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1. Introduction
In this paper, we are interested in the local dynamics of antiholomorphic diffeomorphisms
with a parabolic fixed point, that is, a fixed point of multiplicity k + 1 (that is, of
codimension k). We study the classification under conjugacy by analytic changes of
coordinate of a germ of an antiholomorphic diffeomorphism f with a parabolic fixed point.
In a local coordinate, it may be chosen in the form

f (z) = z+ 1
2z
k+1 + o(zk+1) (1)

for some integer k ≥ 1.
The classification of parabolic fixed points in the holomorphic case for a germ

g(z) = z+ zk+1 +
(
k + 1

2
− b

)
z2k+1 + o(z2k+1) (2)

is well known. (See e.g. [5] or [6].) The dynamics of g (see Figure 1) is determined by
a topological invariant, the integer k, a formal invariant, the complex number b, and an
analytic invariant given by an equivalence class of 2k germs of diffeomorphisms which
are the transition functions on the space of orbits of g (the Écalle horn maps). Two germs
g1 and g2 are formally equivalent if and only if they have the same topological invariant
and formal invariant. Furthermore, they are analytically equivalent if and only if they also
have the same analytic invariant.

The goal of this paper is to establish a local classification of antiholomorphic parabolic
germs under analytic conjugation and to describe the space of orbits of such a germ
and, more generally, to explore the geometric properties of antiholomorphic parabolic
germs which are invariant under analytic conjugation. This is done for fixed points of
any multiplicity. It allows us to provide a solution to the following problems.

Questions 1.1.
(1) (Antiholomorphic root extraction) The second iterate of an antiholomorphic

parabolic germ f as in equation (1) is a holomorphic germ which is parabolic. When
is the converse true: given a parabolic germ of a holomorphic diffeomorphism g,
when is it possible to write it as g = f ◦ f for some antiholomorphic parabolic
germ f ? We call f an antiholomorphic square root of g. More generally, when does g
have an antiholomorphic root of some order?
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FIGURE 1. Dynamics of a holomorphic parabolic germ with topological invariant k = 3.

(2) Analogously, when does an antiholomorphic parabolic germ have an antiholomor-
phic root? When are the roots unique?

(3) (Embedding) Let {vt }t , where vt : z �→ vt (z), be the flow of the differential equa-
tion ż = v(z) = (zk+1/(1 + bzk)). Each vt (t �= 0) is a holomorphic germ with a
parabolic fixed point at the origin. Then v1/2(·) is an antiholomorphic germ and
any antiholomorphic parabolic germ is formally conjugate to such a germ. Given an
antiholomorphic parabolic germ f, when is it analytically conjugate to some v1/2(·)?
In that case, it allows us to embed f in the family vt .

(4) When does an antiholomorphic germ preserve a germ of a real analytic curve? This
is equivalent to saying that the germ is analytically conjugate to a germ with real
coefficients.

(5) (Centralizer) Can we describe all the antiholomorphic parabolic germs f that
commute with a holomorphic parabolic germ g? If f and g commute, then f sends the
orbits of g on the orbits of g. This greatly restricts the possible f. In an analogous way,
can we describe all the holomorphic and the antiholomorphic germs that commute
with an antiholomorphic parabolic germ?

The above problems are questions about the equivalence classes of germs under analytic
conjugacy. Therefore, the answer should be read in the modulus of classification, which
will be introduced in §5. At the time of going to press, we learnt of the recent paper
[7], where the authors raised similar types of questions about antiholomorphic polynomial
maps with a parabolic germ. It seems plausible that the local theory developed in this paper
can help solving some of these questions.

The local dynamics of an antiholomorphic parabolic germ has similarities with the
holomorphic case: indeed, the nth iterate f ◦n is holomorphic for n even. We find that the
dynamics is determined by the same topological and formal invariants, but the analytic
invariant is composed of k germs of diffeomorphisms, instead of 2k. This is explained by
the fact that an orbit of f will usually jump between two Fatou petals of its associated
holomorphic parabolic germ f ◦2 (see Figure 2), so that the dynamics in those petals are
not independent.

We observe other differences from the holomorphic case. A holomorphic germ has 2k
formal separatrices. The antiholomorphic germ has instead a privileged unique direction;
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f◦n

FIGURE 2. An orbit of f jumping between two petals. An orbit of the second iterate f ◦2 will remain either in the
upper petal or the lower petal.

a formal symmetry axis. There is also a topological difference between the cases where the
codimension is odd or even. When k is even, the rotation z �→ −z is a formal symmetry of
f, whilst it is not for k odd.

Antiholomorphic dynamics has been considered before in the context of antipolynomi-
als, that is, a polynomial function of z, p(z) = zn + · · · + a0. Iteration of antipolynomials
was studied by Nakane and Schleicher in [10], Hubbard and Schleicher in [4], and Mukher-
jee, Nakane and Schleicher in [9]. Their focus is mostly on the family of antipolynomials
pc(z) = zd + c and the description of the connectedness locus M∗

d called the multicorn.
The context is global in nature, but the local analysis contributes significantly.

