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1. The Hodograph Method in Incompressible Flow

The application of the hodograph method in problems in fluid dynamics
dates back to the time of Helmholtz and Kirchhoff. The underlying principle
is simple. It is in effect to rewrite the governing differential equations with
the roles of the original dependent and independent variables reversed. Such
a procedure is not uncommon in problems depending upon ordinary differential
equations. For example, if the velocity of a particle in rectilinear motion is
prescribed as a function of distance from a fixed point, the problem of finding
the relation between its position and the time ¢ can be solved by one quadrature
if t is regarded as the dependent variable. In the two-dimensional, irrotational
motion of an incompressible fluid we have the velocity components given by
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where ¢, i are respectively the velocity potential and the stream function
and both are harmonic functions of z and y. It is a simple matter to show
that, regarded as a function of  and v, ¢ and i still satisfy Laplace’s equation.
We shall work primarily with the stream function ¢ so that we have

o %
o = O
or in polar co-ordinates ¢, 8,
& 1oy 1%
o " qdq T g oE
It is, of course, preferable to solve hydrodynamical problems directly in
the physical plane, that is to say, in the plane of z, y variables. However, some
problems cannot be formulated initially in this plane—particularly those
involving ‘ free streamlines” on which the pressure and consequently the
velocity remain constant. For one thing, the shape of these streamlines cannot
be predetermined and the fact that the boundary condition on them is non-
linear is an additional mathematical complication. Thus problems involving
jets and wakes are most easily solved in the hodograph plane where the
boundary value problem can be formulated and where the boundary conditions
are linear. The usual method of solution is to map the ¢, i plane on the u, v
plane by a series of transformations in which that of Schwarz and Cristoffel
plays a prominent part.
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This method, while it is mathematically very elegant, has a number of
unsatisfactory features. From the point of view of instruction to students
it is difficult to teach concisely with satisfactory rigour. In addition, manipula-
tion with conformal mapping tends to make the student lose sight of the
fundamental idea which is the solution of a real boundary value problem in
the hodograph plane. However, apart from these purely technical objections,
there is another more serious one. The use of the Schwarz-Cristoffel trans-
formation and the powerful complex variable theory associated with it is
limited in application to Laplace’s equation. In recent years hodograph
methods have been extensively used in problems arising in the study of motion
of compressible fluids. The governing equation for i is not now Laplace’s
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equation and consequently the principle of Schwarz and Cristoffel can no
longer be used. Workers in this field are therefore forced to work directly
with real variables in the hodograph plane and to develop independent tech-
niques. It seems highly desirable to apply these in the first place to the
problems of incompressible flow as the mathematics is in general quite straight-
forward. We shall therefore describe by a number of examples how the basic
problems for incompressible flow can be solved directly in the hodograph plane.
As well as making the analysis simpler in several cases than that used in the
method of Schwarz and Cristoffel this method serves as an easy and natural
introduction to the use of hodograph methods in the treatment of compressible
flow—both for the full hodograph equation and for the equation of Tricomi
which approximates this equation in the neighbourhood of the speed of sound.

We begin with a simple example, that of the impact of a jet normal to a
plane wall. We shall assume that the axis of the jet is at right angles to the
wall although the case of oblique impact can be solved by a very minor
extension.
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The physical and hodograph planes are shown in figs. 1 and 2. It is
sufficient to consider the upper half-plane only because of symmetry. The
boundary conditions in the hodograph plane are )=0 on C4 and CB and
=K on APB which is part of the curve ¢g=U. The value of K is given by
K=hU where k is the semi-width and U is the velocity of the jet at infinity.
It is clear that the solution of this Dirichlet problem is of the form

U

which is a series of harmonic functions satisfying the boundary conditions on
CA and CB. In order to satisfy the boundary conditions on AB we must
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As a variation of this problem we can consider that of a jet impinging
normally on a plate of finite width and breaking up into two jets inclined at
an angle 2« to one another far downstream. The value of « will depend on
the ratio of the jet width at infinity to the width of the plate. In this case
the boundary conditions in the hodograph plane are =0 on CA, CB as before,
¢=0o0n BP and =K on PA. P is the point (U, «) in polar co-ordinates in
the hodograph plane and maps into the point at infinity downstream from
the plate in the physical plane. We seek a sine series as before but now we

have to satisfy a step function boundary value on ¢g=U. We obtain
1/;=2—I£ 5 1(l—cos2noc)(l)znsinZnO. .................. (2)
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Suppose now we let K—o00 and «a—0 in such a way that Ko? remains finite.
Then the width of the jet becomes infinite and we have the solution of the
classical Helmholtz-Kirchhoff flow past a flat plate with a free stream break-
away from the trailing edges. This is

