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Jacquet modules of the Weil representations and

families of relative trace identities

Zhengyu Mao and Stephen Rallis

Abstract

In this paper we show how to predict relative trace identities from the computation
of Jacquet modules of the Weil representations. Many previously considered special
cases of relative trace identities fit the principle we develop here, including those with
important applications on L-functions. We also show how to prove these identities using
the Weil representation. We give a proof of the relative trace identities between the dis-
tributions on SO(n+ 1, n) and S̃p(m) (n � m). The proof should serve as a model to the
other cases conjectured in the paper.

1. Introduction

Let G and G′ be a dual reductive pair (see [How90]). Let ωψ be the Weil representation of the group
G × G′ (see [Wei64]). Let H ⊂ G be a subgroup, and χ be a representation of H. Then the space
of (H,χ)-covariants of ωψ has a G′-action. A natural question is to describe this G′-module. In the
first part of this paper, we study this question in several cases. It turns out that this question is
closely related to the theory of the relative trace formula. The main goal of the paper is to explore
this relation.

The relative trace formula identities have been studied in many papers. They are a tool in
the theory of Langlands’ functoriality, and recently have found many other applications in number
theory. We study here several families of such identities. We arrive at these identities through
consideration of covariants of the Weil representation. Included in the families are the generalizations
of many cases considered before, including for example the identities conjectured or proved in
[Fli93, FM04, FJ96, Jac87, Mao92, MR99a, MR99b, Zin98]. We will give the proof for one family
of identities. The proof for other families of identities can be done similarly.

1.1 Definition of a distribution
Let F be a number field, with A its adele ring. We use v to denote a place of F . Let G be a reductive
group.

In studying the relative trace formula, one considers a distribution of the following type: for
f ∈ S(G(A)) (the space of Schwartz functions on G(A)), let

IG(f : H1, χ1,H2, χ2) =
∫
H1(F )\H1(A)

∫
H2(F )\H2(A)

Kf (h1, h2)χ1(h1)χ2(h2) dh1 dh2. (1.1)

Here H1 and H2 are two closed subgroups of G, χi (i = 1, 2) is a character of Hi(A) trivial on
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Hi(F ), and Kf (x, y) is the kernel function for the representation ρ(f) acting on L2(G(F )\G(A));
more explicitly

Kf (x, y) =
∑

γ∈G(F )

f(x−1γy).

1.2 Relative trace identity
One of the applications of the relative trace formula is in the study of Langlands’ functoriality
theory. Assume G and G′ are two reductive groups such that there is a homomorphism between
the L-groups of G and G′. Then Langlands’ philosophy predicts that there is a correspondence
between the automorphic representations of G and G′. The method of the relative trace formula
is to establish a relation between two distributions as defined by (1.1) over the groups G and G′.
The spectral decomposition of these distributions will give a correspondence between the automor-
phic representations of G and G′. For an example of such an application, see [Jac87].

The relation between the two distributions is what we call a relative trace identity. Explicitly,
we say there is a relative trace identity

IG(f : H1, χ1,H2, χ2) = IG′(f ′ : H ′
1, χ

′
1,H

′
2, χ

′
2) (1.2)

if the following are true.

a) There exists maps εv : S(Gv) → S(G′
v) for all places v of F .

b) There is a finite set S0 of bad places, such that for any S a finite set of places containing S0,
we have for any f =

⊗
v∈S fv

⊗
v �∈S fv, with fv ∈ S(Gv) when v ∈ S and fv a Hecke function

when v �∈ S, that Equation (1.2) holds for f ′ = εv(fv)
⊗

v �∈S λv(fv). Here λv is the local
Hecke algebra homomorphism between Gv and G′

v given by the Satake isomorphism and the
homomorphism between the L-groups of G and G′.

We will say that f and f ′ match if the identity (1.2) holds for f and f ′.
From the identity (1.2), we can expect (roughly) to get an identity of the following type: For π

of G and π′ of G′ two corresponding cuspidal automorphic representations,∑
{φi}

P (π(f)φi : H1, χ1)P (φ̄i : H2, χ2) =
∑
{φ′i}

P (π′(f ′)φ′i : H ′
1, χ

′
1)P (φ̄′i : H ′

2, χ
′
2), (1.3)

where {φi} and {φ′i} are orthonormal bases of the spaces of π and π′; f and f ′ match, and the
notation P (φ : H,χ) denotes the period integral

P (φ : H,χ) =
∫
H(F )\H(A)

φ(h)χ(h) dh. (1.4)

An identity like (1.3) has other applications. For example it is used in [Guo96] to show that
L(π, 1/2) � 0 for any cuspidal representation π of PGL(2).

1.3 An example
We discuss here a basic example of identity (1.2). Let G = PGL(2) and G′ = S̃L(2) be the double
cover of SL(2). Let H1 be the subgroup of the diagonal matrices in G, and let H ′

1 = H ′
2 = H2 be the

group of upper triangular matrices with unit diagonal in G. We note that there is a homomorphism
from H ′

1 to G′ as the covering splits over this subgroup of SL(2). Thus we may consider H ′
1 = H ′

2

as a subgroup of G′. Let χ1 be a quadratic character χτ of A associated to the quadratic extension
F [

√
τ ]; it can be considered as a character of H1. Fix a non-trivial additive character ψ of A/F .

For

u(x) =
(

1 x
0 1

)
∈ H2,
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let χ2(u(x)) = ψ(x), χ′
1(u(x)) = χ′

2(u(−x)) = ψ(τx/2). In [Jac87], Jacquet showed that there is a
relative trace identity (1.2) for the above choice of data.

In this example, P (φ : H1, χ1) for φ ∈ π is related to L(π⊗χτ , 1/2), while the right-hand side of
(1.3) is related to the ‘Fourier coefficient’ of π′. The identity (1.3) states roughly that L(π⊗χτ , 1/2)
equals the square of the norm of the τth Fourier coefficient of π′. For a more precise statement and
relation with the corresponding result on modular forms, see [KZ81] and [BM04].

A natural question is to generalize this identity. A generalization would have implications in the
identities for the values of L-functions, and problems like Böcherer’s conjecture [Böc86, FS99].

1.4 Orbital integral

One of the difficulties in the theory of the relative trace formula is to determine the choice of data
(Hi, χi) and (H ′

i, χ
′
i) (i = 1, 2). In § 1.6, we suggest a principle of choosing the data in some cases,

which in particular would lead to a generalization of the identity in § 1.3. In this and the next
subsection, we will give some motivation for the principle.

Let us recall how the map εv in condition a of Equation (1.2) is defined. Assume f = ⊗fv, and
the distribution IG(f : H1, χ1,H2, χ2) decomposes into a sum of orbital integrals (see § 5 for an
example) ∑

o∈O
IG(f, o : H1, χ1,H2, χ2) =

∑
o∈O

c(o)
∏
v

IG,v(fv, o : H1, χ1,H2, χ2).

Here O is the set of representatives of orbits, a subset of G(F ); c(o) is a positive coefficient that
equals some volume; IG,v(fv, o : H1, χ1,H2, χ2) is the local orbital integral which takes the form∫

H2,v∩o−1H1,vo\H2,v

∫
H1,v

fv(h−1
1 oh2)χ1(h1)χ2(h2) dh1 dh2.

A similar decomposition holds for IG′(f ′ : H ′
1, χ

′
1,H

′
2, χ

′
2):

IG′(f ′ : H ′
1, χ

′
1,H

′
2, χ

′
2) =

∑
o′∈O′

c(o′)
∏
v

IG′,v(f ′v, o
′ : H ′

1, χ
′
1,H

′
2, χ

′
2).

We will assume there is a bijection ι between the set of orbits O and O′ (for an example where this
is true, see § 4). Then we will define εv by requiring that, for f ′v = εv(fv), the following identity of
orbital integrals holds:

IG,v(fv, o : H1, χ1,H2, χ2) = IG′,v(f ′v, ι(o) : H ′
1, χ

′
1,H

′
2, χ

′
2)∆v(o). (1.5)

Here ∆v(o) is some transfer factor independent of fv, satisfying c(ι(o))
∏
v ∆v(o) = c(o).

If the maps εv exist, and if moreover we have the fundamental lemma, i.e. the identity (1.5)
holds for f ′v = λ(fv) where v �∈ S and fv is a Hecke function, then it follows immediately that the
relative trace identity (1.2) holds. An example of identity (1.5) and the fundamental lemma is given
in §§ 5–7.

1.5 Orbital integral as a linear functional

We consider the orbital integral IG,v(fv, o : H1, χ1,H2, χ2) as a linear functional on S(Gv). Assume
v is a p-adic place. The map

fv(g) →
∫
H1,v

fv(h−1
1 g)χ1(h1) dh1

is a projection from S(G(Fv)) onto indGv
H1,v

χ1 (all inductions are set to be compact inductions in
this paper). Thus for fixed o, the functional IG,v(fv, o : H1, χ1,H2, χ2) gives a linear functional
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IG,v(φv , o : H2, χ2) on the space of indGv
H1,v

χ1, satisfying

IG,v(ρ(h2)φv − χ−1
2 (h2)φv, o : H2, χ2) = 0, ∀φv ∈ indGv

H1,v
χ1,

where ρ is the right regular representation.
Thus the local orbital integral is a linear functional on the set of covariants indGv

H1,v
χ1[H2,v, χ

−1
2 ].

Here we adopt the following notations: for a space of representation E of ρ of G, for (H,χ) as before,
let E(H,χ) be the space spanned by ρ(h)v − χ(h)v, v ∈ E,h ∈ H; let E[H,χ] = E/E(H,χ).

A similar argument works for local orbital integrals of G′. The identity (1.5) is a compar-
ison between linear functionals on the space indGv

H1,v
χ1[H2,v, χ

−1
2 ] and linear functionals on the

space indG
′
v

H′
1,v
χ′

1[H
′
2,v, χ

′−1
2 ]. To make such a comparison possible, it is natural to choose the data

(Hi, χi,H
′
i, χ

′
i) (i = 1, 2) so that there is an isomorphism

indGv
H1,v

χ1[H2,v, χ
−1
2 ] ∼= indG

′
v

H′
1,v
χ′

1[H
′
2,v, χ

′−1
2 ]. (1.6)

In the next subsection, we describe how to arrive at such a choice of data in the cases when G,G′

is a dual reductive pair.

1.6 The case of a dual pair
We continue to consider the local situation; fix a p-adic place v, and drop it in the notations. Assume
now that G,G′ is a dual reductive pair inside a metaplectic group S̃p(M) for some M . Fix a non-
trivial additive character ψ of A/F . Let ωψ be the local Weil representation of S̃p(M) associated
to the character ψ. It acts on the space of Schwartz functions S(V ) on an M -dimensional space V .

Let H be a closed subgroup of G, with χ its character. We consider the space ωψ[H,χ]. The group
G′ acts on this space via the Weil representation. Similarly if H ′ is a closed subgroup of G′ with
character χ′, we can define a representation space ωψ[H ′, χ′] of G. In the first part of this paper, we
will prove some isomorphisms of the following type:

ωψ[H2, χ
−1
2 ] ∼= indG

′
H′

1
χ′

1, (1.7)

ωψ[H ′
2, χ

′−1
2 ] ∼= indGH1

χ1. (1.8)

Here the isomorphisms are as G′-modules or G-modules, and the inductions are all compact induc-
tions.

We claim the isomorphisms (1.7) and (1.8) imply the isomorphism (1.6). This follows from the
isomorphisms

ωψ[H2 ×H ′
2, χ

−1
2 ⊗ χ

′−1
2 ] ∼= ωψ[H2, χ

−1
2 ][H ′

2, χ
′−1
2 ] ∼= ωψ[H ′

2, χ
′−1
2 ][H2, χ

−1
2 ]. (1.9)

In view of the discussion in § 1.5, we will set the data for trace identity (1.2) to be (Hi, χi,H
′
i, χ

′
i)

whenever the isomorphisms (1.7) and (1.8) hold. We come up with several families of relative trace
identities in § 2 using this principle. We have checked that all these identities hold. In the second
part of this paper, we provide a proof for one family of identities.

1.7 Remark on the proofs

The above discussion also indicates a way to prove the trace identities. As stated in § 1.4, to establish
a trace identity, one needs to show the orbital integral identity (1.5). From the isomorphism (1.9),
we see that the orbital integrals IG,v(fv, o : H1, χ1,H2, χ2) and IG′,v(f ′v, ι(o) : H ′

1, χ
′
1,H2, χ

′
2) give

linear functionals of functions in the space of the Weil representation. The idea is to show that
they give the same functional by using the properties of the Weil representation. The same idea
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can be used to prove the fundamental lemma. It turns out all one needs is the already proven local
unramified Howe duality conjecture.