An important role is played by periodic orbits of pc of odd period k, because when k is
odd, p◦k

c is antiholomorphic. In this case, all indifferent periodic orbits are parabolic and
they occur along real analytic arcs in the parameter space, as proved in [4, 9]. However,
only points of codimensions one and two are observed. This is due to a choice of a special
subfamily of antipolynomials of degree d. Indeed, higher codimension is already observed
in the two-parameter family zd + c1z+ c0, e.g. when c1 = 1 and c0 = 0.

One of the tools used for antipolynomials is called the Écalle height, introduced by
Hubbard and Schleicher in [4]. In codimension one, on the Écalle cylinder of the attractive
petal, the imaginary part of an orbit is intrinsic, and the Écalle height of the critical values
is finite. This is used to prove that at the ends of parabolic arcs in the parameter space,
pc has a parabolic periodic orbit of odd period of codimension two; see [4, §3]. When
studying the space of orbits of an antiholomorphic germ of a parabolic diffeomorphism of
any codimension, we see that the Écalle height has a meaning only on the Écalle cylinder
of the petals containing the formal symmetry axis of f. This is seen by describing the space
of orbits on a neighbourhood of a parabolic fixed point, which we do in §6.2.

The paper is organized as follows. In §2, we define the topological and formal invariants
of f. We also establish a formal normal form for f.

In §3, we study the formal normal form.
In §4, we introduce the rectifying coordinate and the Fatou coordinates in order to define

the transition functions (Definition 5.4) in §5, which is the analytic invariant. This leads to
the modulus of classification of f.

In §6.1, we recall a description of the space of orbits in the holomorphic case using 2k
spheres (or Écalle cylinders) glued with the horn maps (these are the expressions of the
transition functions in the coordinates of the spheres). We use this space of orbits in §6.2
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to identify the space of orbits of f to a manifold of real dimension two by quotienting the
space of orbits of f ◦ f by the action of f.

After describing the space of orbits, we state, in §6.3, the main result of the paper: the
classification theorem (Theorem 6.3). The idea in spirit is that two germs are equivalent
if and only if their spaces of orbits are equivalent; the classification theorem is a way to
rigorously express this statement.

Finally, with the classification theorem in hand, in §7 we answer Questions (1) to (5) of
this introduction.

2. Antiholomorphic parabolic fixed points
Notation 2.1. For the whole paper, we will use the following notation:
• σ(z) = z is the complex conjugation;
• τ(w) = 1/w is the antiholomorphic inversion;
• TC(Z) = Z + C is the translation by C ∈ C;
• Lc(w) = cw is the linear transformation with multiplier c ∈ C;
• vt is the time-t of the vector field

ż = v(z) = zk+1

1 + bzk
. (3)

A function f : U → C defined on a domainU ⊆ C is antiholomorphic if ∂f/∂z ≡ 0 on
U. From this definition, together with the chain rule, it follows that antiholomorphy is an
intrinsic property of f under holomorphic changes of variable. Equivalently, f : z �→ f (z)

is antiholomorphic if f ◦ σ : z �→ f (z) is holomorphic; therefore, f (z) expands in a power
series in terms of z.

Note that the multiplier at a fixed point of an antiholomorphic function is not intrinsic;
only its modulus is. Indeed, a scaling of λ will add a factor of λ/λ to the multiplier.

Definition 2.2. (Parabolic fixed point) A germ of an antiholomorphic diffeomorphism
fixing the origin f : (C, 0) → (C, 0) has a parabolic fixed point at 0 if 0 is an isolated
fixed point and ∣∣∣∣∂f∂z (0)

∣∣∣∣ = 1.

We will also say that f is an antiholomorphic parabolic germ.

PROPOSITION 2.3. Let f (z) = a1z+ a2z
2 + a3z

3 + · · · . If |a1| = 1, then f is formally
conjugate to a formal power series

f †(w) = w +
∞∑
n=2

Anw
n (4)

with real coefficients An. If there exists n ≥ 2 such that An �= 0, then 0 is a parabolic fixed
point of f. Let n0 = k + 1 be the minimum such n. Then a scaling brings Ak+1 to 1

2 if k is
odd (respectively ± 1

2 if k is even).

Proof. The proof is a mere computation. Let w = ĥ(z) = ∑
n≥1 bnz

n be a formal change
of coordinate and suppose that f †(w) = w + ∑

n≥2 Anw
n. If we compare h ◦ f (z) =
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f † ◦ h(z) degree by degree, we find an expression for the coefficients of the form{
b1a1 = b1,

An = bn − bn + an + Pn(A1, . . . , An−1, a1, . . . , an−1, b1, . . . , bn−1),

where Pn is some polynomial. Hence, we have arg b1 = − 1
2 arg a1 + �π with � ∈ Z. With

a recursive argument, if A1, . . . , An−1 are real, for An to be real, we may choose Im bn =
1
2 Im (an + Pn), since Pn depends only on terms that were fixed in the previous steps.