@ 2n
b=t 2 n 21" sin 2n8.
n=1 U

The value of ¢? is of no real significance as it depends on the width of the

plate which is the only length parameter which appears.
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Other problems closely related to these are obtained when we consider
not a flat plate but one consisting of two arms inclined to each other at an
angle pum. The resulting wedge-shaped profile is then placed symmetrically
with respect to the jet or main stream. In the complex variable approach
it is usually pointed out that this can be reduced to the problem already
considered by means of the transformation {=2Z#. In our present approach
we prefer to say that the problem is now one of fitting a Fourier sine series
in the region 0 < § < $uw instead of the range 0 <8<} as this is precisely the
difference between the two cases in compressible flow also. In addition non-
symmetric problems can be easily solved. Of these the most important is

v
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Fig. 3

probably that of flow against a plate which is inclined at an angle to the main
stream where there is a free stream breakaway from the ends.

Another problem in which the boundary conditions can be readily set up
in the hodograph plane is that of the Borda mouthpiece. Here there is a
reservoir of fluid which is at rest at a sufficiently large distance from an exit
consisting of a semi-infinite pipe with parallel sides which projects into the
fluid. It is not difficult to see that one half of this flow maps into the upper
semi-circle of the hodograph plane PQRO (fig. 3) and that the boundary
conditions are y=0 on OP, =K on OR and PQR. This Dirichlet problem
may be solved by using the Green’s function for a semi-circle but it is easier
to use the separation of variables solution as before, combined with the special
solution ¢y=0. Thus

K6

b=

K 5a,(2) sinng,
+ n=1a (U) sin %
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where

F g, snnf=1— 2 (0<b<m).
n=1 T

This gives
_K ® 1/(qg\" .
y== {0+2£1%(ﬁ) smn()}. ........................ (3)

We can easily modify this solution for the case of a pipe in which the sides
are inclined at a general angle um to one another. When p=1 we have the
problem of a jet issuing from a slit in a plane wall. Moreover it is possible to
deal with a whole variety of different cases in which the exit is not symmetrical
in relation to the pipe and these require the evaluation of the Fourier sine
geries of only the simplest functions.

B 0 (4 B £
Fig. 4 Fig. 5

For problems in which a body is placed in an infinite stream of undisturbed
velocity U, the point (U, 0} in the hodograph plane is a singular point as all
streamlines must pass through it. The simplest example which illustrates
the method of solution is that of flow past a semi-infinite rectangle whose
side of finite length is at right angles to the stream. It is better to consider
first the case in which the stream is contained in a channel of finite width.

The upper half of the physical plane and its mapping in the hodograph
plane are shown in figs. 4 and 5. =0 on CB, ED and CD and =K on BE.
(B is the point (U, 0) and E the point (U’, 0) where U’ is the velocity far
downstream. D is the point at infinity.) One way to solve this boundary value
problem in the hodograph plane is by means of a Fourier sine transform.
Thus

Y= f “ 4(£) sin fu e~ de,
0
where

f 116 sin £u dg=Fw).
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Here F(u)=0for 0<u< U and u>U’, and F(u)=K for U<u<U’. Hence
2K

o= f " sin gudu
%
&

Alternatively ¢ may be written immediately as
-
K[ ()
U v’ =0
where G(u', v’ ; u, v) is the Green’s function for the quarter-plane « >0, v>0.
In this form we see the expression for the limiting solution without difficulty.
As K—o0 and U—U’ we get

(cos £U —cos £U’).

_p2 %G
f=c 20
where the right hand side is evaluated at ' = U, »'=0. Asin an earlier example
the actual value of the constant ¢? has no real significance. Since the Green’s
function for a quarter-plane is a source together with three image sources,
the above form of ¢ can be interpreted as a doublet together with the image
doublet in the line #=0. It is not surprising that the singularity in the hodo-
graph plane should turn out to be of this type as this is indicated by the
geometrical patterns of the streamlines. The solution -for the limiting case
as U'—U can also be found by a Fourier sine transform where there is a delta
function condition at the point B.

2. The Extension to Compressible Flow

The above examples serve to illustrate the use of direct hodograph methods
in problems in two-dimensional incompressible flow. It is possible to quote
many others. However, we wish now to turn to the problem of compressible
flow and to show how a number of the above examples can be adapted im-
mediately to solve analogous problems in compressible flow, provided the
velocity in that flow is nowhere supersonic. This last condition is necessary
to ensure that the differential equation remains elliptic so that the boundary
value problems which occur (notably Dirichlet’s problem) remain appropriate.
This does not mean, of course, that extensions cannot be made to continue
the flow into the supersonic region in certain cases but this is a problem of
considerable difficulty and is outside the scope of our present discussion. We
shall therefore limit ourselves to flow patterns in which only subsonic and
sonic velocities appear.