1.8 A specific family of relative trace identities
We discuss in detail the family of relative trace identities that is proved here.

Let Gn = SO(n+1, n) be the split special orthogonal group. Let G′
m = Sp(m) be the symplectic

group, and G̃m its double cover. Assume m � n. Denote an element in G̃m by (g, ε) with g ∈ G′
m,

ε ∈ {±1}. If the covering splits over a subgroup H of G′
m, for h ∈ H, we write h̃ for the image in

G̃m under the splitting map. The consideration in § 1.6 and the results in § 2 lead us to consider
the following distributions.

Let N ′
m be the subgroup of upper triangular matrices with unit diagonal in G′

m. Then the
covering of G′

m splits over N ′
m. We define a distribution on G̃m(A): for f̃ ∈ S(G̃m(A)),

Jm(f̃) =
∫
N ′

m(F )\N ′
m(A)

∫
N ′

m(F )\N ′
m(A)

Kf̃ (ñ1, ñ2)θ′(n1n
−1
2 ) dn1 dn2. (1.10)

Here for n ∈ N ′
m, ñ = (n, 1), and

θ′(n) = ψ
(
n1,2 + · · · + nm−1,m +

nm,m+1

2

)
. (1.11)

We now define a distribution Im,n(f) on Gn(A). In § 2.1, we introduce the subgroups Rm,n and
Um,n of Gn and the characters χ and µ on them. We define

Im,n(f) =
∫
Rm,n(F )\Rm,n(A)

∫
Um,n(F )\Um,n(A)

Kf (r, u)χ−1(r)µ−1(u) dr du. (1.12)

The distributions Im,n and Jm can be written as sums of orbital integrals. The groups Rm,n and
Um,n act on Gn by (r, u) : g → r−1gu. For o ∈ Gn, let (Rm,n × Um,n)o be the set of all pairs (r, u)
satisfying r−1ou = o. We say the orbit of o under the action of Rm,n × Um,n is relevant if we have
χ(r)µ(u) ≡ 1 for (r, u) ∈ (Rm,n × Um,n)o. Then we have (§ 5)

Im,n(f) =
∑
{o}

∏
v

Io(fv), f = ⊗fv, (1.13)

where the sum is taken over the set of representatives for the relevant orbits, and the orbital integral
is defined as

Io(fv) =
∫
Rm,n,v

∫
o−1Rm,n,vo∩Um,n,v\Um,n,v

fv(r−1ou)χ−1(r)µ−1(u) dr du. (1.14)

Similarly, the group N ′
m × N ′

m acts on G′
m by (n1, n2) : g → n−1

1 gn2. We say an orbit o′ is
relevant if n−1

1 o′n2 = o′ implies that θ′(n1n
−1
2 ) = 1. Then

Jm(f̃) =
∑
{o′}

∏
v

Jo′(f̃v), f̃ = ⊗f̃v, (1.15)

where the sum is taken over representatives of relevant orbits and the orbital integral Jo′(f̃v) is
defined to be ∫

N ′
m,v

∫
N ′

m,v∩o′−1N ′
m,vo

′\N ′
m,v

f̃v(ñ−1
1 (o′, 1)ñ2)θ′(n1n

−1
2 ) dn1 dn2. (1.16)

We will show the identity (1.5) between orbital integrals in this case.

Theorem 1.1. There is a bijection ι from the set of relevant orbits {o} in Gn(F ) to the set of
relevant orbits {o′} in G′

m(F ), such that there exists a map εv from C∞
c (Gn,v) to S(G̃m,v) for all
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places v, and transfer factors ∆v(o) satisfying
∏
v ∆v(o) ≡ 1, o ∈ Gn(F ), with

Jι(o)(ε(fv)) = ∆v(o)Io(fv). (1.17)

We note that in the statement we used C∞
c (Gn,v) instead of S(Gn,v). This is a technical point

which appears in the proof of Lemma 5.2.
We now state the fundamental lemma in this case. Let v be a p-adic place with odd residue

characteristics. Let Ov be the ring of integers. Let Hn,v be the Hecke algebra of Gn,v. It is the set
of compactly supported functions that are biinvariant under Gn,v(Ov). Recall that the double cover
of G′

m,v splits over G′
m,v(Ov). We let H̃m,v be the set of compactly supported functions f̃ on G̃m,v

that are biinvariant under G′
m,v(Ov), and satisfying f̃((g, 1)) = −f̃((g,−1)) (that is, f̃ is a genuine

function). It is the Hecke algebra of G̃m,v. There is a Hecke algebra homomorphism λ from Hn,v

to H̃m,v (see § 7). Fix the measures so that G′
m,v(O) and Gn,v(O) have volumes 1. We prove the

following theorem.

Theorem 1.2. Let ι and ∆v be as in Theorem 1.1. Then if ψ is of order 0 at v, we have

Jι(o)(λ(fv)) = ∆v(o)Io(fv) (1.18)

whenever fv ∈ Hn,v.

As stated in § 1.4, taking into account the identities (1.13) and (1.15), the above two theorems
imply the following.

Theorem 1.3. There is a relative trace identity (in the sense of equation (1.2) and Theorem 1.1):

Im,n(f) = Jm(f̃). (1.19)

1.9 Remarks
1) When m = n = 1, the identity (1.19) is Jacquet’s identity (when τ = 1) that we mentioned in

§ 1.3.
2) When m = n, Gn = SO(n+ 1, n), G̃n = S̃p(n), the correspondence of automorphic representa-

tions was considered in [Fur95]. In our formula, the group Rn,n is the Bessel group defined in
[Fur95], while Un,n is a maximal unipotent subgroup. The trace identity should give a corre-
spondence between the generic automorphic representations of SO(n+1, n) with non-vanishing
Bessel periods and the generic automorphic representations of S̃p(n). The Bessel periods are
closely related to the value L(π, 1/2) (see [Gin90, Sou93]). In particular, the identity (1.19)
should give an identity for the value of L(π, 1/2). When n = 1 this identity is given in [BM04].

3) The identity (1.19) can be considered as a tower of identities. Fix n, and we get a family of
formulas, which describe the correspondence between SO(n+1, n) and a family of metaplectic
groups G̃m with m = 1, . . . , n. Fix m, and we get a correspondence between S̃p(m) and a family
of orthogonal groups SO(n + 1, n) with n � m. The tower principle in the correspondence
between orthogonal and metaplectic groups is described in [Ral84].

4) The case m = 1 is also studied in [MR99b]. Here Rm,n is isomorphic to the group SO(n, n),
and Um,n is an abelian unipotent group. The particular case m = 1, n = 2 is also considered
in [FM04] and [Zin98].

5) The space ωψ[H,χ] is the Jacquet module of the Weil representation with respect to the data
(H,χ), thus the title of the paper.

6) Similar arguments can be made when we consider the minimal representations of the excep-
tional groups in place of the Weil representation. The computation of the Jacquet module there
should yield relative trace identities for the dual pairs inside the exceptional groups.
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1.10 Structure of the paper

This paper is organized as follows. In § 2, we state the isomorphisms of type (1.7) and (1.8) in
various cases. In some cases, the isomorphisms are only true for a subspace of the Jacquet module,
but it is good enough for the isomorphism (1.6) to hold. In § 3, we provide the proofs of the results
in § 2. The proof of the results in § 1.8 starts in § 4, where we classify the relevant orbits. In § 5,
we express the orbital integrals as linear functionals on the space of Weil representations. We show
Theorem 1.1 in § 6, Theorem 1.2 and thus Theorem 1.3 in § 7. In § 8, we make some remarks on
other cases of trace identities, and the relation between the identities considered in this paper and
those in previous works on relative trace identities.

1.11 Notation

The symbols m and n denote integers. We denote the set of m× n matrices by Mm,n. We denote
the (i, j)th entry in a matrix A by Ai,j. We use 1m to denote an m×m identity matrix, and 0 to
denote a matrix of suitable size with all entries being 0. We use ∗ to denote a block of a matrix
that can have any entry. All vectors in a vector space are written as column vectors, with matrices
acting by left multiplication.

We will let σm ∈ GLm be the permutation matrix with ‘1’s on the antidiagonal. Denote by Sm ⊂
Mm,m the set of matrices A where Aσm is symmetric. Given g ∈ GLm, we will let g∗ = σm

tg−1σm.

For v ∈ Fn a vector, we let vi be its ith coordinate.
The homomorphism ρ is defined in § 2.1, δ is defined in Equation (3.4), and the homomorphisms

η, η′, ρ′, ρ′′ are defined in § 4.

2. Families of relative trace identities

In this section, F is a p-adic field. We state isomorphisms (1.7) and (1.8) for various pairs of groups
G and G′, and state the corresponding relative trace identities.

2.1 When G = SO(n + 1, n), G′ = S̃p(m), with n ��� m

Let e1, . . . , e2n+1 be the standard basis of F 2n+1. Let SO(n + 1, n) be the special orthogonal
group fixing the symmetric bilinear form 〈 , 〉 given by 〈ei, ej〉 = 2 when i + j = 2n + 2, i �= j,
〈en+1, en+1〉 = 1, and 〈ei, ej〉 = 0 otherwise. For m � n, let Vm,n be the subspace of F 2n+1 spanned
by {e1, . . . , em−1, en+1}, and let Wm,n be the subspace spanned by {em, . . . , e2n+2−m}. Denote by
PrWm,n v the orthogonal projection of v ∈ F 2n+1 in Wm,n. We define some subgroups of SO(n+1, n).

Let R′
m,n be the subgroup of SO(n+ 1, n) fixing Vm,n:

R′
m,n = {r | r(e1, . . . , em−1, en+1) = (e1, . . . , em−1, en+1)}. (2.1)

Let R0
m,n be the subgroup of R′

m,n:

R0
m,n = {r ∈ R′

m,n | PrWm,n(rv) = v, ∀v ∈Wm,n}. (2.2)

Then R0
m,n is a normal subgroup of R′

m,n, with R′
m,n/R

0
m,n

∼= SO(n−m+ 1, n−m+ 1).
Let Nl denote the subgroup of upper triangular matrices with unit diagonal in GLl. Then Nm

acts on Vm,n. Define Rm,n to be the subgroup of SO(n+ 1, n):

Rm,n = {r ∈ SO(n+ 1, n) | ∃n ∈ Nm, rv = nv, ∀v ∈ Vm,n}. (2.3)

When m = n, this is the Bessel group defined in [Fur95] for SO(n + 1, n). When m = 1, it is
isomorphic to SO(n, n).
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The group R′
m,n is a normal subgroup of Rm,n with an isomorphism ρ : Rm,n/R′

m,n
∼= Nm given

by r �→ n in Equation (2.3).
Let Um,n be the subgroup of Rm+1,n:

Um,n = {u ∈ Rm+1,n | PrWm+1,n(uv) = v, ∀v ∈Wm+1,n}. (2.4)

Then it is a unipotent radical of a standard parabolic subgroup of SO(n + 1, n), whose Levi part
is isomorphic to GLm1 × SO(n − m + 1, n −m). When m = n, Un,n is a maximal unipotent sub-
group in SO(n + 1, n). The group R0

m+1,n is a normal subgroup of Um,n with the isomorphism
ρ : Um,n/R0

m+1,n
∼= Nm+1.

Fix ψ a non-trivial additive character of F . We define the characters on Rm,n and Um,n. First
we define an additive character θ on Nl:

θ(n) = ψ(n1,2 + n2,3 + · · · + nl−1,l), n ∈ Nl. (2.5)

Then we define a character χ on Rm,n by χ(r) = θ(ρ(r)), and a character µ on Um,n by µ(u) =
θ−1(ρ(u)).

Let N ′
m be the group of upper triangular matrices in Sp(m) with unit diagonal. Denote an

element in G′ by (g, ε) with g ∈ Sp(m) and ε = ±1. The group N ′
m can be considered as a subgroup

of G′ via the embedding n→ ñ = (n, 1), n ∈ N ′. Define a character θ′ of N ′
m by

θ′(n) = ψ
(
n1,2 + · · · + nm−1,m +

nm,m+1

2

)
, (2.6)

where n = (ni,j) ∈ N ′
m.