Remark 2.4. The formal change of coordinate ĥ is not unique. Indeed, only the imaginary
parts of the coefficients are determined, leaving their real parts free. However, the order of
the first nonlinear term is well defined. This leads to the following definition.

Definition 2.5. We say that f is parabolic of codimension k if the first nonlinear term of
f † is of order k + 1.

Remarks 2.6.
(1) The formal series with real coefficients preserves the real axis. This indicates that f

has a privileged unique direction, which we will call a formal symmetry axis. Hence,
a conjugacy between two antiholomorphic parabolic germs must preserve the formal
symmetry axis. We can of course suppose that this formal axis is the real axis. Note
however that in the case of even codimension, there is no canonical orientation of
the formal symmetry axis.

(2) The dynamics near the formal symmetry axis is a topological invariant. When k is
odd, a rotation of angle π will flip the attractive semi-axis with the repulsive one.
When k is even, both semi-axes are either attractive (when Ak+1 < 0) or repulsive
(when Ak+1 > 0) (see Figures 3 and 4). In this paper, we will only consider the case
Ak+1 > 0. Indeed, when Ak+1 < 0, that is, f is of negative type, then f−1 will be of
positive type and classifying f−1 is equivalent to classifying f.

Definition 2.7. When the codimension k is even, we say that f is of positive type
(respectively negative type) if Ak+1 > 0 (respectively Ak+1 < 0), where Ak+1 is the first
non-zero coefficient in (4).

The composition of two antiholomorphic germs is holomorphic. Therefore, we will look
at g := f ◦ f , which is a holomorphic parabolic germ. Recall that in the holomorphic case,
the codimension of g is the order of the first non-zero term of g(z)− z. It is linked to the
multiplicity of the fixed point: g is of codimension k if and only if the fixed point has
multiplicity k + 1.

COROLLARY 2.8. f is of codimension k if only if g = f ◦ f is of codimension k.

The case when f ◦ f = id is seen as a degenerate case where f is of ‘codimension
infinity’. Indeed, it only happens if f is analytically conjugate to the complex conjugation,
as is shown below. This case was excluded from our definition of parabolic point, since the
fixed point of σ at the origin is not isolated.
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FIGURE 3. Dynamics near the formal symmetry axis of f (z) = z+ o(z) in odd codimension. One sector is
attractive and the other repulsive; this yields the two possibilities above.

FIGURE 4. Dynamics near the formal symmetry axis of f (z) = z+ o(z) in even codimension. The possibilities
are: on the left, both sectors are repulsive (positive type) and, on the right, both are attractive (negative type).

PROPOSITION 2.9. Let f (z) = a1z+ a2z
2 + a3z

3 + · · · be an antiholomorphic germ at
the origin. The following statements are equivalent:
(1) f is formally conjugate to σ ;
(2) f is analytically conjugate to σ ;
(3) f ◦ f = id.

Proof. (1) ⇒ (3) Since there is a formal change of coordinate m such thatm ◦ f ◦m−1 =
σ , we have m ◦ f ◦ f ◦m−1 = id formally, which yields f ◦ f = id.
(3) ⇒ (2) Let us suppose that f ◦ f = id. In particular, |a1| = 1. We can of course

suppose that f is already in a coordinate such that a1 = 1.
Let F1(x, y) = Re f (z) and F2(x, y) = Im f (z); then we have

F(x, y) =
(
F1(x, y)
F2(x, y)

)
=

(
x +O(|(x, y)|2)

−y +O(|(x, y)|2)
)

.

We are interested in the fixed points of F, that is, the zeros of F − id. Since
(∂/∂y)(F2(x, y)− y)|(0,0) = −2, by the implicit function theorem, there exists an analytic
curve γ : t �→ t + iη(t) such that F2(x, y)− y = 0 if and only if y = η(x).

We complexify t to obtain a change of coordinate t = γ−1(z) = u+ iv that rectifies the
curve γ on the real line. Let f̃ = γ−1 ◦ f ◦ γ . In the new coordinate, F̃ = γ−1 ◦ F ◦ γ
has now the form

F̃ (u, v) =
(

u+ r(u, v)
−v(1 +O(|(u, v)|2))

)
,

where r(u, v) = O(|(u, v)|2). The equation for fixed points F̃ = id is equivalent to v =
0 and r(u, 0) = 0. If r(u, 0) = aus + o(us), a �= 0, then this would contradict the fact
that we must have F̃ ◦ F̃ (u, 0) = (

u
0 ). Therefore, r(u, 0) ≡ 0; in other words, r(u, v) =

vp(u, v).
We see that the real axis is a line of fixed points for f̃ near the origin. By the identity

theorem, because f̃ ◦ σ − id = 0 on the real axis near the origin, we have f̃ ≡ σ .
(2) ⇒ (1) This is immediate.
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The formal power series with real coefficients is used to determine a formal normal
form for f. Recall that a formal normal form for g := f ◦ f may be taken as the time-one
map of the flow of (see [6])

ż = zk+1

1 + bzk
(5)

for some constant b ∈ C. We will call this constant b the formal invariant. It is also
sometimes called the ‘résidu itératif’ and, as mentioned in [4], it is determined by the
holomorphic fixed point index, that is, the residue of 1/(z− g(z)) at the origin.

