-sizeof uses this
identifier to retrieve the size. The make-ftype-pointer form retrieves the FTD to use
as the RTD of a new ftype pointer. Retrieval operations happen at compile time to avoid
run-time overhead, making run-time use of ftype pointers as efficient as possible.

Constructing function ftype pointers requires a little more work since the address ex-
pression can be a string or a procedure. When a string is supplied, make-ftype-pointer
uses the foreign-entry function to look up the entry in a shared object (or dynamically-
linked library on Windows). The foreign-entry function either returns the address of
the entry point of the named foreign function or raises an exception indicating it cannot be
located. The address is stored in the newly created ftype pointer.

When the address expression is a procedure, a new foreign-callable code object is cre-
ated. This creates a wrapper function to marshal arguments from foreign values into a
Scheme representation before calling the procedure. It also marshals the Scheme return
value into a foreign representation. The convention, argument type list, and result type
stored in the function FTD along with the host machine ABI specify how this happens. The
newly created code object is then locked. This prevents the garbage collector from relocat-
ing it when it is expected to be at a given address. Finally, the entry point address of the code
object is stored in the pointer position. This allows pointers to foreign-callable Scheme pro-
cedures to be passed as part of a larger data structure. When a pointer to the code object is
no longer needed, the code object can be extracted via foreign-callable-code-object
and unlocked with the unlock-object function.

9.2.8 Referencing and setting ftype pointers

The ftype-ref, ftype-&ref, and ftype-set! forms allow efficient access to data ad-
dressed by an ftype pointer. To ensure this efficiency, these forms look up the FTD for the
named ftype at compile time and use the accessors list to determine the offset of data to
reference in memory. This means at run time, retrieving the data from memory, can be as
fast as two memory references, one to get the base memory address from the ftype pointer,
and the second to retrieve the data. More memory references are required if the accessor
list includes pointer dereferences, since each deference also needs to be performed to find
the data.
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For instance, recall the x-type example from the start of Section 9.2. In order to access
the third integer-16 stored in the union at the start of the structure we use ftype-ref
as follows.

(ftype-ref x-type (a s 2) my-x)

The ftype-ref macro retrieves the x-type FTD and determines the offset of the third
integer-16 in the s array of the a union to be 4, since it is 4 bytes from the start
of the foreign structure. It also determines the data type of the field is integer-16. It
produces code to verify that my-pointer is an ftype pointer of type x-type and a call to
the internal $fptr-ref-integer-16 primitive. This primitive dereferences the address
from my-pointer and converts the value found there into a Scheme value. The conversion
is needed because our fixnum representation differs from the integer representation used
by the host machine ABI. In the case of a 16-bit integer, this is a simple shift operation. For
larger integers, the size of the integer is checked, and a bignum allocated if the value is too
large to store in a fixnum. For instance, when loading a 32-bit integer on a 32-bit platform
where the fixnum representation is 30 bits wide, a bignum might be needed. Our system
also supports a mode where type checks are disabled. In this mode, the verification step is
eliminated.

Referencing a function ftype is a little more involved than referencing scalar or pointer
fields. When a function is referenced, a new procedure is created to allow Scheme to
call the foreign procedure. A wrapper procedure to marshal Scheme arguments into their
foreign representation is created. The wrapper then marshals the foreign return value into
a Scheme representation. The convention, argument type list, and result type from the
function FTD along with the host ABI are used to determine how this marshaling is
handled.

Setting a field in an ftype structure is similar to referencing a field, except that the
Scheme value supplied is also checked. If the example above had been an ftype-set!
operation it would use the $fptr-set-integer-16 primitive. This primitive checks the
value and marshals it into a foreign representation. This type check is eliminated when
type checks are disabled. Pointers are also set this way by passing an ftype pointer of the
correct type. Only pointer and scalar ftypes can be set.