Proposition 2.1. As a representation of G = SO(n+ 1, n),

ωψ[N ′
m, θ

′] ∼= indGRm,n
χ−1. (2.7)

As a representation of G′ = S̃p(m),

ωψ[Um,n, µ] ∼= indG
′

N ′
m
θ′. (2.8)

The proposition suggests the following relative trace identity:

IG(f : Rm,n, χ−1, Um,n, µ
−1) = IG′(f ′ : N ′

m, θ
′, N ′

m, θ
′−1). (2.9)

This formula will be established in this paper.
We look at a generalization of the identity (2.9). Let τ ∈ F×. Consider the character θ′τ of N ′

m:

θ′τ (n) = ψ
(
n1,2 + · · · + nm−1,m +

τ

2
nm,m+1

)
. (2.10)

All non-degenerate characters of N ′
m are in the orbit of a θ′τ for some τ . We will state a result for

ωψ[N ′
m, θ

′
τ ].

Let V τ
m,n be the subspace of F 2n+1 spanned by e1, . . . , em−1 and em + (τ/2)e2n+2−m. We define

the subgroups Rτm,n, R
′τ
m,n, R0τ

m,n and U τm,n as before with Vm,n replaced by V τ
m,n. (However in

the definition of U τ (m,n) we need the assumption n > m.) Then again there is an isomorphism
ρ : Rτm,n/R

′τ
m,n

∼= Nm, and we can again define character χτ on Rτm,n by setting χτ (r) = θ(ρ(r)),
and (when n > m) character µτ on U τm,n by µτ (u) = θ−1(ρ(u)).

We note that Um,n and U τm,n are the same groups.
Proposition 2.2. As a representation of G = SO(n+ 1, n),

ωψ[N ′
m, θ

′
τ ] ∼= indGRτ

m,n
(χτ )−1. (2.11)

When n > m, as a representation of G′ = S̃p(m),

ωψ[Um,n, µτ ] ∼= indG
′

N ′
m
θ′τ . (2.12)
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This proposition together with Proposition 2.1 suggests the following relative trace identities:

IG(f : Rτm,n, (χ
τ )−1, Um,n, µ

−1) = IG′(f ′ : N ′
m, θ

′, N ′
m, (θ

′
τ )

−1), (2.13)

and when n > m

IG(f : Rτm,n, (χ
τ )−1, Um,n, (µτ )−1) = IG′(f ′ : N ′

m, θ
′
τ , N

′
m, (θ

′
τ )

−1). (2.14)

Remark 1. In the case m = n = 1, the implication of (2.13) is the following: the period
P (π,Rτm,n, χτ ) defined in Equation (1.4) for a cuspidal representation π of PGL2, if not 0, should
roughly be the product of two different Fourier coefficients of the lifting π̃ of π to S̃L2. A modular
form version of this statement is proved in [Koh85]. Combining this with the statement for L(π, 1/2)
and L(π ⊗ χτ , 1/2) coming from Jacquet’s identity in § 1.3, we get that L(π, 1/2)L(π ⊗ χτ , 1/2) is
roughly the square of P (π,Rτm,n, χτ ), assuming P (π,Rτm,n, χτ ) �= 0. Extending this argument to the
general case, we should get a general version of Böcherer’s conjecture for generic representations of
SO(n+ 1, n).

Remark 2. The generalization (2.14) of (2.9) is not a superficial one. As an example, when n =
2,m = 1, the group R1,2 is isomorphic to SO(2, 2) while the group Rτ1,2 is isomorphic to SO(3, 1)
for τ not a square. In particular, while the cuspidal representations do not appear in the spectral
decomposition of IG(f : R1,2, χ

−1, U1,2, µ
−1), they do appear in the spectral decomposition of IG(f :

Rτ1,2 , (χ
τ )−1, U1,2 , (µτ )−1) for τ not a square. The formula (2.14) in this case should give the Saito–

Kurukawa lifting.

2.2 When G = SO(n + 1, n), G′ = S̃p(m) with m > n

Let Un be the subgroup of upper triangular matrices in G with unit diagonal. Define µ a character
of Un by

µ(u) = ψ−1(u1,2 + · · · + un,n+1), n = (ni,j) ∈ Un. (2.15)

Let e1, . . . , e2m be the standard basis of F 2m where Sp(m) acts. Let V ′
m,n be the subspace of

F 2m spanned by {e1, . . . , en} and W ′
m,n be the subspace spanned by {en, . . . , e2m+1−n}. We define

some subgroups of G′.
Let H ′

1 be the group

H ′
1 = {(h,±1) ∈ G′ | ∃n ∈ Nn, hv = nv, ∀v ∈ V ′

m,n}. (2.16)

Let U ′
m,n be the subgroup of Sp(m):

U ′
m,n = {u ∈ Sp(m) | (u, 1) ∈ H ′

1, PrW ′
m,n

uv = v, ∀v ∈W ′
m,n}. (2.17)

As the covering splits over any unipotent subgroup, U ′
m,n can be considered a subgroup of H ′

1, and
it is a normal subgroup. Define another subgroup of H ′

1 to be the inverse image J ′
m,n in the covering

of the set of

j(g,X, Y, z) =


1n

g
1n







1n−1 0 0 0 0 0
1 X Y z 0

1m−n 0 σm−n tY 0
1m−n −σm−n tX 0

1 0
1n−1




(2.18)

where g ∈ Sp(m − n), tX, tY ∈ Fm−n and z ∈ F . Then H ′
1 is the semidirect product of U ′

m,n

and J ′
m,n. Recall that there is an oscillator representation χ′

1 defined on J ′
m,n, explicitly.
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For Φ(Z) ∈ S(Fm−n):

χ′
1(j(g,0,0,0),±1)Φ(Z) = ωψ(g,±1)Φ(Z);

χ′
1(j(12m−2n,X,0, z), 1)Φ(Z) = ψ(z/2)Φ(Z + tX);
χ′

1(j(12m−2n,0, Y,0), 1)Φ(Z) = ψ(Y · Z)Φ(Z).

We define a character µ′ on U ′
m,n as follows: for each u ∈ U ′

m,n, from (2.16) there is an n ∈ Nn

associated to it. We define µ′(u) to be θ(n) where θ is defined by (2.5). As J ′
m,n stabilizes this

character µ′ on U ′
m,n, we can extend µ′ and χ′

1 to a representation χ′
1 on H ′

1: for any h = uj with
j ∈ J ′

m,n and u ∈ U ′
m,n, let

χ′
1(h) = µ′(u)χ′

1(j).

Let H ′
2 be the semidirect product of U ′

n+1,m and

Hm,n = {(j(12m−2n−2,0, Y, z),±1) | tY ∈ Fn−m−1, z ∈ F}.
For h = u(j(12m−2n−2,0, Y, z), 1) ∈ H ′

2 with u ∈ U ′
n+1,m, let

χ′
2(ρ

′(n)h) = µ′(u)ψ(z/2).

As Hm,n stabilizes the character µ′, χ′
2 is a character on the unipotent group H ′

2.

Proposition 2.3. As a representation of G = SO(n+ 1, n),

ωψ[H ′
2, χ

′
2] ∼= indGUn

µ. (2.19)

As a representation of G′ = S̃p(m),

ωψ[Un, µ] ∼= indG
′

H′
1
χ′

1. (2.20)

We expect that there is a relative trace identity:

IG(f : Un, µ, Un, µ−1) = IG′(f ′ : H ′
1, χ

′
1,H

′
2, χ

′−1
2 ). (2.21)

Here since χ′
1 is no longer a character, we define IG′(f ′ : H ′

1, χ
′
1,H

′
2, χ

′−1
2 ) as follows:∫

H′
1(F )\H′

1(A)

∫
H′

2(F )\H′
2(A)

Kf ′(h1, h2)Θ
ψ
Φ(h1)χ′

2(h
−1
2 ) dh2 dh1, (2.22)

where
Θψ

Φ(h1) =
∑

Z∈Fm−n

χ′
1(h1)Φ(Z).

This type of coperiod trace formula has appeared in for example [MR99c]. We refer to that paper
for the precise meaning of the relative trace identities in this situation.

2.3 When G = O(n,n), G′ = Sp(m)
The situation is similar to that of §§ 2.1 and 2.2. We will only state the results without giving the
proof.

When n > m, consider G as a subgroup of SO(n+ 1, n) mapping en+1 to ±en+1. Let Rτm,n and
Um,n be the intersection between G and the corresponding groups defined in § 2.1. Let χτ and µτ

be the characters defined in § 2.1. Let N ′
m ⊂ G′ and θ′τ be as defined in § 2.1.

Proposition 2.4. As a representation of G = O(n, n),

ωψ[N ′
m, θ

′
τ ] ∼= indGRτ

m,n
(χτ )−1. (2.23)

As a representation of G′ = Sp(m),

ωψ[Um,n, µτ ] ∼= indG
′

N ′
m
θ′τ . (2.24)
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We expect the relative trace identities (2.13) and (2.14) to hold in this setting.
When 1 < n � m, let Un be the intersection of G and the corresponding group in § 2.2. Define

µ on Un by letting

µ(u) = ψ−1(u1,2 + · · · + un−1,n + un−1,n+1), u ∈ Un. (2.25)

Define the subgroup U ′
m,n as in (2.17). Let H ′

1 ⊂ G′ be the semidirect product of U ′
m,n−1 and the

group with elements of the form j(g,0,0, z) where g ∈ Sp(m − n + 1). (Recall that j(g,X, Y, z) is
defined in (2.18).) For h = uj(g,0,0, z) ∈ H ′

1 with u ∈ U ′
m,n−1, let

χ′
1(h) = µ′(u)ψ(z).

Let H ′
2 ⊂ G′ be the semidirect product of U ′

m,n and the group with elements of the form
j(g,0, Y, z) with tY ∈ Fm−n, z ∈ F and

g =
(

1m−n Z
1m−n

)
∈ Sp(m− n).

For h = uj(g,0, Y, z) ∈ H ′
2 with u ∈ U ′

m,n, let

χ′
2(h) = µ′(u)ψ(z).

Proposition 2.5. As a representation of G = O(n, n),

ωψ[H ′
2, χ

′
2] ∼= indGUn

µ. (2.26)

As a representation of G′ = Sp(m),

ωψ[Un, µ] ∼= indG
′

H′
1
χ′

1. (2.27)

We expect the identity (2.21) to be true in this setting.

2.4 When G = GLn, G′ = GLm with n > m

Here G and G′ form a dual reductive pair in S̃pmn.
Let Nm be the subgroup of G′ defined in § 2.1 and θ its character defined in (2.5). Let Hm,n ⊂ G

be the following subgroup: it consists of elements(
n 0
∗ ∗

)
, n ∈ Nm.

For h ∈ Hm,n of above type, let χ(h) = θ−1(n); then χ is a character of Hm,n. Let Um,n ⊂ G be the
following subgroup: it consists of elements(

n ∗
0 1n−m

)
, n ∈ Nm.

For u ∈ Um,n of above type, let µ(u) = θ(n)ψ(um,m+1); then µ is a character of Um,n.

Proposition 2.6. As a representation of G′ = GLm,

ωψ[Um,n, µ] ∼= indG
′

Nm
θ−1. (2.28)

We have an injective homomorphism between GLn-modules: indGHm.n
χ �→ ωψ[Nm, θ]. This injection

induces a vector space isomorphism

indGHm,n
χ[Um,n, µ] ∼= ωψ[Nm, θ][Um,n, µ]. (2.29)

The proof of Proposition 2.6 is similar to that of Proposition 2.1 and will be skipped.
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From Proposition 2.6, the argument in § 1.6 shows that the spaces indGHm,n
χ[Um,n, µ] and

indG
′

Nm
θ−1[Nm, θ] are isomorphic. We expect that there is a relative trace identity:

IG(f ;Hm,n, χ, Um,n, µ
−1) = IG′(f ′;Nm, θ

−1, Nm, θ
−1). (2.30)

Remark 3. Note that IG(f ′;Nm, θ
−1, Nm, θ

−1) is a Kuznietsov trace formula on GLm.

Remark 4. When m = n, we would need to set Hm,m and Um,m to be Nm. Of course one gets a
trivial trace identity here.

In the case m = 2, we can get another family of identities which is studied in [Fli93] and [Mao92].
We consider H = GLn−1 as a subgroup of G; let U ⊂ G be a unipotent subgroup consisting of
matrices of the form

u(v,w, z) =


1 tv z

1n−2 w
1


 , (2.31)

where v and w are vectors in Fn−2. Define a character µ of U by letting µ(u(v,w), z) = ψ(v1 +w1).
The following proposition was mentioned to us by W. Gan.