When g = f ◦ f is of codimension k, it is possible to get rid of the terms of
degree k + 1 < j < 2k + 1 by an analytic change of coordinate. In this coordinate, g is
written as

g(z) = z+ zk+1 +
(
k + 1

2
− b

)
z2k+1 + o(z2k+1), (6)

where b ∈ C is the formal invariant of g. When g is in this form, we will say that it is
prenormalized.

Definition 2.10. The formal invariant of f is the formal invariant of f ◦ f , which is the
constant b in (6).

As the name suggests, b is invariant under formal changes of coordinate. Since g† :=
f † ◦ f † and g have the same formal invariant, where f † is as in (4), it follows that b is real
because all the coefficients of g† are real.

An important consequence of this is that the time-t map vt of (5) for t ∈ R has a power
series at 0 with real coefficients, that is, the complex conjugation σ and vt commute.

PROPOSITION 2.11. Let v1/2 be the time- 1
2 of the vector field (5) for some b. If f is of

codimension k, of positive type if k is even, and if f has formal invariant b, then f and
σ ◦ v1/2 are formally conjugate.

Proof. Let f † be the formal power series with real coefficients formally conjugate to f
in Proposition 2.3. Then f † ◦ σ is a parabolic formal power series of z. A formal normal
form may be chosen as v1/2, the time- 1

2 of the vector field (5). Since both the coefficients
of v1/2 and f † are real, the formal change of coordinate h commutes with σ , provided that
h′(0) = 1, so that v1/2 ◦ σ is formally conjugate to f.

The formal change of coordinate conjugating f to its formal normal form can always be
truncated at the (2k + 2)th term, which yields a holomorphic change of coordinate taking
f to the form

f (z) = z+ 1
2
zk+1 +

(
k + 1

8
− b

2

)
z2k+1 + o(z2k+1), (7)

that is, f and σ ◦ v1/2 have the same first three terms.

Definition 2.12. When f is in the form (7), we will say that it is prenormalized.
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Remark 2.13. In even codimension, f may only be prenormalized as in (7) whenAk+1 > 0.
In odd codimension, f may always be prenormalized as in (7).

The formal normal form is a model to which the germs can be compared. Now that this
form has been established, we describe its properties.

3. Properties of the formal normal form
Let us start with the following observations.

PROPOSITION 3.1. Let v be the vector field (5) of codimension k and formal invariant b.
(1) v is invariant under the rotations of order k.
(2) v is invariant under the complex conjugation σ when b is real.

The holomorphic and antiholomorphic formal normal forms are respectively

v1(z) = z+ zk+1 +
(
k + 1

2
− b

)
z2k+1 + o(z2k+1), (8)

σ ◦ v1/2(z) = z+ 1
2
zk+1 +

(
k + 1

8
− b

2

)
z2k+1 + o(z2k+1), (9)

where vt is the time-t of v.
We see that the real axis is a symmetry axis. We introduce a notation for the other

symmetry axes.

Definition 3.2. Let σ� denote the reflection

σ�(z) := e2iπ�/kz for � = 0, . . . , k − 1. (10)

COROLLARY 3.3.
(1) v is invariant under σ� for � = 0, . . . , k − 1 when b is real.
(2) v1 commutes with any rotation of order k and, when b is real, it commutes with σ�

for � = 0, . . . , k − 1.
(3) When k is even, σ ◦ v1/2 commutes with z �→ −z.

We will only be interested in real values of b.

PROPOSITION 3.4. (Roots of the normal forms)
(1) For n even, v1 has k one-parameter families of antiholomorphic nth roots given by

σ� ◦ v(1/n)+iy for y ∈ R, � = 0, . . . , k − 1.
(2) For n odd, σ ◦ v1/2 has exactly one antiholomorphic nth root given by σ ◦ v1/2n.

We ask the following questions, which will be answered in §7.2.

Question 3.5. For a holomorphic parabolic germ g, how many distinct antiholomorphic
nth roots (n even) does it have?

Question 3.6. For an antiholomorphic parabolic germ f and n odd, when is the formal nth
root convergent?
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FIGURE 5. The Riemann surface of the time coordinate Z. The hole in the middle corresponds to the image of
C \D(0, r) in the z-coordinate, while a neighbourhood of z = 0 is sent to a neighbourhood of infinity. A curve

going k times around the hole in the Z-coordinate will turn one time around ∞ in the z-coordinate.

4. Fatou coordinates
For the whole section, when the codimension of f is even, we will suppose that f is of
positive type (see Definition 2.6). The formal normal form σ ◦ v1/2 is a model to which it
is natural to compare the antiholomorphic germ f. In the holomorphic study of parabolic
germs, we use holomorphic diffeomorphisms called Fatou coordinates defined on sectors
covering the origin on which the germ is conjugated to its normal form, that is, changes of
coordinates to the normal form. We then compare Fatou coordinates on the intersection of
the sectors, thus yielding a conformal invariant describing the space of orbits of the germ.
See [5] or [6] for the details.