It is well known that the equations of motion of a gas are non-linear in
the physical plane but when i} is written as a function of the velocity variables
the resulting equation is linear. The equation is

4 op . P _
4rt(1—m) 28 tar {1+(ﬁ—1)f} ot {1—(2,9+1)T} =0 (8)
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where 7=¢?%¢,,%, ¢, is the maximum velocity attainable by the gas, B=1/(y—1)
and y is the adiabatic index of the gas. Asy—>o0, B—0 and Laplace’s equation
for incompressible flow is obtained.

The solution of (4) which is found by separating the variables is

Pu() sin (0 + €),
where Yo(7)=7F (a,, by n+1; ),
@, and b, being the roots of the equation

262 —2(n— B)t — Bn(n+1)=0.

<

When 7 is non-integral we get _,(7) sin (nf+¢) as a ““ second solution .
When 7 is integral the second solution is complicated. However, many
important problems which include all those we consider at present can be
solved without recourse to the second solution. It is of importance to notice
that y=40 is also a solution of (4) as it was a solution of Laplace’s equation.

Suppose we consider the problems of figs. 1 and 2 with a gas instead of an
incompressible fluid. The boundary conditions in the hodograph plane are
exactly the same and the solution in the velocity variables is therefore

4K 2 1 due(T)

Y= — k2=’0 TTH T Yyl 7o) sin (4k+2)0, .oovvvieinnenann. (5)
where 7, is the value of 7 corresponding to ¢=g,, the velocity of the jet far
upstream. K is slightly changed in value, being given by K =hg, p,/p’, where
pois the density in the jet when ¢=g¢,and p’ is the density at a stagnation point;
as before 24 is the width of the jet at a large distance upstream from the plate.

Similarly if we replace (g/U)** by iy, (7)/than(7e) in equation (2) we obtain
the solution for the flow of a gas jet against a plate of finite width. We can
also solve the Borda mouthpiece problem for gases and along with it a whole
series of similar problems involving the efflux of a gas from a reservoir into a
region of constant pressure. The principle is to replace (¢/U)* where it occurs
by ¢n(7)/¢f(7o) and to leave 6 unchanged. It should be emphasised, however,
that this is not merely a tentative procedure the results of which are verified
later, but the definite solution of a specific Dirichlet problem for equation (4).
It happens that for these problems the solution can be obtained by super-
posing the solutions obtained by separating the variables. As the techniques
of Green’s functions and of transform methods for equation (4) are not so well
developed as for Laplace’s equation we are unable at present to solve the same
range of problems as we are able to solve in incompressible flow. Problems
such as that of figs. 4 and 5 do not have their analogues in compressible flow
as the hodograph plane is always restricted to the region ¢ <gq,. In practice,
as we have already mentioned, we are restricted to the region ¢ <¢*, where
g* is the velocity corresponding to a Mach number of 1, that is, to the region
in which the equation is elliptic. However, it is of interest to make a fuller
investigation of the properties of equation (4) with a view to developing for
this equation some of the more advanced techniques by means of which the
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harder boundary value problems of Laplace’s equation can be solved. The
results of some work of this nature will shortly be the subject of another
paper.* ’
Another important equation in the study of compressible flow is Tricomi’s

equation, which is an approximation of equation (4) valid for small perturba-
tions about g=g*, 6=0. This is

%y 0%

o T o =
where 7 is a certain dimensionless function of the velocity such that »=0
corresponds to the sonic velocity and n=oco is the approximation which
represents the stagnation condition. Specifically, n=(y+1)} (¢*—¢)/g* and
720 over the field. The solution which is found by separating the variables
is

7t Ky(3An?) sin A6,

where K#(z) is the modified Bessel function of order §.

It must be remembered that although mathematically we can solve problems
of the type we have been considering in terms of these functions, the approxima-
tion has physical significance only for small values of §. Thus we cannot
discuss this equation, for example, in connexion with the impact of a jet against
a plane wall but we can consider a jet impinging on a wedge of small angle
pm and solve this problem. As far as mathematical techniques are concerned
we are better equipped because the properties of Bessel functions and of
Bessel’s differential equation are well-known. The doublet type singularity
corresponding to the flow at infinity has been correctly identified and a number
of problems have been solved. The advantages arising from the appearance
of Bessel functions in place of the much more complicated hypergeometric
functions of the exact theory must be balanced against the limited range of
applicability of the transomic approximation. For solutions similar to that
given by equation (5) it is of interest to note that some algebraic simplification
is achieved when the velocity at infinity is sonic as the term corresponding to
(7o) on the denominator is now

lim 72Ky (3X7°),
n—>

which is a constant multiple of A-3.

* Proc. Camb. Phil. Soc. (in the press).
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