Proposition 2.7. As a module of G = GLn:

ωψ[N2, θ] ∼= indGH 1. (2.32)

As a module of G′ = GL2:

ωψ[U,µ] ∼= indG
′

N2
θ−1. (2.33)

Thus one expects a relative trace identity:

IG(f : H, 1, U, µ−1) = IG′(f ′ : N2, θ
−1, N2, θ

−1). (2.34)

In [Fli93], a similar identity is conjectured. However, the character µ of U is chosen there as ψ(v1 +
wn−2), which is an incorrect choice. With the choice of µ in [Fli93], the right-hand side of (2.34)
should be replaced by IG′(f ′ : N2, 1, N2, θ

−1) (when n > 3).

3. Proof of results in § 2

We will make use of the following lemma [BZ86, Lemma 2.23].

Lemma 3.1. Assume H is exhausted by compact subgroups (i.e. any compact subset of H is con-
tained in a compact subgroup). Let χ be a character of H. Let π be a representation of H acting
on E. Then a vector ξ ∈ E lies in E(H,χ) if and only if there exists a compact subgroup Hc ⊂ H,
such that ∫

Hc

χ−1(h)π(h)ξ dh = 0.

We give in detail the proofs of Proposition 2.1, and will only sketch or skip the proofs of the
other results, as the proofs are similar.
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3.1 Proof of the isomorphism (2.7)
We recall the model of the representation ωψ. It acts on the space S(M2n+1,m) such that

ωψ(g, δ(h))Φ(Z) = |det(h)|n+1/2 γ(1, ψ)
γ(det(h)2n+1, ψ)

Φ(g−1Zh), (3.1)

ωψ(1, σ′l)Φ(Z) = γ(1, ψ)−(2n+1)l/2Φ∧l(Z), (3.2)

ωψ(1, (
(

1m V
1m

)
, 1))Φ(Z) = ψ(tr(tZσ2n+1ZV σm)/2)Φ(Z). (3.3)

Here g ∈ G, h ∈ GLm, σl is the matrix with ‘1’s on the antidiagonal and the ‘0’s elsewhere,

δ(h) =
((

h
h∗

)
, 1

)
, σ′l =




 −σl

12m−2l

σl


 , 1


 , (3.4)

γ(a, ψ) denotes the Weil constant, and for Z = [Z1, Z2] ∈M2n+1,m, where Z1 ∈M2n+1,l, let

Φ∧l(Z) =
∫
M2n+1,l

ψ(tr(tZ ′σ2n+1Z1))Φ([Z ′, Z2]) dZ ′. (3.5)

We compute the projection from S(M2n+1,m) to ωψ[N ′
m, θ

′] in two steps. Note that N ′
m is the

direct product of N ′
m,L and N ′

m,U , where N ′
m,L = δ(Nm) is the intersection of N ′

m with the Levi
part of the Siegel parabolic subgroup of Sp(m), and N ′

m,U is the intersection with the unipotent
radical. Thus as a G-module,

ωψ[N ′
m, θ

′] ∼= (ωψ[N ′
m,U , θ

′])[N ′
m,L, θ

′]. (3.6)

We first compute ωψ[N ′
m,U , θ

′].

Lemma 3.2. The space ωψ(N ′
m,U , θ

′) spanned by ωψ(n)Φ − θ′(n)Φ (n ∈ N ′
m,U , Φ ∈ ωψ) is

S(M2n+1,m\Y ), where

Y = {[z1, . . . , zm] | 〈zm, zm〉 = 1, 〈zi, zj〉 = 0 for other combinations of i, j}.
Proof. From Lemma 3.1, we need to check that there exists a compact subgroup N ′′ of N ′

m,U such
that ∫

N ′′
ωψ(1, (n, 1))Φ(Z)θ′(n−1) dn ≡ 0

if and only if Φ is a function supported away from Y . The integral equals∫
ψ(−V1,m/2)ψ(tr(tZσmV Z)/2)Φ(Z) dV,

where the domain of integration is over the group of V ∈ Sm satisfying(
1m V

1m

)
∈ N ′′.

For Z ∈ Y , the integral equals vol(N ′′)Φ(Z). If Φ is supported away from Y , there exists a large
enough compact set N ′′ such that the above integral vanishes for all Z in the support of Φ. Thus the
claim is proved.

From Lemma 3.2, ωψ[N ′
m,U , θ

′] ∼= S(Y ) as a (G,N ′
m,L)-module. Here the action is given as

(g, δ(n)) : Φ(Z) �→ Φ(g−1Zn), g ∈ G, n ∈ Nm. (3.7)

Let Y0 be the subset of Y consisting of matrices of rank m. Then S(Y0) is a submodule of S(Y ).
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Lemma 3.3. As G-modules,

S(Y0)[N ′
m,L, θ

′] ∼= S(Y )[N ′
m,L, θ

′]. (3.8)

Proof. The group G × Nm acts on Y by (g, n) : Z �→ g−1Zn, g ∈ G,n ∈ Nm. By Witt’s theorem,
Y has a finite number ofG×Nm orbits, represented by [a1e1, a2e2, . . . , am−1em−1, en+1], where ai = 0
or 1. Consider an orbit o with such a representative where one of the ai equals 0.
Then the stabilizer of the orbit would contain a group {12n+1}×Nm,o, where Nm,o is a subgroup of
Nm and the character θ′ is non-trivial on δ(Nm,o). Thus for this orbit o, S(o)[N ′

m,L, θ
′] is a trivial

space. Since Y0 is the orbit with representative ai ≡ 1, we see S(Y \Y0)[N ′
m,L, θ

′] is a trivial space.
The lemma follows from the exact sequence:

1 �→ S(Y0) �→ S(Y ) �→ S(Y \Y0) �→ 1.

From the above two lemmas and (3.6), we get

ωψ[N ′
m, θ

′] ∼= S(Y0)[N ′
m,L, θ

′]. (3.9)

As Y0 is a G × Nm orbit, we see that S(Y0) is a (G,Nm)-module with action given by (3.7).
Then as G-modules,

S(Y0)[N ′
m,L, θ

′] ∼= S(Y0)[Nm, θ]. (3.10)

Define an action of Rm,n on indGR′
m,n

1 by

r : φ(g) �→ φ(r−1g). (3.11)

Lemma 3.4. As G-modules, S(Y0)[Nm, θ] ∼= indGR′
m,n

1[Rm,n, χ].

Proof. By Witt’s theorem, g �→ Zg = g−1[e1, . . . , em−1, en+1] gives a bijection of R′
m,n\G and Y0.

Thus Φ �→ φΦ(g) = Φ(Zg) defines an isomorphism between indGR′
m,n

1 and S(Y0). Observe that

r[e1, . . . , em−1, en+1] = [e1, . . . , em−1, en+1]ρ(r), r ∈ Rm,n (3.12)

where ρ is the isomorphism from Rm,n/R
′
m,n to Nm in § 2.1. Thus φΦ(r−1g) = Φ(Zgρ(r)). As χ(r) =

θ(ρ(r)), Φ �→ φΦ defines the isomorphism in the lemma.

Since as G-modules indGR′
m,n

1[Rm,n, χ] ∼= indGRm,n
χ−1, the isomorphism in (2.7) follows from

Lemma 3.4 and (3.9) and (3.10).

3.2 Proof of the isomorphism (2.8)
To prove the isomorphism (2.8), we use the mixed model of the Weil representation. In this model,
ωψ acts on S(M2m,n×Fm). The action is given as follows: for a function Φ⊗Φ0(Z,Z0) = Φ(Z)Φ0(Z0)
in the set (Z ∈M2m,n, Z0 ∈ Fm), for g′ ∈ Sp(m),

ωψ(1, (g′, 1))Φ ⊗ Φ0(Z,Z0) = Φ(g
′−1Z)ωψ(g′, 1)Φ0(Z0), (3.13)

the second ωψ being the Weil representation of G′ acting on S(Fm). Let U1
m,n, U

2
m,n, U

3
m,n be sub-

groups of Um,n consisting respectively of

u1(n) =


n 1

n∗


 , u2(v) =


1n v −vv∗/2

1 v∗

1n


 , u3(V ) =


1n 0 V

1 0
1n


 .

Here in the definition of u2(v), we understand v as a vector in Fm written as a column vector in
Fn with the last n−m entries being 0. Then Um,n is the semidirect product of U1

m,nU
2
m,n and U3

m,n,
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and U1
m,nU

2
m,n is the semidirect product of U1

m.n and U2
m,n. The action of Um,n on the mixed model

can be described as follows:

ωψ(u1(n), 1)Φ ⊗ Φ0(Z,Z0) = Φ(Zn)Φ0(Z0), (3.14)
ωψ(u3(V ), 1)Φ ⊗ Φ0(Z,Z0) = ψ(tr(tZV σnZ)/2)Φ ⊗ Φ0(Z,Z0). (3.15)

We only need to know the value of ωψ(u2(v), 1)Φ ⊗Φ0(Z,Z0) for some special choice of Z and Z0:

ωψ(u2(v), 1)Φ ⊗ Φ0

((
n ∗
0 0

)
, Z0

)
= ψ(tZ0nv)Φ

((
n ∗
0 0

))
Φ0(Z0). (3.16)

where n ∈ Nm and v ∈ Fm.
Similar to the computation of ωψ[N ′

m,U , θ
′], we see as (U1

m,nU
2
m,n, G

′)-module

ωψ[U3
m,n, µ] ∼= S(Y ′ × Fm), (3.17)

where
Y ′ = {[f1, . . . , fn] | 〈fi, fj〉′ = 0, i � n or j � n},

〈 , 〉′ being the alternating form on the symplectic space. We will let Y ′
0 be the subspace of Y ′

consisting of the matrices with f1, . . . , fm being of rank m. Similar to the proof of Lemma 3.3, we
can prove that as G′-modules

S(Y ′ × Fm)[U1
m,nU

2
m,n, µ] ∼= S(Y ′

0 × Fm)[U1
m,nU

2
m,n, µ]. (3.18)

From Witt’s theorem, the map

(g,B) �→ g−1

(
1m B
0 0

)
is a bijection between N ′

m,U\Sp(m) ×Mm,n−m and Y ′
0 . Thus S(Y ′

0 × Fm) can be identified with
S(N ′

m,U\Sp(m) ×Mm,n−m × Fm) under this bijection. Given F1 ⊗ F2 ⊗ F3(g,B,Z0) in the space,
the action of G′ × U1

m,nU
2
m,n (again denoted ωψ) is given as follows:

ωψ(1, (h, 1))F1 ⊗ F2 ⊗ F3(g,B,Z0) = F1(gh)F2(B)ωψ(h, 1)F3(Z0), h ∈ Sp(m), (3.19)

ωψ(u1(n), 1)F1 ⊗ F2 ⊗ F3(g,B,Z0) = F1

((
n−1

1

n∗−1
1

)
g

)
F2(n−1

1 (B + C))F3(Z0), (3.20)

ωψ(u2(v), 1)F1 ⊗ F2 ⊗ F3(g,B,Z0) = F1(g)F2(B)F g,v3 (Z0), (3.21)

where

n =
(
n1 C

1n−m

)
∈ Nn

and F g,v3 (Z0) = ωψ(g, 1)−1F ′
3(Z0) with F ′

3(Z0) = ψ(tZ0v)ωψ(g, 1)F3(Z0) (the function is determined
by the N ′

m,U -coset of g).
Given F1 ⊗ F2 ⊗ F3 as above, we define a genuine function F on G′ ×Mm,n−m by

F ((g, 1), B) = F1(g)F2(B)ωψ(g, 1)F3(em). (3.22)

Lemma 3.5. The map δ : F1 ⊗ F2 ⊗ F3 �→ F defines a (G,U1
m,n)-module isomorphism

δ̄ : S(N ′
m,U\Sp(m) ×Mm,n−m × Fm)[U2

m,n, µ] ∼= indG
′

N ′
m,U

θ′ ⊗ S(Mm,n−m).

The action on the second space (denoted η) is given by

η((h, 1))F (g,B) = F (g(h, 1), B) (3.23)

η(u1(n))F (g,B) = F

(((
n−1

1

n∗−1
1

)
, 1

)
g, n−1

1 (B + C)
)
. (3.24)
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Here

n =
(
n1 C

1n−m

)
∈ Nn.