The same approach can be adapted to the antiholomorphic case. It will be necessary to
find a sectorial normalization (Fatou coordinates) of the antiholomorphic germ f. However,
instead of adapting the construction of the holomorphic case, we will prove that it is
possible to choose Fatou coordinates of f ◦ f , which is holomorphic, that are also Fatou
coordinates of f.

4.1. Rectifying coordinates and sectors. Suppose that an antiholomorphic parabolic
germ f is of codimension k for k ≥ 1 with a formal invariant b (see Definition 2.9). The
Fatou coordinates ϕj are often constructed in the rectifying coordinate given by the time
of the vector field (5). Since v1/2 and v1 are the time maps of the vector field (5), we define
the time coordinate by

Z(z) =
∫ z

z0

1 + bζ k

ζ k+1 dζ = − 1
kzk

+ b log z+ 1
kzk0

− b log z0, (11)

which is multi-valued. See Figure 5 for its Riemann surface. It is the inverse of the flow of
(5) with starting point z0. We will single out the following 2k + 1 charts of Z:

Zj (z) = − 1
kzk

+ b log z− jiπb

k

for j = −k, . . . , −1, 0, 1, . . . , k, (12)

where log z is determined by arg z ∈ (−π , π) for −k < j < k and, for Zk (respectively
Z−k), arg(·) will be the continuation in (0, 2π) (respectively in (−2π , 0)). In particular,
we see that Zk = Z−k , and that both Z0 and Zk commute with the complex conjugation.
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Z

U0S0

FIGURE 6. The particular case of ż = z4. On the right, the sector U0 in the Z0-coordinate, obtained from a strip
(in dark grey). On the left, S0 = Z−1(U0) the sector in z, with the preimage of the strip (in dark grey).

Uj

Bj

FIGURE 7. A chart Uj on the Riemann surface with the vertical strip Bj .

FIGURE 8. Petals for the holomorphic map f ◦ f . Dynamics inside a repulsive petal on the left. Dynamics inside
an attracting petal on the right.

Now we define the sectors in the z-space (see Figure 6). On the Riemann surface of Zj ,
we write Gj for the expression of g := f ◦ f in the Zj -coordinate. Let z∗j = δeijπ/k for
−k ≤ j ≤ k and some small enough δ > 0. Let Z∗

j be the image of Zj (z∗j ). We consider a
vertical line �j passing through Z∗

j and its image Gj(�j ). Let Bj be the domain bounded
by �j and Gj(�j ) and containing �j and Gj(�j ). The sector in the Zj -coordinate is then
obtained by

Uj = {Zj | there exists n ∈ Z, G◦n
j (Zj ) ∈ Bj }

for −k ≤ j ≤ k (see Figure 7). We see that U−k = Uk , since Zk = Z−k . The sector Sj
in the z-coordinate is Z−1

j (Uj ) (see Figure 6). These sectors are sometimes called Fatou
petals. They are described in great detail in [2], although the authors only considered
attractive petals. Note that there are 2k petals, with half of them being repulsive (see
Figure 8). Also, Sk and S−k are the same petal.
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S0

S1S2

S3

S−1S−2

S−3

FIGURE 9. Ordering of the sectors for k = 3.

Remark 4.1. Note that

2iπb =
∫
∂D(0,δ)

1 + bzk

zk+1 dz =
∑
j

∫
Zj (γj )

dZj =
k∑

j=−k+1

(Zj (zj+1)− Zj (zj )),

where γj is an arc of the circle ∂D(0, δ) in Sj , with end points zj+1 and zj , where zj =
δe(i(2j−1)π)/2k . The Zj defined as in (12) satisfy this condition.

The sectors are ordered as in Figure 9. Note in particular that S0 intersects the positive
real axis and Sk = S−k the negative real axis.

Definition 4.2. The time coordinate is the Riemann surface obtained from the disjoint
union of the Uj , glued together by the transition functions: the charts are the Uj ↪→ C

with the diffeomorphism Zj : Sj → Uj given by

Zj (z) = − 1
kzk

+ b log z− jiπb

k
,

and the transition functions are Zj ◦ Z−1
j−1 = T(−iπb)/k for −k < j ≤ k, where the

composition is defined.

The time coordinate is conformally equivalent to a punctured disk of the origin.
Now we define the complex conjugation on the time coordinate. Note that on a subdo-

main S′
0 ⊆ S0 such that σ(S′

0) = S′
0, we have Z0(z) = Z0(z). The complex conjugation on

the time coordinate is then obtained by analytic continuation on the other charts Uj .

PROPOSITION 4.3. (Complex conjugation) For z ∈ Sj , let � be such that σ(z) = z ∈ S�.
We define the complex conjugation � on the time coordinate in the charts by

��,j ◦ Zj (z) = Z� ◦ σ(z).
Then � is well defined and � ◦� = id.

