A NOTE ON ARTIN'S DIOPHANTINE CONJECTURE

BY GEORGE MAXWELL

A well known theorem of Hasse [1] says that every quadratic form in at least 5 variables over the field Q_p of *p*-adic numbers has a nontrivial zero. This fact has led Artin to make the conjecture

(C): "Every form over Q_p of degree d in $n > d^2$ variables has a non-trivial zero." However, a counterexample has been provided by Terjanian [2] in the case d=4.

The case d=2 is distinguished by the fact that every quadratic form may be "diagonalized", i.e., assumed to be of the type $\sum a_i X_i^2$. One is therefore led to the weaker conjecture

(C'): "Every form $f = \sum a_i X_i^d$ over Q_p in $n > d^2$ variables has a nontrivial zero in Q_p ,"

which still generalizes Hasse's theorem.

THEOREM. Suppose (p, d) = 1. Then (C') is true.

Proof. We may assume that every $a_i \neq 0$. By a suitable change of variable, f may be written as $f = f_0 + pf_1 + \cdots + p^{d-1}f_d$, where each f_i is of the same type as f but its coefficients are all units. At least one of the f_i will have more than d variables; if we can find a nontrivial zero of it then by setting the other variables equal to zero we shall have a nontrivial zero of f.

So consider a form $f = \sum a_i X_i^d$ in n > d variables such that all the a_i are units. The reduction of f to Z/pZ has a nontrivial zero θ_1 by a theorem of Chevalley [3]. Suppose by induction that we have found nontrivial zeros θ_i of f reduced to Z/p^iZ for $1 \le i \le k$, such that the reduction of θ_i to Z/p^jZ is θ_j whenever i > j. Say $\theta_k = (x_1, \ldots, x_n)$; choose $y_1, \ldots, y_n \in Z/p^{k+1}Z$ such that $\overline{y}_i = x_i$. Let \tilde{a}_i (resp. \overline{a}_i) be the reduction of a_i to $Z/p^{k+1}Z$ (resp. Z/p^kZ). Then $\overline{f}(y_1, \ldots, y_n) = \sum \overline{a}_i x_i^d = 0$ so that $\widetilde{f}(y_1, \ldots, y_n) = \sum \widetilde{a}_i y_i^d$ is in $p^k Z/p^{k+1}Z$; say $f(y_1, \ldots, y_n) = p^k A$. Instead of the y_i we could have chosen $z_i = y_i + p^k t_i$ since $\overline{z}_i = x_i$ also. Now

$$\begin{split} \tilde{f}(z_1,\ldots,z_n) &= \sum \tilde{a}_i (y_i + p^k t_i)^d \\ &= \sum \tilde{a}_i y_i^d + dp^k \sum \tilde{a}_i y_i^{d-1} t_i \end{split}$$

We are trying to make the R.H.S. zero by a suitable choice of t_i ; i.e., solve

$$4^* + d^* \sum a_i^* (y_i^*)^{d-1} t_i^* = 0,$$

where * denotes reduction to Z/pZ.

Received by the editors June 26, 1969.

GEORGE MAXWELL

Since the a_i were units, $a_i^* \neq 0$; since $\theta_1 = (y_1^*, \ldots, y_n^*)$ is nontrivial, at least one of the $(y_i^*)^{d-1} \neq 0$; finally, $d^* \neq 0$ since (p, d) = 1. Therefore a solution exists. We have thus found a zero θ_{k+1} of f reduced to $Z/p^{k+1}Z$ which is compatible with $\theta_1, \ldots, \theta_k$ in the above sense. The sequence $\theta_1, \theta_2, \ldots$ defines a nontrivial zero of fin $Z_p = \lim_{k \to \infty} Z/p^k Z$ and thus in Q_p .

It is easy to see that this proof may be generalized to yield the following

THEOREM. Let K be a field with a discrete valuation v and residue class field \overline{K} such that (char \overline{K} , d)=1. If every form $f = \sum a_i X_i^d$ with coefficients in \overline{K} has a non-trivial zero provided $n > d^k$, then every such form with coefficients in K has a nontrivial zero provided $n > d^{k+1}$.

REFERENCES

1. H. Hasse, Darstellbarkeit von Zahlen durch Quadratische Formen, J. f. reine u. angew. Math. 153 (1923), 113-130.

2. G. Terjanian, Un contre-exemple à une conjecture d'Artin, Comptes Rendus de l'Acad. Sci. Paris 262 (1966), A612.

3. C. Chevalley, *Démonstration d'une hypothèse de M. Artin*, Abh. Math. Sem. Hamburg 11 (1935), 73-75.

QUEEN'S UNIVERSITY, KINGSTON, ONTARIO

120