Proof. From (3.21) it is easy to see that S(N ′
m,U\Sp(m)×Mm,n−m×Fm)(U2

m,n, µ) lies in the kernel
of δ. It is also clear that the image of δ lies in indG

′
N ′

m,U
θ′ ⊗ S(Mm,n−m). Thus δ̄ is a well defined

map between two spaces in the lemma. The fact that it is a module homomorphism is also clear
from the definition of the actions (3.19) and (3.20) and the action of η.

To show the map δ̄ is surjective, we only need to show that, for any compact open set Ω ∈
Mm,n−m and any small enough compact neighborhood K0 of identity in Sp(m), there exists F1 ⊗
F2⊗F3 such that its image F (g,B) is given by θ′(u)ε whenever B ∈ Ω and g = (uh, ε), with ε = ±1,
u ∈ N ′

m,U and h ∈ K0, and F (g,B) = 0 otherwise. To find such a function F1 ⊗F2 ⊗F3, we simply
set F1 to be the characteristic function of N ′

m,UK0, F2 to be the characteristic function of Ω, and
F3 to be a function fixed under the Weil representation of (k, 1) with k ∈ K0, and F3(em) = 1.
A direct computation shows the image F (g,B) is the function specified above.

To show injectivity of the map δ̄, we will apply Bernstein’s localization principle, stated as
follows.

Lemma 3.6 [Ber84, p. 58]. Let q : X �→ T be a continuous map of l-spaces. For t ∈ T , let
Xt = q−1(t) and consider the space S∗(Xt) as a subspace of S∗(X) (here S∗ denotes the space of
distributions). Let W be a closed subspace of S∗(X) which is an S(T )-submodule. Then the sum
of W t = W ∩ S∗(Xt) over t ∈ T is dense in W .

We now return to the proof of Lemma 3.5.

We apply Lemma 3.6 to the case where X = N ′
m,U\Sp(m)×Mm,n−m×Fm, T = N ′

m,U\Sp(m)×
Mm,n−m, and W is the space of the distributions D on X satisfying ωψ(u2(v))D = ψ(vm)D for
v ∈ Fm. We check W is an S(T )-submodule. Let F ′

1 ⊗ F ′
2 ∈ S(T ), then for D ∈W ,

ωψ(u2(v))F ′
1 ⊗ F ′

2 ·D(F1 ⊗ F2 ⊗ F3) = D(F ′
1 ⊗ F ′

2ωψ(u2(v))F1 ⊗ F2 ⊗ F3)
= D(ωψ(u2(v))F1F

′
1 ⊗ F2F

′
2 ⊗ F3)

= ψ(vm)F ′
1 ⊗ F ′

2 ·D(F1 ⊗ F2 ⊗ F3).

Here the first equation follows from the definition, the second follows from Equation (3.21), and the
third from the fact that D ∈W . It follows that F ′

1 ⊗ F ′
2 ·D ∈W , i.e. W is an S(T )-submodule.

Next we consider the space W t for each t ∈ T . Such a t can be written as (g,B) with
g ∈ N ′

m,U\Sp(m) and B ∈ Mm,n−m. As Xt
∼= Fm, we will identify S∗(Xt) with the space of dis-

tributions on Fm. For D ∈ W t, let D′(F3) = D(ωψ(g, 1)−1F3), F3(Z0) ∈ S(Fm). Then from (3.21)
and the fact that ωψ(u2(v))D(F3) = ψ(vm)D(F3), we get ψ(vm)D′(F3(Z0)) = D′(ψ(tZ0v)F3(Z0)).
Thus D′(F3) = ctF3(em) for some constant ct. Therefore D(F3) = ctωψ(g, 1)F3(em) whenever
D ∈W t.

Recall that any function lying in the kernel of δ has the form
∑

i F
i
1 ⊗ F i2 ⊗ F i3 with∑

i

F i1(g)F
i
2(B)ωψ(g, 1)F i3(em) ≡ 0.

Thus for D ∈W t considered as a distribution in W , for any function as above in the kernel of δ,

D

(∑
i

F i1 ⊗ F i2 ⊗ F i3

)
= ct

∑
i

F i1(g)F
i
2(B)ωψ(g, 1)F i3(em) = 0.
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From the localization principle, we see that for any D ∈W ,

D

(∑
i

F i1 ⊗ F i2 ⊗ F i3

)
= 0

whenever
∑

i F
i
1 ⊗F i2 ⊗F i3 lies in the kernel of δ. As W only vanishes on the space S(N ′

m,U\Sp(m)×
Mm,n−m×Fm)(U2

m,n, µ), we see that the space contains the kernel of δ. We get the injectivity of δ̄.
The proof of Lemma 3.5 is done.

We now consider indG
′

N ′
m,U

θ′ ⊗ S(Mm,n−m)[U1
m,n, µ]. Define an action of N ′

m on indG
′

N ′
m,U

θ′ by

n : φ(g) �→ φ(n−1g). (3.25)

Lemma 3.7. As G′-module, indG
′

N ′
m,U

θ′ ⊗ S(Mm,n−m)[U1
m,n, µ] ∼= indG

′
N ′

m,U
θ′[N ′

m, θ
′−1].

Proof. We can write an element in U1
m,n as u1(n) with

n =
(
n1

1n−m

)(
1m C

1n−m

)
.

Thus U1
m,n is the semidirect product of two subgroups U11

m,n and U12
m,n with U11

m,n
∼= Nm and U12

m,n
∼=

Mm,n−m. It is clear from Lemma 3.1 that the map

F (g,B) �→ F0(g) =
∫
Mm,n−m

F (g,B) dB (3.26)

defines a (G′, Nm)-module isomorphism between indG
′

N ′
m,U

θ′ ⊗ S(Mm,n−m)[U12
m,n, µ] and indG

′
N ′

m,U
θ′,

where the action of Nm on the second space is given by

η′(n1)F0(g) = F0

(((
n−1

1

n∗−1
1

)
, 1

)
g

)
.

As N ′
m/N

′
m,U

∼= Nm, it is then clear that

indG
′

N ′
m,U

θ′ ⊗ S(Mm,n−m)[U1
m,n, µ] ∼= indG

′
N ′

m,U
θ′[Nm, θ

−1] ∼= indG
′

N ′
m,U

θ′[N ′
m, θ

′−1]

as G′-modules.

As indG
′

N ′
m,U

θ′[N ′
m, θ

′−1] ∼= indG
′

N ′
m
θ′, the isomorphism (2.8) follows from Lemmas 3.5 and 3.7 and

isomorphisms (3.17) and (3.18).
The proof of Proposition 2.2 is similar to that of Proposition 2.1 and will be skipped.

3.3 When G = SO(n + 1, n), G′ = S̃p(m), m > n

The proof of Proposition 2.3 is similar to that of Proposition 2.1. We will only give a sketch. We will
let U in be the groups U in,n (i = 1, 2, 3) in § 3.2.

To prove the isomorphism (2.19), we use the model of ωψ given by (3.1)–(3.3). Let H ′
2,U be

the intersection of H ′
2 with the unipotent radical of the Siegel parabolic subgroup of G′, and

H ′
2,L the intersection with its Levi part. Then H ′

2 is a semidirect product of H ′
2,U and H ′

2,L. As in
§ 3.1, we get an isomorphism of (G,H ′

2,L)-modules,

ωψ[H ′
2,U , χ

′
2] ∼= S(Y ),

where

Y = {(y1, . . . , ym) | 〈yi, yj〉 = 0, i � n+ 1 except 〈yn+1, yn+1〉 = 1},
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and (G,H ′
2,L) acts on S(Y ) by

(g, (h, 1)) : Φ(Z) �→ Φ(g−1Zh), g ∈ G, (h, 1) ∈ H ′
2,L.

As before

S(Y )[H ′
2,L, χ

′
2] ∼= S(Y0)[H ′

2,L, χ
′
2],

where Y0 consists of matrices where rank [y1, . . . , yn+1] = n+ 1. From Witt’s theorem, we see there
is a bijection between U3

n\G×Mn,m−n−1 and Y0 given by

(g,B) �→ g−1[e1, . . . , en+1, B], g ∈ G,B ∈Mn,m−n−1,

where we consider B to be a matrix in M2n+1,m−n−1 whose last n+ 1 rows are 0. We will identify
S(Y0) with S(U3

n\G×Mn,m−n−1) through this bijection.

Similar to the proof of Lemma 3.7, we can establish an isomorphism of G-modules:

S(Y0)[H ′
2,L, χ

′
2] ∼= indGU3

n
1[Un, µ−1],

where Un acts on indGU3
n

1 by u : φ(g) �→ φ(u−1g). As indGU3
n

1[Un, µ−1] ∼= indGUn
µ, we get the

isomorphism (2.19).

To prove the isomorphism (2.20), we use the model given by (3.13)–(3.16). Then as (G,U1
nU

2
n)-

modules,

ωψ[U3
n, µ] ∼= S(Y ′ × Fm),

where

Y ′ = {[f1, . . . , fn] | 〈fi, fj〉′ = 0, ∀i, j}.
As before, we can replace Y ′ by Y ′

0 consisting of the matrices of rank n.

Let Jm,n be the subgroup of Jm,n fixing the space V ′
m,n defined in § 2.2. Let J̃m,n be its inverse

image in G′. Then J̃m,n is a normal subgroup of H ′
1. There is an isomorphism H ′

1/J̃m,n �→ Nn

defined by (2.16).

From Witt’s theorem, there is a bijection from Jm,n\Sp(m) to Y ′
0 given by g �→ g−1[e1, . . . , en].

Thus

ωψ[Un, µ] ∼= S(Jm,n\Sp(m) × Fm)[U1
nU

2
n, µ].

Given F1 ⊗ F2(g, Z) ∈ S(Jm,n\Sp(m) × Fm), we define a genuine function F on G′ × Fm−n by
setting

F ((g, 1), Z−) = F1(g)ωψ(g, 1)F2

((
em
Z−

))
, Z− ∈ Fm−n. (3.27)

As in Lemma 3.5, we can show that this map gives an isomorphism between G′-modules:

S(Jm,n\Sp(m) × Fm)[U2
n, µ] ∼= indG

′
J̃m,n

χ′
1.

Moreover if we define the action of H ′
1 on indG

′
J̃m,n

χ′
1 as h : φ(g) �→ φ(h−1g), we can get an isomor-

phism between G′-modules:

S(Jm,n\Sp(m) × Fm)[U1
nU

2
n, µ] ∼= indG

′
J̃m,n

χ′
1[H

′
1, χ

′
1
−1].

As indG
′

J̃m,n
χ′

1[H
′
1, χ

′
1
−1] ∼= indG

′
H′

1
χ′

1 as G′-modules, we get the isomorphism (2.20).
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3.4 When G = GLn, G′ = GL2

To prove Proposition 2.7, we will use the following model for the Weil representation: for Φ ∈
S(Mn,2),

ωψ(g, 1)Φ[v,w] = Φ[g−1v, tgw], g ∈ G, (3.28)

ωψ

(
1,

(
1

a

))
Φ[v,w] = Φ[v, aw], (3.29)

ωψ

(
1,

(
1

1

))
Φ[v,w] =

∫
Φ[v′,w′]ψ(tv′v + tw′w) dv′ dw′, (3.30)

ωψ

(
1,

(
1 x

1

))
Φ[v,w] = Φ[v,w]ψ(xtvw). (3.31)

From (3.31), we see that ωψ[N2, θ] is isomorphic as a G-module to the space of Schwartz func-
tions on the closed subset M2

n,2 of Mn,2 consisting of [v,w] with tvw = 1, the G-action being
described as in (3.28). The group G acts on this closed set transitively by g ◦ [v,w] = [g−1v, tgw],
and the stabilizer of [e1, e1] is H. Thus if we define, for a function Φ ∈ S(M2

n,2), η(Φ)(g) =
Φ[g−1e1,

tge1], then η is a G-module isomorphism from S(M2
n,2) to indGH 1. This gives isomorphism

(2.32).
To show the isomorphism (2.33), we use another model for the Weil representation ωψ: for g ∈ G,

g′ ∈ G′, and Φ ∈ S(M2,n),

ωψ(g, g′)Φ[X] = Φ(g
′−1Xg), X ∈M2,n, (3.32)

where A ∈ Mm,m and B ∈ Mm,n−m. The proof is similar to the computations done in the proof of
Proposition 2.1, and will be skipped.

4. The relevant orbits

We start the proof of the relative trace identity (2.9). The results are stated in § 1.8. We will use
the notations introduced in §§ 1.8 and 2.1.