Proof. The proof consists of showing that� is compatible on both charts whenZj ∈ Uj ∩
Uj+1 or when �(Zj ) ∈ U� ∩ U�±1. It is a simple computation. Note that for a subdomain
S′
j ⊂ Sj such that σ(S′

j ) ⊂ S−j , then, in the charts, we have �−j ,j (Zj ) = Zj .
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(σ ◦ v
1
2 )◦n

Sv
j

Sv
−j

Zj

Z−j

FIGURE 10. On the left, an orbit of σ ◦ v1/2 in the z-coordinate. The orbit jumps between the sectors Svj and Sv−j
of σ ◦ v1/2. On the right, the same orbit is represented in the time coordinate; it is the orbit of � ◦ T1/2.

This allows us to talk about the normal form σ ◦ v1/2 in the time coordinate. It is the
antiholomorphic map � ◦ T1/2.

4.2. Fatou coordinates. Let us call the petals of the normal form Svj . The orbits of the
normal form σ ◦ v1/2 jump from Svj to Sv−j . This means that the dynamics of those two
petals is no longer independent, unlike the holomorphic case. See Figure 10.

In its prenormalized form f is close to σ ◦ v1/2 in the sense that |f − σ ◦ v1/2| =
o(|z|2k+1). In the following lemma, we prove that it is also true that F and � ◦ T1/2 are
close in the time coordinate.

LEMMA 4.4. Let f be in its prenormalized form (7) and let F (respectively � ◦ T1/2) be the
expression of f (respectively σ ◦ v1/2) in the time coordinate. On each chart Uj , we have
|F −� ◦ T1/2| = O(|Z|−1).

Proof. The proof is similar to that found in [6]. Let m(z) = f ◦ (σ ◦ v1/2)−1(z) = z+
o(z2k+1). We see that

Zj ◦m(z) = − 1
kzk

(1 + o(z2k))+ b log z+ o(z2k)− jiπb

k

= Zj (z)+ o(zk).

Since zkZj (z) → −(1/k) when z → 0, and because Zj is invertible and |Zj (z)| → ∞
when z → 0, it follows that o(zk) is O(|Zj |−1) when |Zj | → ∞. Therefore, F ◦ (� ◦
T1/2)

−1(Zj ) = Zj +O(|Zj |−1).

We now present the existence of the Fatou coordinates. Note that Hubbard and
Schleicher proved their existence in [4, Lemma 2.3] in the codimension-one case for a
map with a parabolic periodic orbit of odd period n. We recover their case by considering
f ◦n. This corresponds for us to a germ of a antiholomorphic parabolic diffeomorphism of
codimension one. The proof in higher codimension is in the same spirit with an adaptation,
since we need to work with pairs of sectors (Uj , U−j ).
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PROPOSITION 4.5. Let F and � be the expressions of f and σ in the time coordinates,
respectively. Recall that Uj = Zj (Sj ). On each Uj , there exists a holomorphic diffeomor-
phism �j : Uj → C such that

�j ◦ F ◦�−1
−j = � ◦ T1/2 (13)

whenever the composition is defined.
Moreover, if �̃j are other Fatou coordinates, then there exists Cj ∈ C for j =

1, . . . , k − 1 and C0, Ck ∈ R such that �j ◦ �̃−1
j = TCj and �−j ◦ �̃−1

−j = TCj
for j ≥ 0.

Proof. The proof makes use of the rigidity of the conformal structure of the doubly
punctured sphere S2 \ {0, ∞}, as in the proof of the uniqueness in the holomorphic case.

Let �j denote the Fatou coordinate of f ◦ f on Uj , that is,

�j ◦ (F ◦ F) ◦ (�j )−1 = T1.

(We know that it exists, since f ◦ f is holomorphic, and that it is unique up to left
composition with a translation.) In the space of the Fatou coordinate Wj = �j(Zj ), an
orbit {(f ◦ f )◦n(z)}n corresponds to {Wj + n}n. Note also that �j(Zj ) = Zj +Dj +
O(|Zj |−1) for some constant Dj ∈ C (see [6]).

We first note that each�j(Uj ) contains a vertical strip Bj of width one, by construction
of the time coordinate Uj and of the Fatou coordinate. We define

Qj = �−j ◦ F ◦ (�j )−1 for − k ≤ j ≤ k.

Then we see thatQj ◦Q−j = T1, since�j are Fatou coordinates of F ◦ F . It follows that
Qj commutes with T1, since

T1 ◦Qj = (Qj ◦Q−j ) ◦Qj

= Qj ◦ (Q−j ◦Qj)

= Qj ◦ T1.

Indeed,Qj represents F in the Fatou coordinates. It is therefore natural thatQj commutes
with T1, which represents F ◦ F in the Fatou coordinates.