When the scalar being set or referenced uses an endianness that differs from the native
machine endianness, the bytes are swapped appropriately using a machine instruction for
byte swapping if one exists or performing the shifts and logical ands necessary if not.

Instead of creating new primitives to handle these operations, the ftype system could
have used the existing foreign-ref and foreign-set! procedures to do this work. The
foreign-ref procedure references a data in foreign memory offset from a raw pointer
address, marshaling a foreign scalar data type into the equivalent Scheme representation.
The foreign-set! procedure sets foreign memory for a scalar data type offset from a
raw pointer address, marshaling a Scheme data type into the equivalent scalar foreign data
type. This degrades performance since a raw address is stored in the ftype pointer, and if
this value is outside the fixnum range, a new bignum needs to be allocated for it. Further, the
foreign-ref and foreign-set! operations must check to see if the value is a bignum
and convert it back to a raw address if it is. Adding new primitives avoided the need for
this representation shuffling.
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10 Related work

Ikarus Scheme (Ghuloum, 2008), Larceny (Clinger, 2012), and PLT Racket (Flatt et al.,
2012), all include support for R6RS record types. All three implementations expand the
syntactic interface into the procedural interface. Racket also supports a separate record
system with both syntactic and procedural interfaces that is similar to the R6RS record
system, but in place of protocols provides a number of options for configuring construc-
tors with default field values and field type checks. Similar to the way our system uses
a common record system to support both R6RS records and our older record system,
Racket’s implementation of R6RS records also uses the same underlying representation
as Racket’s structs. In fact, an R6RS record instances created within Racket, responds with
#t to struct?. Racket also includes an object-oriented programming system that extends
from the existing struct support. In this way, Racket’s struct seems to provide a flexible
base similar to our record type system.

Scheme 48 (Kelsey et al., 2008), Chicken (Winkelmann & The Chicken Team, 2012),
and probably many other Scheme implementations provide a set of low-level operators for
constructing a record instance from an RTD and the values of the fields, checking a record
instance type, and referencing and setting record fields using an integer index to indicate
the field position. Scheme 48 and Chicken (via user-committed libraries, or Eggs) support
both higher level procedural and syntactic interfaces built using the low-level operators.

In earlier versions of Chez Scheme, the syntactic record interface expanded into a set
of constructor, predicate, accessor, and mutator procedures defined in terms of a similar
set of (unexposed) low-level operators. These procedures could be inlined by the source
optimizer to produce code similar to that achieved with our new algorithm. Now that the
procedural interface is handled well by the source optimizer, the syntactic interface more
simply and cleanly expands into the procedural interface.

The idea of a procedural record system seems to be unique to Scheme, although there
are several related techniques, particularly in object-oriented languages, for extending ex-
isting classes or creating entirely new classes. In dynamic languages and in languages that
support either run-time evaluation of code or run-time loading of object code, techniques
have also been developed to add new types at run time.

The Clojure language (Hickey, 2012) supports record-style data types with the deftype
and defrecord forms. In both cases, a new type is compiled into Java byte code and
loaded into the currently running Java session. While the records do not support inheri-
tance between record types, there is an additional facility called a protocol” that allows
several record type implementations to share a common interface. Protocols are similar to
interfaces in Java, specifying a set of abstract procedures that must have concrete versions
specified in the record type definition. A protocol also allows records to be used from Java.
Clojure does not currently support a procedural interface for constructing record types.

The SELF language (Ungar & Smith, 1987) is a dynamically typed object-oriented
programming language. Instead of defining objects through classes, new objects are created
by cloning existing objects and extending them to create new objects. This is known
as protocol-based object-oriented programming, and it means that similar to Scheme’s

9 Clojure’s protocols have no relation to R6RS protocols.
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procedural records, new data structures are created at run time. Instead of creating new
objects as stand-alone copies, SELF uses a class-like structured called a map (Chambers
et al., 1989) to store information about the structure of the data type and constant values
shared with other objects with the same map. Together, the objects that share a single map
are referred to as a clone family. Our optimization of generative procedural record types
is similar to SELF’s optimization of maps, in that both commonize access to a field (or in
SELF’s case a slot) by using structure information common across a set of objects. The
SELF optimization is attempting to deal with a more difficult problem though, in that this
common structure must be divined from the actions of protocol cloning and maintained as
an object is extended.