In this section, we give a description of the set of representatives of the relevant Rm,n × Um,n
orbits in Gn = SO(n+1, n), and match the orbits with the relevant N ′

m×N ′
m orbits in G′

m = Sp(m).
To classify the relevant orbits in SO(n+ 1, n), we solve an equivalent problem of classifying the

relevant orbits in the subset Y0 (introduced in § 3.1) of the set of (2n + 1) ×m matrices. We make
a change of notation and denote Y0 by X. Explicitly, X is the image of SO(n+ 1, n) under the map

φ : g → Zg = g−1[e1, . . . , em−1, en+1].

The group Um,n ×Nm acts on X by

(u, n) : x �→ u−1xn; u ∈ Um,n, n ∈ Nm.

We say an orbit of x ∈ X under the action of Um,n × Nm is relevant if u−1xn = x implies
µ(u)θ(n) = 1.

Lemma 4.1. The map φ induces a bijection between the Rm,n × Um,n orbits in SO(n + 1, n) and
the Um,n ×Nm orbits in X. It also induces a bijection between the relevant orbits.

Proof. Let g1 and g2 be in SO(n + 1, n). Recall that Rm,n/R′
m,n

∼= Nm with the projection ρ from
Rm,n to Nm (see § 2.1). From the definition of φ and (3.12), we see for r ∈ Rm,n, u ∈ Um,n,

r−1g1u = g2 if and only if u−1φ(g1)ρ(r) = φ(g2). (4.1)
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Thus φ gives a bijection of orbits. Set g1 = g2 = g in (4.1). We see (r, u) lies in the stabilizer of g if
and only if (u, ρ(r)) fixes φ(g). Since χ(r)µ(u) = θ(ρ(r))µ(u) by definition, we see χ(r)µ(u) being
trivial on the stabilizer of g is equivalent to θ(n)µ(u) being trivial on the stabilizer (u, n) of φ(g).
The map φ induces a bijection between relevant orbits.

We now describe the relevant orbits in X. The group Nl × Nl acts on GLl by (n1, n2) : g →
n−1

1 gn2. We say the orbit of g is relevant if n−1
1 gn2 = g implies θ(n1n2) = 1. Let Sl be a complete

set of representatives for these relevant orbits. For g ∈ Sl, l < m, let s±(g) be an element in X
given by

s±(g) =
(
0 ±Im−l
g 0

)
, (4.2)

where

Im−l = [el+2, el+3, . . . , em, en+1]. (4.3)

If l = m, then let

s(g) =


ĝ0
g


 ∈ X, where g ∈ GLm, ĝ =

(
0 0
0 1/2

)
g−1σm.

Then we have the following proposition.

Proposition 4.2. A complete set of representatives for the relevant Um,n×Nm orbits in X is given
by

m−1⋃
l=0

{s±(g) | g ∈ Sl} ∪ {s(g) | g ∈ Sm}.

Although we do not need a description of the complete set Sl of representatives of the relevant
orbits, such a description is well known (see [JR92]). It is given by {I ′lσlwνaν}, where I ′l is the
diagonal matrix diag[1,−1, . . . , (−1)l+1], ν is a partition of l, wν is the longest Weyl element for
the standard Levi subgroup of GLl corresponding to ν, and aν is an element in the center of this
standard Levi subgroup.

The N ′
m × N ′

m relevant orbits in Sp(m) have been classified in [Mao93]. We have our next
proposition.

Proposition 4.3. A complete system of representatives of the relevant orbits in Sp(m) is given by

m−1⋃
l=0


t±(g) =


 −g∗

±12m−2l

g



∣∣∣∣∣∣ g ∈ Sl


 ∪

{
t(g) =

( −g∗
g

) ∣∣∣∣ g ∈ Sm

}
.

From Propositions 4.2 and 4.3 it is easy to describe a bijection between the relevant orbits.
We denote by {o} the orbit containing o as a representative. Lemma 4.1 gives a bijection φ from the
set of relevant orbits in SO(n+1, n) to the set of relevant orbits in X. Let φ′ be a map from the set of
orbits in X to the set of orbits in Sp(m), such that φ′({s±(g)}) = {t±(g)} and φ′({s(g)}) = {t(g)}.
Then from Propositions 4.2 and 4.3 we obtain the following.

Proposition 4.4. The map φ′ is a bijection of relevant orbits. The map ι = φ′◦φ defines a bijection
from the set of relevant Rm,n × Um,n-orbits in SO(n + 1, n) to the set of relevant N ′

m ×N ′
m-orbits

in Sp(m).
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The proofs of Propositions 4.2 and 4.3 involve the careful consideration of the stabilizer of the
orbits. To save space, the proofs are not included here. Instead we simply describe the stabilizer of
the relevant orbits.

For {o} a relevant orbit in SO(n+ 1, n), let Um,n,o = o−1Rm,no∩Um,n. For {o′} a relevant orbit
in Sp(m), let N ′

m,o′ = o′−1N ′
mo ∩N ′

m.
For l � m, let ρ′ and η′ be injections from Nl and Sp(l) respectively to Sp(m) given by

ρ′(u) =


u 12m−2l

u∗


 , η′(h) =


1m−l

h
1m−l


 . (4.4)

For l � n, let ρ′′ and η be injections from Nl and SO(l+ 1, l) respectively to SO(n+ 1, n) given by

ρ′′(u) =


u 12n+1−2l

u∗


 , η(g) =


1n−l

g
1n−l


 . (4.5)

For g ∈ GLl, let Ug = Nl ∩ g−1Nlg. Let U1
m,n be the subgroup of Um,n consisting of elements

satisfying

ρ(u) =
(

1 0
n′

)
with n′ ∈ Nm.

Lemma 4.5. When o′ = t±(g), N ′
m,o′ is the direct product η′(N ′

n−l)ρ
′(Ug). When o′ = t(g), N ′

m,o′ =
ρ′(Ug).

When φ(o) = s±(g), Um,n,o is the direct product η(U1
m−l,n−l)ρ

′′(Ug). When φ(o) = s(g), Um,n,o =
ρ′′(Ug).

5. The orbital integrals

5.1 Expansion of distributions into orbital integrals
We prove the identities (1.13) and (1.15).

Proposition 5.1. Choose the measure so that A/F has volume 1, and let the Haar measures on
Um,n(A) and N ′

m(A) be the products of additive measures on A. Then if f = ⊗fv, Im,n(f) =∑
o

∏
v Io(fv). If f̃ = ⊗f̃v, Jm(f̃) =

∑
o′
∏
v Jo′(f̃v).

Proof. Let Im,n(f) be the integral defined in (1.12). From the definition of Kf , we get Im,n(f) equals∑
o

∫
Rm,n(A)

∫
o−1Rm,n(F )o∩Um,n(F )\Um,n(A)

f(r−1ou)χ−1(r)µ−1(u) dr du.

The sum is taken over the Rm,n × Um,n orbits in SO(n+ 1, n)(F ). The above integral has a factor∫
o−1Rm,n(F )o∩Um,n(F )\o−1Rm,n(A)o∩Um,n(A)

µ−1(u) du.

If o is not relevant, this integral is 0. If the orbit o is relevant, the above integrand is 1. The integration
equals the volume of

o−1Rm,n(F )o ∩ Um,n(F )\o−1Rm,n(A)o ∩ Um,n(A),

which equals 1. The integral Im,n(f) equals∑
o

∫
Rm,n(A)

∫
o−1Rm,n(A)o∩Um,n(A)\Um,n(A)

f(r−1ou)χ−1(r)µ−1(u) dr du
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where the sum is taken over the relevant orbits. When f = ⊗fv, the integration factors into local
orbital integrals defined in (1.14). We get the identity (1.13). Similarly one can show the identity
(1.15). The formal argument can be justified using the convergence proved in [Jac95].

From the above proposition, to prove the relative trace identity (2.9), we need to compare the
orbital integrals Io(fv) and Jo′(f̃v) when o′ = ι(o). We will relate the orbital integrals Io(fv) and
Jo′(f̃v) with linear functionals in the space of Weil representations. From now on, we will fix a local
place v and drop it from the notation.

5.2 The orbital integral Io(f)
Lemma 5.2. Given f ∈ C∞

c (SO(n+ 1, n)), there exists Φ = Φf ∈ C∞
c (M2n+1,m), such that

Φ(g−1[e1, . . . , em−1, en+1]) =
∫
R′

m,n

f(r−1g) dr. (5.1)

Proof. By definition R′
m,n is the subgroup that fixes the vectors e1, . . . , em−1, en+1. Thus the identity

(5.1) defines a function Φ0 ∈ C∞
c (X) (here X is the variety Y0 defined in § 3.1). Since X is

an open subset of the closed variety Y defined in § 3.1, C∞
c (X) embeds in C∞

c (Y ). The map
C∞
c (M2n+1,m) �→ C∞

c (Y ) through restriction is surjective. Thus the lemma is proved.

As a corollary, we have the following.

Lemma 5.3. Given f ∈ C∞
c (SO(n+ 1, n)), there exists Φ = Φf ∈ C∞

c (M2n+1,m), such that∫
Nm

Φ(g−1[e1, . . . , em−1, en+1]n)θ(n−1) dn =
∫
Rm,n

f(r−1g)χ−1(r) dr. (5.2)

Proof. The integral on the right-hand side can be unwound to
∫
Rm,n/R′

m,n

∫
R′

m,n
. The lemma follows

from the fact that Rm,n/R′
m,n

∼= Nm and the identity (3.12).

Let f and Φ be as in Lemma 5.3. Then Io(f) equals∫
o−1Rm,no∩Um,n\Um,n

∫
Nm

Φ(u−1φ(o)n)θ−1(n)µ−1(u) du dn. (5.3)

which we will denote by Iφ(o)(Φ).
Using the model for Weil representation (Equations (3.1)–(3.3)), we can rewrite the above inte-

gral Iφ(o)(Φ) as follows.

Lemma 5.4. Let f and Φ satisfy the identity (5.2), then

Io(f) = Iφ(o)(Φ) =
∫
Um,n,φ(o)\Um,n

∫
Nm

ωψ(u, δ(n))Φ(φ(o))θ−1(n)µ−1(u) du dn. (5.4)

Here we use the notation

δ(g) =
((

g
g∗

)
, 1

)
∈ S̃p(m), g ∈ GLm.

5.3 The orbital integral Jo′(f̃)
Recall that we define Im ∈M2n+1,m to be the element given by (4.3) when l = 0.

Lemma 5.5. Given Φ ∈ S(M2n+1,m), there is a function f̃ = f̃Φ ∈ S(S̃p(m)), such that∫
N ′

m

f̃(ñ−1g)θ′(n) dn =
∫
R0

m+1,n\Um,n

ωψ(u, g)Φ(Im)µ−1(u) du. (5.5)
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Proof. Denote the right-hand side of (5.5) as F (g). Let u ∈ Um,n, then ρ(u) ∈ Nm+1 (§ 2.1).
Let n ∈ Nm and fix a u = un such that

ρ(un) =
(

1 0
0 n−1

)
.

Then u−1
n Im = Imn. Thus from the identity (3.1),

ωψ(unu, g)Φ(Im) = ωψ(u, δ(n)g)Φ(Im) = ωψ(u, g)Φ(Imn).

A simple change of variable gives F (δ(n)g) = µ(un)F (g) = θ(n)F (g) for n ∈ Nm. From Equa-
tion (3.3), we see further that if

ñ =
((

1n V
1n

)
, 1

)
∈ N ′

m,

then
ωψ(u, ñg)Φ(Im) = ψ(Vm,1/2)ωψ(u, g)Φ(Im) = θ′(n)ωψ(u, g)Φ(Im).

We get in this case F (ñg) = θ′(n)F (g) also. Thus for n ∈ N ′
m, F (ñg) = θ′(n)F (g).

We next show that the function F (g) is also a Schwartz function on N ′
m\S̃p(m). To do so

we consider F (a, 1), where a = diag[a1, . . . , am, a
−1
m , . . . , a−1

1 ]. Assume Φ = ⊗Φi,j where Φi,j is a
function on the (i, j)th entry in M2n+1,m. A direct computation using (3.1) shows that F (a, 1)
equals

m∏
i=1

[
|ai|−i

( i−1∏
j=1

Φ̂j,i(0)
)( 2n+1∏

j=i+2

Φj,i(0)
)

Φi+1,i(ai)Φ̂i,i(a−1
i )

](
Φn+1,m(a)
Φm+1,m(a)

)
,

where Φ̂i,j denotes the Fourier transform of Φi,j. The above is clearly a Schwartz function on (F×)n.
Our claim now follows from the next lemma.