Because Qj is the composition of an antiholomorphic germ by a holomorphic diffeo-
morphism,Qj is antiholomorphic. In particular,� ◦Qj is holomorphic, and� ◦Qj − id
is 1-periodic and holomorphic, so it has a Fourier expansion

� ◦Qj(Wj )−Wj =
∞∑

n=−∞
cn,j e

2iπnWj .

Moreover, by Lemma 4.4, we have � ◦Qj(W) = W +Mj +O(|W |−1), where Mj ∈ C

is a constant. Therefore, |� ◦Qj − id| is bounded when |W | → ∞, so we must have
cn,j = 0 for n ∈ Z

∗.
We conclude that Qj(Wj ) = Wj + cj ,0. Since Qj ◦Qj = T1, it follows that cj ,0 =

1
2 + iy. We then adjust all the Im cj ,0 to 0 by choosing the appropriate Fatou coordinates
(that is, composing them with a translation).
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Uj

Uj−1

Uj−1 ∩ Uj

FIGURE 11. Charts Uj−1 and Uj on the time coordinate. They intersect in a region containing (in this case) an
upper half-plane.

The uniqueness comes from a combination of the uniqueness of the Fatou coordinates
for the holomorphic f ◦ f and having to preserve the constants cj ,0 = 1

2 .

5. Modulus of analytic classification
If two antiholomorphic parabolic germs are analytically conjugate, then they have the same
space of orbits. The space of orbits of an antiholomorphic parabolic germ f is a quotient of
the set of orbits of the associated holomorphic parabolic germ g = f ◦ f . Hence, we start
by describing the space of orbits of g; on a Fatou coordinate, it is the quotient by T1, which
is a bi-infinite cylinder. We also need to identify some orbits represented in two different
Fatou coordinates. This is done by means of the transition maps (the horn maps of Écalle).

We will describe the space of orbits of f in §6.1 and classify the antiholomorphic germs
in §6.3. To do both of these, we will need the transition functions, which will form an
analytic invariant.

The transition functions we describe here are the same as for the holomorphic case. We
will introduce what we need here; all the details are found in [5] or [6].

In the time coordinate, if Uj is a repelling (respectively attractive) petal, then Uj and
Tiπb/k(Uj+1) intersect on a domain containing an upper half-plane (respectively a lower
half-plane); see Figure 11. (Recall that T−iπb/k is a transition function on a Riemann
surface of the time coordinate; see Definition 4.2.) We can compare the Fatou coordinates
�j and �j+1 by looking at

�j : Vj
�−1
j−→ Uj ∩ Tiπb/k(Uj+1)

T−iπb/k−−−→ T−(iπb)/k(Uj ) ∩ Uj+1
�j+1−→ Vj+1,

respectively

�j : Vj+1
�−1
j+1−→ Uj+1 ∩ T−(iπb)/k(Uj )

Tiπb/k−−−→ Tiπb/k(Uj+1) ∩ Uj �j−→ Vj ,

where Vj = �j(Uj ) for all j. This yields a diffeomorphism defined on a domain of Vj
(respectively Vj+1) containing an upper half-plane (respectively lower half-plane) with its
image in Vj+1 (respectively Vj ) also containing some upper half-plane (respectively lower
half-plane).

Notice the order of the composition for �j : we choose the convention that these
functions will go from a repulsive petal to an attractive petal. Figure 12 is an illustration of
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ξ1

ξ−1

ξ2

ξ 2

ξ3

ξ−3

S0

S1S2

S3=S−3

S−1S−2

FIGURE 12. Direction of the transition functions {ξj }j represented in the z-coordinates.

the direction of the arrows in the z-coordinate for k = 3, where ξj is the expression of �j
in the z-coordinate.

Definition 5.1. Let �j be a Fatou coordinate of f on Uj . The transition functions
(equivalent to the Écalle horn maps) of f are the 2k functions �j for j = 1, . . . , k and
j = −1, . . . , −k obtained by

�j =
⎧⎨⎩�j ◦ T− sgn(j)(iπb/k) ◦�−1

j−sgn(j) for j odd,

�j−sgn(j) ◦ Tsgn(j)(iπb/k) ◦�−1
j for j even,

(14)

where the composition is defined. Here, sgn(j) is the sign of j.

By the uniqueness of Proposition 4.5, we may change �±j by TCj ◦�j and TCj ◦
�−j for some Cj ∈ C for j = 1, . . . , k − 1, or �j by TRj ◦�j for some Rj ∈ R for
j = 0, k. This will yield another set of 2k transition functions. We will identify together
these different possible choices of transition functions at the end of this section.

The following proposition is the first step towards the geometric invariant. The transition
functions allow us to describe the space of orbits of F and F ◦ F .

PROPOSITION 5.2. Let (�−k , . . . , �−1, �1, . . . , �k) be transition functions of f. They
satisfy the equation

� ◦ T1/2 ◦�j = �−j ◦� ◦ T1/2. (15)

In particular, they are transition functions of f ◦ f and satisfy

T1 ◦�j = �j ◦ T1. (16)

Proof. The proof is identical to the holomorphic case; it follows from the definition of �j
and (13).