JavaScript has an object system similar to SELF, based on protocols rather than classes.
Because a new property can be added to a JavaScript object at any time, objects are
traditionally implemented using a dictionary data structure, like a hash table, to store the
value of a property. The V8 JavaScript implementation (Google, Inc., 2012), however, takes
a different approach, using hidden classes, similar to SELF’s map, to define the structure
of an object. This allows a property access to be done with a memory reference to a fixed
position from the start of the object, once the object’s hidden class is determined. In order
to ensure efficient property access, V8 compiles the call site for each property reference to
a test that checks to see if the hidden class is the one expected, a jump to handler code if it
is not, or a load of the property from memory. This is similar to record type field references
in our system, where a test is performed to check the record type, with a jump to an error
handler if it does not match, or a load form memory if it does. It is possible in Scheme to
eliminate this type check when the record instance can be determined statically. Property
access is more challenging to keep consistently fast, since several different objects with
the same property name, but different memory layouts, might all flow to the same property
access point. V8 attempts to mitigate this somewhat by dynamically recompiling code
when the hidden object check fails.

The Common Lisp Object System (CLOS) (DeMichiel & Gabriel, 1987) is an object-
oriented programming system for Common Lisp. It provides a def class form for defining
new classes and allows for multiple inheritance from existing classes. Rather than a mes-
sage interface, CLOS uses generic functions that dispatch on the types of their arguments
in order to provide polymorphism over these classes. CLOS is based on a meta-object
protocol that can be used to alter the existing object system and created new or different
object-oriented programming system. The implementation of the R6RS record system
described in this article shares the property of a meta-object protocol, or rather a meta-
record protocol, by defining RTDs as records. This makes it possible to extend from the
base RTD, to treat RTDs as records, and create entirely new record systems on the existing
structure. One such use of this is the ftype system briefly described in Section 9.2 and in
more detail in a previous paper (Keep & Dybvig, 2011).

Smalltalk (Goldberg & Robson, 1983) defines classes using a meta-layer similar to the
RORS record type meta-layer used by our system, and the meta-layer provided by CLOS.
Each time a new class is created in Smalltalk, a new metaclass is also created. This is
a result of all components in Smalltalk being represented by objects. Thus, the class is
itself an object and needs a class, and the metaclass is that class. At the base of this
hierarchy is the Class class, similar to the $base-rtd in our system. In more traditional
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Smalltalk-80 systems, metaclasses are created as anonymous classes and treated more as
part of the system than user-space objects. However, explicit metaclasses (Briot & Cointe,
1989) have also been experimented with to allow for more flexible changes in the class
system.

11 Conclusion

The record type system in Chez Scheme provides an efficient and flexible basis for the
RO6RS record system. The record type representation determines the memory layout of
records when the RTD is created and uses these precalculated offsets when building acces-
sor and mutator procedures. The Scheme object field bit mask and mutable Scheme object
field bit masks are also calculated when the RTD is created and allow the garbage collector
to determine how fields should be handled, without needing to traverse the list of fields
stored in the RTD when a record is swept during the collection process.

Representing RTDs using records provides a record definition meta-layer that allows
other record systems, such as our simple OOP system and the ftype system, to be created
by extending the base RTD to create new types of RTDs with additional fields. As we
saw with the ftype system, the extension that allows foreign data type fields, can be used
to represent things like machine-word sized pointers, without the extra overhead needed
to create a tagged Scheme-object pointer. This allows the accessors of the ftype system
to operate directly on the foreign memory pointer, without the need to convert between a
Scheme representation and the foreign representation.
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