Lemma 5.6. Let F (g) be a Schwartz function on N ′
m\S̃p(m) satisfying F (ñg) = θ′(n)F (g). Let g =

nak be the Iwasawa decomposition. Define f̃(g) so that f̃(ñ(ak, 1)) = λ(n)F (ak, 1) where λ is any
Schwartz function on N ′

m such that ∫
λ(n−1)θ′(n) dn = 1.

Then the function f̃(g) is a Schwartz function on S̃p(m), satisfying∫
N ′

m

f̃(ñ−1g)θ′(n) dn = F (g).

Proof. When g = ñ0(ak, 1), the integral is just∫
λ(ñ−1ñ0)F (ak, 1)θ′(n) dn.

A change of variable n �→ nn0 gives the equation in the lemma. We now show f̃(g) ∈ S(S̃p(m)).
This is clear when the place v is a p-adic place, as in this case S(S̃p(m)) = C∞

c (S̃p(m)). Now assume
v is archimedean. We may as well consider the statement for Sp(m) instead of the covering group
S̃p(m). From the definition of the Schwartz function [Cas89], we need to show for all X differential
operators in the enveloping Lie algebra of Sp(m), the function

Xf(g) =
d

dt
f(g exp(tX))|t=0

has norm bounded by ‖g‖−r for any r > 0 (here we choose the algebraic norm ‖g‖ on Sp(m)
so that ‖gh‖ � ‖g‖‖h‖, see [Cas89]). Fix k in the maximal compact subgroup K ′ of Sp(m) and
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consider elements of the form g = n0ak. Given X, there exists a finite number of operators Xi

and polynomials fi(k) on K ′, such that

Ad(k)X =
∑
i

fi(k)Xi.

Then

Xf(n0ak) =
d

dt
f(n0ak exp(tX))|t=0

=
d

dt
f(n0a exp(tAd(k)X)k)|t=0

=
∑
i

fi(k)
d

dt
f(n0a exp(tXi)k)|t=0.

For X any operator in the enveloping Lie algebra, let

X ◦ f(n0ak) =
d

dt
f(n0a exp(tX)k)|t=0.

Thus we only need to show for any operator X, and any r > 0, that

|X ◦ f(n0ak)| =
∣∣∣∣ ddtf(n0a exp(tX)k)|t=0

∣∣∣∣ � ‖n0a‖−r. (5.6)

If X is in the Lie algebra of the K ′, then the function X ◦ f(n0ak) has the form λ(n)FX(ak) where
FX is a Schwartz function. If X is in the Lie algebra of the torus of Sp(m), then again X ◦ f(n0ak)
has the form λ(n)FX(ak) where FX is a Schwartz function. If X is in the Lie algebra of N ′

m, then
X = Xα where α is a positive root of Sp(m). Then X ◦ (fn0ak) = α(a)F (ak)Xλ(n0). Thus we
get X ◦ f always has the form λX(n0)FX(ak) where both λX and FX are Schwartz functions.
We get

|X ◦ f(n0ak)| = |λX(n0)FX(ak)| � ‖n0‖−r‖a‖−r � ‖n0a‖−r.
We have shown Lemma 5.6.

From Lemma 5.5 we get immediately the following relation between the orbital integrals on
S̃p(m) and the orbital integrals on X.

Lemma 5.7. Let Φ, f̃ satisfy the identity (5.5) in Lemma 5.5. Then for any relevant orbit {o′},
Jo′(f̃) = Jo′(Φ) where

Jo′(Φ) =
∫
N ′

m,o′\N ′
m

∫
R0

m+1,n\Um,n

ωψ(u, (o′, 1)ñ)Φ(Im)µ−1(u)θ′(n−1) dn du. (5.7)

The fixator N ′
m,o′ is described in Lemma 4.5. It turns out that the expression (5.7) almost equals

(5.4) when ι(o) = o′. This is the key relation for the proofs of Theorems 1.1, 1.2 and 1.3. We prove
this relation in the next section.

6. Comparison of orbital integrals

We prove Theorem 1.1 in this section. Fix a local place v, and fix the Haar measure on Fv to be
self dual with respect to the additive character ψ. We will drop the reference to v in the notations.
The theorem follows from the following proposition.
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Proposition 6.1. There is a function ∆(o) defined for o = s±(g) or s(g), such that for any
Φ ∈ S(M2n+1,m), we have

Jt±(g)(Φ) = ∆(s±(g))Is±(g)(Φ), g ∈ Sl, l < m, (6.1)

Jt(g)(Φ) = ∆(s(g))Is(g)(Φ), g ∈ Sm. (6.2)

The definition of ∆(o) is given in the proof, which is broken down into subsections in the
following. We treat here only the case relating Jt+(g)(Φ) with Is+(g)(Φ). The other cases can be
done similarly.

6.1 Simplification of the problem

We first need to simplify the problem at hand. We let U0
m,n,s+(g) be the group

U0
m,n,s+(g) = {u ∈ Um,n | u−1s+(g) = s+(g)}.

Then in fact U0
m,n,s+(g) = η(R0

m−l+1,n−l). Let Nm,s+(g) be the group

Nm,s+(g) = {n ∈ Nm | ∃u ∈ Um,n, u
−1s+(g) = s+(g)n}.

It is clear that for Φ ∈ S(M2n+1,m),∫
Nm,s+(g)

ωψ(1, δ(n))Φ(s+(g))θ−1(n) dn =
∫
U0

m,n,s+(g)
\Um,n,s+(g)

ωψ(u, 1)Φ(s+(g))µ−1(u) du.

Thus we get from (5.4)

Is+(g)(Φ) =
∫
η(R0

m−l+1,n−l)\Um,n

∫
Nm,s+(g)\Nm

ωψ(u, δ(n))Φ′(s+(g))θ−1(n)µ−1(u) du dn.

The group Um,n has a normal subgroup Ul,n with the quotient group isomorphic to η(Um−l,n−l).
The above equation can be written as

Is+(g)(Φ) =
∫
u2∈R0

m−l+1,n−l\Um−l,n−l

∫
Nm,s+(g)\Nm

∫
u1∈Ul,n

ωψ(u1η(u2), δ(n))

× Φ(s+(g))θ−1(n)µ−1(u1η(u2)) du1 du2 dn. (6.3)

Recall that Ñ ′
m = δ(Nm)N ′

m,U whereN ′
m,U is the Siegel unipotent subgroup ofN ′

m. LetN ′
m,t+(g),U

= N ′
m,t+(g) ∩ N ′

m,U . Then a direct calculation shows that N ′
m,t+(g),U\N ′

m,t+(g)
∼= δ(Nm,s+(g)).

Observe also that the intersection of R0
m+1,n with Ul,n is R0

l+1,n; and the intersection of R0
m+1,n

with η(Um−l,n−l) is just η(R0
m−l+1,n−l). Thus Equation (5.7) can be written as

Jt+(g)(Φ) =
∫
u2∈R0

m−l+1,n−l\Um−l,n−l

∫
n∈Nm,s+(g)\Nm

∫
n′∈N ′

m,t+(g),U
\N ′

m,U∫
u1∈R0

l+1,n\Ul,n

ωψ(u1η(u2), (t+(g), 1)ñ′δ(n))

× Φ(Im)µ−1(u1η(u2))θ′(n′−1)θ−1(n) dn dn′ du1 du2. (6.4)

Thus to prove Proposition 6.1, we only need to show that the following key identity holds for
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any Φ ∈ S(M2n+1,m):∫
N ′

m,t+(g),U
\N ′

m,U

∫
R0

l+1,n\Ul,n

ωψ(u, (t+(g), 1)ñ′)Φ(Im)θ′(n′−1)µ−1(u) du dn′

= ∆+(g)
∫
u∈Ul,n

ωψ(u, 1̃2m)Φ(s+(g))µ−1(u) du. (6.5)

6.2 Two necessary lemmas
We now state two lemmas that would imply Equation (6.5). Assume g ∈ Sl with l < m. The element
(t+(g), 1) equals

σ′lδ
((

σlg
1m−l

))
∆1(g), (6.6)

where ∆1(g) ∈ {±1} comes from cocycle computation (σ′l is defined in (3.4)).
Let Sl ⊂Ml,l be the set of matrices p such that pσl is symmetric. For p ∈ Sl, let

ξ(p) =


pσl0
σl


 .

For q ∈Ml,m−l, let

ξ′(q) =
(
q
0

)
∈M2n+1,m−l.

It is convenient to write an element in M2n+1,m as [A,B] where A ∈M2n+1,l and B ∈M2n+1,m−l.
Equation (6.5) follows from the following two lemmas.

Lemma 6.2. For any Φ ∈ S(M2n+1,m),∫
R0

l+1,n\Ul,n

ωψ(u, σ′l)Φ(Im)µ−1(u) du

= ∆2

∫
Ul,n

∫
p∈Sl

∫
q∈Ml,m−l

ωψ(u, 1̃2m)Φ([ξ(p), ξ′(q) + Im−l]) dp dqµ−1(u) du, (6.7)

where ∆2 = |2|l(l−1)/2γ(1, ψ)−(2n+1)l/2 .

Lemma 6.3. For any Φ ∈ S(M2n+1,m),∫
ñ∈N ′

m,t+(g),U
\N ′

m,U

∫
p∈Sl

∫
q∈Ml,m−l

ωψ

(
12n+1, δ

((
σlg

1m−l

))
ñ

)

× Φ([ξ(p), ξ′(q) + Im−l]) dp dqθ′(n−1) dn = ∆3(g)Φ(s+(g)), (6.8)

where

∆3(g) = |det(g)|n−m−1/2 γ(1, ψ)
γ(det(g)2n+1, ψ)

.

From the two lemmas, we see that Equation (6.5) holds with ∆+(g) = ∆1(g)∆2∆3(g).
To prove the two Lemmas, we apply the model of Weil representation (Equations (3.1)–(3.3)) and

the Fourier inversion formula. Because of the generality of the cases we consider, the proof appears
more complicated than it really is. A similar proof for a special case has appeared in [MR99a], where
the notations are not as complicated as here.
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6.3 Proof of Lemma 6.2
For u ∈ Ul,n, uIm has the following form:

uIm = [Z ′(vl, n1), ξ′(q) + Im−l], (6.9)

where vl is a vector in F l with the coordinates vli = vi for 1 � i � l, n1 ∈ Nl, q ∈Ml,m−l and

Z ′(vl, n1) =


tvl

n1

0


 .

The character µ−1(u) = θ(n1)ψ(v1). Thus the left-hand side of (6.7) is∫
n1∈Nl

∫
vl∈F l

∫
q∈Ml,m−l

ωψ(1, σ′l)Φ([Z ′(vl, n1), ξ′(q(u)) + Im−l])θ−1(n1)ψ−1(vl1) dn1 dvl dq.

From Equation (3.2), this integral equals:

γ(1, ψ)−(2n+1)l/2

∫
n1∈Nl

∫
vl∈F l

∫
q∈Ml,m−l

∫
Z∈M2n+1,l

ψ(tr(tZσ2n+1Z
′(vl, n1)))

× Φ([Z, ξ′(q) + Im−l]) dZ θ−1(n1)ψ−1(vl1) dv
l dn1 dq.

We can apply the Fourier inversion formula for the integrals over Z, n1 and vl. Let V ′
l,n be the

subspace of M2n+1,l:{
Y ′ ∈M2n+1,l

∣∣∣∣Y ′ =
(

Y ′
0

n(Y ′)σl

)
, n(Y ′) ∈ Nl, Y

′
0 ∈M2n+1−l,l

}
.

The above integral equals

γ(1, ψ)−(2n+1)l/2

∫
q∈Ml,m−l

∫
Y ′∈V ′

l,n

Φ([Y ′, ξ′(q) + Im−l])θ(n(Y ′)) dY ′ dq. (6.10)

We study the Ul,n-orbit of V ′
l,n.

Lemma 6.4. There is a bijection from Ul,n × Sl to V ′
l,n, given by (u, p) → Y ′ = uξ(p). Moreover,

µ(u) = θ−1(n(Y ′)) (here µ is the character defined on Um,n instead of Ul,n).

Proof. The fact that uξ(p) lies in V ′
l,n is clear, so is the identity on the character µ(u). If uξ(p) = ξ(p′)

with p, p′ ∈ Sl, the fact u ∈ O(n + 1, n) implies that tξ(p)σ2n+1ξ(p) = tξ(p′)σ2n+1ξ(p′), which is
just p = p′, and thus also u = 1. Therefore the above map is an injection. On the other hand, if

Y ′ =


Z1

Z2

nσl


 for some n ∈ Nl,

let

u =


n∗ ∗ ∗

12n+1−2l Z2σ
n


 ∈ Ul,n.

