A NOTE ON ARTIN'S DIOPHANTINE CONJECTURE

BY
GEORGE MAXWELL

A well known theorem of Hasse [1] says that every quadratic form in at least 5 variables over the field Q_{p} of p-adic numbers has a nontrivial zero. This fact has led Artin to make the conjecture
(C): "Every form over Q_{p} of degree d in $n>d^{2}$ variables has a non-trivial zero." However, a counterexample has been provided by Terjanian [2] in the case $d=4$.

The case $d=2$ is distinguished by the fact that every quadratic form may be "diagonalized", i.e., assumed to be of the type $\sum a_{i} X_{i}^{2}$. One is therefore led to the weaker conjecture
$\left(\mathrm{C}^{\prime}\right):$ "Every form $f=\sum a_{i} X_{i}^{d}$ over Q_{p} in $n>d^{2}$ variables has a nontrivial zero in $Q_{p}, "$
which still generalizes Hasse's theorem.
Theorem. Suppose $(p, d)=1$. Then (C^{\prime}) is true.
Proof. We may assume that every $a_{i} \neq 0$. By a suitable change of variable, f may be written as $f=f_{0}+p f_{1}+\cdots+p^{d-1} f_{d}$, where each f_{i} is of the same type as f but its coefficients are all units. At least one of the f_{i} will have more than d variables; if we can find a nontrivial zero of it then by setting the other variables equal to zero we shall have a nontrivial zero of f.

So consider a form $f=\sum a_{i} X_{i}^{d}$ in $n>d$ variables such that all the a_{i} are units. The reduction of f to $Z / p Z$ has a nontrivial zero θ_{1} by a theorem of Chevalley [3]. Suppose by induction that we have found nontrivial zeros θ_{i} of f reduced to $Z / p^{i} Z$ for $1 \leqslant i \leqslant k$, such that the reduction of θ_{i} to $Z / p^{j} Z$ is θ_{j} whenever $i>j$. Say $\theta_{k}=$ $\left(x_{1}, \ldots, x_{n}\right)$; choose $y_{1}, \ldots, y_{n} \in Z / p^{k+1} Z$ such that $\bar{y}_{i}=x_{i}$. Let \tilde{a}_{i} (resp. \bar{a}_{i}) be the reduction of a_{i} to $Z / p^{k+1} Z$ (resp. $Z / p^{k} Z$). Then $\bar{f}\left(y_{1}, \ldots, y_{n}\right)=\sum \bar{a}_{i} x_{i}^{d}=0$ so that $\tilde{f}\left(y_{1}, \ldots, y_{n}\right)=\sum \tilde{a}_{i} y_{i}^{d}$ is in $p^{k} Z / p^{k+1} Z$; say $f\left(y_{1}, \ldots, y_{n}\right)=p^{k} A$. Instead of the y_{i} we could have chosen $z_{i}=y_{i}+p^{k} t_{i}$ since $\bar{z}_{i}=x_{i}$ also. Now

$$
\begin{aligned}
\tilde{f}\left(z_{1}, \ldots, z_{n}\right) & =\sum \tilde{a}_{i}\left(y_{i}+p^{k} t_{i}\right)^{d} \\
& =\sum \tilde{a}_{i} y_{i}^{d}+d p^{k} \sum \tilde{a}_{i} y_{i}^{d-1} t_{i} .
\end{aligned}
$$

We are trying to make the R.H.S. zero by a suitable choice of t_{i}; i.e., solve

$$
A^{*}+d^{*} \sum a_{i}^{*}\left(y_{i}^{*}\right)^{d-1} t_{i}^{*}=0,
$$

where * denotes reduction to $Z / p Z$.

Received by the editors June 26, 1969.

Since the a_{i} were units, $a_{i}^{*} \neq 0$; since $\theta_{1}=\left(y_{1}^{*}, \ldots, y_{n}^{*}\right)$ is nontrivial, at least one of the $\left(y_{i}^{*}\right)^{d-1} \neq 0$; finally, $d^{*} \neq 0$ since $(p, \mathrm{~d})=1$. Therefore a solution exists. We have thus found a zero θ_{k+1} of f reduced to $Z / p^{k+1} Z$ which is compatible with $\theta_{1}, \ldots, \theta_{k}$ in the above sense. The sequence $\theta_{1}, \theta_{2}, \ldots$ defines a nontrivial zero of f in $Z_{p}=\lim _{\leftarrow} Z / p^{k} Z$ and thus in Q_{p}.

It is easy to see that this proof may be generalized to yield the following
Theorem. Let K be a field with a discrete valuation v and residue class field \bar{K} such that (char $\bar{K}, d)=1$. If every form $f=\sum a_{i} X_{i}^{d}$ with coefficients in \bar{K} has a nontrivial zero provided $n>d^{k}$, then every such form with coefficients in K has a nontrivial zero provided $n>d^{k+1}$.

References

1. H. Hasse, Darstellbarkeit von Zahlen durch Quadratische Formen, J. f. reine u. angew. Math. 153 (1923), 113-130.
2. G. Terjanian, Un contre-exemple à une conjecture d'Artin, Comptes Rendus de l'Acad. Sci. Paris 262 (1966), A612.
3. C. Chevalley, Démonstration d'une hypothèse de M. Artin, Abh. Math. Sem. Hamburg 11 (1935), 73-75.

Queen's University, Kingston, Ontario