Then Y ′ = uξ(g) for some g ∈Ml,l. Let p = (gσl + tgσl)/2, and

u′ =


1l gσl − p

12n+1−2l

1l


 ∈ Ul,n,

then Y ′ = uu′ξ(p) with p ∈ Sl. The map is a surjection. This completes the proof of Lemma 6.4
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We now return to the proof of Lemma 6.2.
We also observe that dY ′ = |2|l(l−1)/2 du dp with the above bijection. Note that the group Ul,n

stabilizes the space of ξ′(q) with q ∈ Ml,m−l, where the action is by left multiplication. Thus with
Lemma 6.4 and Equation (3.1), we can write (6.10) as

|2|l(l−1)/2γ(1, ψ)−(2n+1)l/2

∫
Ul,n

∫
q∈Ml,m−l

∫
Sl

ωψ(u, 1̃2m)Φ([ξ(p), ξ′(q)Im−l])µ(u) dp du dq.

This finishes the proof of Lemma 6.2.

6.4 Proof of Lemma 6.3

The group N ′
m,t+(g),U is independent of g; it is just η′(N ′

m−l) ∩N ′
m,U . As δ

((σlg
1m−l

))
stabilizes

under conjugation by the groups N ′
m,U and η′(N ′

m−l), we can make a change of variable

ñ �→ δ

((
σlg

1m−l

))−1

ñδ

((
σlg

1m−l

))
.

Under this change of variable, the conjugation also stabilizes the character θ′ restricted to N ′
m,U ;

the integral in Lemma 6.3 becomes

|det(g)|−m−1

∫
ñ∈η′(N ′

m−l)∩N ′
m,U\N ′

m,U

∫
Sl

∫
q∈Ml,m−l

ωψ

(
12n+1, ñδ

((
σlg

1m−l

)))

× Φ([ξ(p), ξ′(q) + Im−l]) dp dq θ′(n−1) dn.

Let

Φg = ωψ

(
12n+1, δ

((
σlg

1m−l

)))
Φ.

An element ñ in N ′
m,U has the form

ñ = ν(S) =
((

1m S
1m

)
, 1

)
(6.11)

where

S =
(
S1 S2

S3 σm−l tS1σl

)
, S1 ∈Ml,m−l, S2 ∈ Sl, S3 ∈ Sm−l.

Then from (3.3), the above integral is

|det(g)|−m−1

∫
S1∈Ml,m−l

∫
S2∈Sl

∫
Sl

∫
q∈Ml,m−l

Φg([ξ(p), ξ′(q) + Im−l])ψ(tr(tξ(p)σ2n+1ξ(p)S2σl)/2

+ tr(t(ξ′(q) + Im−l)σ2n+1ξ(p)S1σm−l)) dp dq dS1 dS2.

From the Fourier inversion formula, the above integral equals

|det(g)|−m−1Φg([ξ(0), Im−l ]).

Since

[ξ(0), Im−l]
(
σlg

1m−l

)
= s+(g),

we get from (3.1) that

Φg([ξ(0), Im−l]) = |det(g)|n+1/2 γ(1, ψ)
γ(det(g)2n+1, ψ)

Φ(s+(g)).

We have shown Lemma 6.3.
This completes the proof of Proposition 6.1 (for the case we consider).
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Proof of Theorem 1.1. We can assume that the measure is given as in the start of the section.
Let the bijection of orbits ι be defined as in Proposition 4.4. Given f ∈ C∞

c (Gn), we find Φf ∈
C∞
c (M2n+1,n) by Lemma 5.3. Lemma 5.5 associates to Φf a function f̃ ∈ S(G̃m). Let ε(f) = f̃ .

From Proposition 6.1 and Lemmas 5.4 and 5.7, the identity (1.17) is satisfied for the pair (f, f̃).
Since clearly for g ∈ Sl(F ) a rational element,

∏
v ∆v(s±(g)) = 1 and

∏
v ∆v(s(g)) = 1, we have

shown Theorem 1.1.

7. Fundamental lemma

We prove Theorem 1.2 in this section. Fix Fv a p-adic field with odd residue characteristic. We will
drop the reference to v in the notations. Assume ψ is of order 0. Choose the measure so that G̃m(O)
and Gn(O) have volume 1.

The proof of Theorem 1.2 uses the Howe duality, Proposition 6.1, and the more precise version
of Lemmas 5.3 and 5.5.

We recall the Howe duality [How90, Ral82, Wal90]. The statement we will use is the following.

Theorem 7.1. If f ∈ Hn, f̃ ∈ H̃m, such that f̃ = λ(f) under the Hecke algebra homomorphism,
let Φ0 be the characteristic function on M2n+1,m of the lattice M2n+1,m(O), then as functions on
M2n+1,m, ∫

Gn

f(g−1)ωψ(g, 1̃2m)Φ0 dg =
∫
G̃m

f̃(h−1)ωψ(12n+1, h)Φ0 dh. (7.1)

Theorem 7.1 is an immediate consequence of the first statement in § 6.1 of [Ral82].
Let f0 be the characteristic function of Gn(O) and f̃0 be the genuine function which takes value

1 at g̃, g ∈ G′
m(O) (note that G̃m splits over G′

m(O)), and 0 at any (g, 1) with g �∈ G′
m(O). The two

functions are the unit elements of the Hecke algebras Hn and H̃m. If f ∈ Hn, then f = f ∗ f0 where
∗ is the convolution of functions. Similarly f̃ = f̃ ∗ f̃0 if f̃ ∈ H̃m.

We now state the more precise version of Lemmas 5.3 and 5.5 applied to the case when f = f0

and f̃ = f̃0.

Lemma 7.2. If f̃0, Φ0 are as above, then∫
N ′

m

f̃0(ñ−1g)θ′(n) dn =
∫
R0

m+1,n\Um,n

ωψ(u, g)Φ0(Im)µ−1(u) du. (7.2)

Proof. Let F1(g) and F2(g) be the left- and right-hand sides of (7.2) respectively. Then we have

Fi(ñg) = θ′(n)Fi(g), n ∈ N ′
m, i = 1, 2.

The equivariance is proved in the proof of Lemma 5.5. It is also clear that Fi(gk̃) = Fi(g) for
k ∈ G′

m(O) and i = 1, 2. By the Iwasawa decomposition, to show F1(g) = F2(g), we only need to
prove it for the case g = (a, 1) where a is a diagonal matrix diag[a1, . . . , am, a

−1
m , . . . , a−1

1 ].
For na ∈ G′

m(O), we have a, n both lie in G′
m(O). Thus the integral F1(a) equals 1 when |ai| = 1

for 1 � i � m, and equals 0 otherwise.
To compute F2(a), we use the isomorphism ρ : R0

m+1,n\Um,n ∼= Nm+1. For u ∈ Um,n, write

ρ(u) = n =
(

1 tv
n′

)
∈ Nm+1

with n′ ∈ Nm. From (3.1), we see that F2(a) equals∫
v∈Fm

∫
n′∈Nm

Φ0([Imn′ + e1
tv]a′)θ−1(n)ψ−1(v1) dn′ dv,
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where a′ = diag[a1, . . . , am] ∈ GLm. The set

{n ∈ Nm+1 | [Imn′ + e1
tv]a′ ∈M2n+1,m(O)}

can be described as
{n ∈ Nm+1 | n′a′′ ∈ GLm+1(O)}

with a′′ = diag[1, a1, . . . , am]. Thus the above integral is∫
n∈Nm+1,na′′∈GLm(O)

θ−1(n) dn.

This integral is 0 unless |ai| = 1 for 1 � i � m, in which case it clearly equals 1.

Similarly we have the following lemma.

Lemma 7.3. Let f0, Φ0 be as above, then∫
Rm,n

f0(r−1g)χ−1(r) dr =
∫
Nm

Φ0(g−1[e1, . . . , em−1, en+1]n)θ−1(n) dn. (7.3)

Proof. Let F1(g), F2(g) be the left- and right-hand sides of the equation respectively. We have the
equivariance condition under Rm,n and invariance condition under Gn(O):

Fi(rgk) = Fi(g)χ(r), r ∈ Rm,n, k ∈ Gn(O), i = 1, 2.

From the Iwasawa decomposition, we only need to check F1(a) = F2(a) where

a = diag[a1, . . . , am, 1, . . . , 1, a−1
m , . . . , a−1

1 ].

A simple calculation as above gives F1(a) = F2(a) = 1 when |ai| = 1, 1 � i � m, and they equal 0
otherwise.

Proof of Theorem 1.2. Let f be an element in the Hecke algebra and f̃ = λ(f). From Lemma 7.3
and the equation f ∗ f0 = f , we see in Lemma 5.3 that one can associate to f the function Φf

defined as the left-hand side of (7.1). From Lemma 7.2 and the equation f̃ ∗ f̃0 = f̃ , we see
that Lemma 5.5 holds for f̃ and Φ with Φ being the right-hand side of (7.1). By Theorem 7.1,
Φ equals Φf . Lemmas 5.4 and 5.7 and Proposition 6.1 then imply the identity (1.18).

Proof of Theorem 1.3. We choose the set of bad places S0 to be the union of archimedean places,
p-adic places with even residue characteristics, and places where ψ is not of order 0. Then the
discussion in § 1.4 shows that Theorems 1.1 and 1.2 and Proposition 5.1 imply Theorem 1.3.

8. Some remarks

We mention the relation between the relative trace identities in § 2 and those considered in some
previous works.

The identity (2.34) is considered in [Fli93]; the special case when n = 3 is considered in [Mao92]
and [Fli97]. The identity (2.9) is considered for the special case m = 1 in [MR99b]. The identity
(2.14) is considered for the special case m = 1, n = 2 in [FM04] and [Zin98]. The identity (2.9) in
the setting of § 2.3 is considered for the special case m = 2, n = 3 in [FJ96] (there they treat the
similitude group case).

Jacquet’s identity discussed in § 1.3 involves another generalization of identity (2.9) (in the case
n = m = 1), i.e. the introduction of a quadratic character χτ . We now discuss how to introduce a
quadratic character in the identity (2.9). Recall that there is a spinor norm defined on SO(n+1, n),
it is a homomorphism N : SO(n + 1, n) �→ F×/F×2. Then χτN is a character of SO(n + 1, n).
We have the following proposition.
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Proposition 8.1. For τ ∈ F×, there is a relative trace identity (in the sense of (1.2))

IGn(f : Rm,n, χ−1, Um,n, µ
−1) = IGn(f ′ : Rm,n, χ−1(χτN ), Um,n, µ−1). (8.1)

Here both distributions are over SO(n+ 1, n). There is a relative trace identity

IG̃m
(f̃ : N ′

m, θ
′, N ′

m, θ
′−1) = IG̃m

(f̃ ′ : N ′
m, θ

′
τ , N

′
m, θ

′−1
τ ). (8.2)

Here both distributions are over S̃p(m).

Proof. For the identity (8.1), let f ′(g) = ε(f)(g) = f(g)χτ (N (g)). Then

I(f ′ : Rm,n, χ−1(χτN ), Um,n, µ−1)

=
∫ ∫ ∑

γ

f ′(r−1γu)χ−1(r)χτ (N (r))µ−1(u) du dr

=
∫ ∫ ∑

γ

f(r−1γu)χ−1(r)µ−1(u) du dr,

as N (u) ≡ 1 for u ∈ Um,n and N (γ) ∈ F× for γ ∈ SO(n + 1, n)(F ). Thus we get that the identity
(8.1) holds for f ′ = ε(f) defined above. It is easy to check that ε is restricted to a Hecke algebra
homomorphism λGn at almost all non-archimedean places.

To show the identity (8.2), we consider S̃p(m) as a subgroup of G̃Sp(m), and define f̃ ′(g) =
ε(f̃)(g) = f̃(DτgD

−1
τ ) where Dτ ∈ G̃Sp(m) is given by (diag[τ1m, 1m], 1). One can check again that

this definition of ε yields identity (8.2) and is restricted to a Hecke algebra homomorphism λG̃m
at

almost all non-archimedean places.

From the above proposition and the identity (2.9) which we proved, one gets a relative trace
identity:

IGn(f : Rm,n, χ−1(χτN ), Um,n, µ−1) = IG̃m
(f̃ : N ′

m, θ
′
τ , N

′
m, θ

′−1
τ ), (8.3)

which is the generalization of Jacquet’s identity described in § 1.3.
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