Equation (15) says that the orbits of � ◦ T1/2 in one Fatou coordinate are sent by the �j
on the orbits of � ◦ T1/2 in another Fatou coordinate. In those coordinates, the orbits of
� ◦ T1/2 correspond to those of f. Therefore, the transition functions allow us to identify
the same orbits of f in different coordinates.
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We can rewrite equation (15) as

�−j = � ◦ T1/2 ◦�j ◦� ◦ T−1/2, (17)

so that�−j is determined by�j . Thus, we only need half of the transition functions of f to
determine all of them. For the rest of the paper, we will work with �1, . . . , �k , knowing
that �−1, . . . , �−k are obtained from equation (17).

The transition functions in the holomorphic case are well known and their properties are
described by Ilyashenko [5]. Because the transition functions of f are also those of f ◦ f ,
they share the properties which we describe now.

Each �j satisfies equation (16); it follows that �j − id is 1-periodic and has a Fourier
expansion

�j(W)−W = cj +
∞∑
n=1

cn,j e
2iπnW for j > 0 odd,

�j(W)−W = cj +
−∞∑
n=−1

cn,j e
2iπnW for j > 0 even.

(18)

In particular, we see that |�j − id − cj | is exponentially decreasing when ImW → ∞ and
j is odd (respectively ImW → −∞ and j is even).

Since the Fatou coordinates are not unique, we may change them and obtain new
transition functions. This will change the constants cj and cn,j , but the following
alternating sum will always be preserved:

(−1)k−1c−k + (−1)k−2c−k+1 ± · · · − c−2 + c−1

− c1 + c2 − · · · + (−1)k−1ck−1 + (−1)kck = 2iπb.
(19)

We successively change �1 by T−c1−(iπb)/k ◦�1, �2 by T−c1+c2−(2iπb)/k , �3 by
T−c1+c2−c3−(3iπb)/k ◦�3, and so on. The constant terms of the new transition functions
will satisfy

cj =

⎧⎪⎪⎨⎪⎪⎩
− iπb

k
for j > 0 odd,

iπb

k
for j > 0 even.

(20)

for j = 1, 2, . . . , k. Note that, together with equation (17), the constant terms cj for j =
−k, . . . , −1 are given by cj = c−j .

Definition 5.3. (Normalized transition functions) The transition functions (�1, . . . , �k)
are said to be normalized if the constant terms cj of equation (18) satisfy (20) for j =
1, 2, . . . , k.

Even when normalized, the transition functions are not uniquely determined. There is
still a remaining degree of freedom: we may change the source and target spaces of each
�j by the same translation TC with C ∈ R.

In the case of even codimension, if f is prenormalized, then f1(z) = −f (−z) is also
prenormalized, and f and f1 are conjugate. Hence, we will need to identify their moduli.
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Definition 5.4. (Modulus of classification) We define the equivalence relation ∼ on
normalized transition functions of the form (18) by

(�1, . . . , �k) ∼ (� ′
1, . . . , � ′

k) ⇔ there exists C ∈ R, �j = TC ◦� ′
j ◦ T−C . (21)

The modulus of classification of f of codimension k (and of positive type when k is
even) (see Definition 2.6) is defined by the triple (k, b, [�1, . . . , �k]), where k is the
codimension (Definition 2.5), b is the formal invariant (Definition 2.9), and [�1, . . . , �k]
is the equivalence class of normalized transition functions of f (Definitions 5.1 and 5.3),
where the equivalence class is defined according to the following two cases.
(1) If k is odd, then [�1, . . . , �k] is the equivalence class under the relation (21).
(2) If k is even, then [�1, . . . , �k] is the equivalence class under the relation (21) and

the additional relation

(�1, . . . , �k) ∼= (� ′
1, . . . , � ′

k) ⇐⇒ � ′
j = � ◦ T1/2 ◦�k−j+1 ◦� ◦ T−1/2. (22)

This equivalence class is called the analytic invariant.

5.1. Remarks on the Écalle–Voronin modulus. In the holomorphic case, the modulus of
classification is known as the Écalle–Voronin modulus (see [5, 6]). For any holomorphic
parabolic germ g (not necessarily of the form g = f ◦ f ), we can obtain its Écalle–Voronin
modulus in the same way as described above, but without equation (15), so that the 2k
transition functions are needed. There are 2k degrees of freedom, so we normalize the
transition functions by choosing the constant terms as in (20) and with c−j = −cj ; the
remaining degree of freedom is a translation in every Fatou coordinate by a constant C ∈
C. Therefore, we quotient by the equivalence relation

(�−k , . . . , �−1, �1, . . . , �k) ∼C (�
′−k , . . . , � ′−1, � ′

1, . . . , � ′
k)

⇔ there exists C ∈ C, �j = TC ◦� ′
j ◦ T−C

for j ∈ {−k, . . . , −1} ∪ {1, . . . , k}. (23)

We also quotient by the action of the rotations of order k. If we denote the indices �−j =
�2k−j+1 for j = 1, . . . , k, then we have the identification

(�k+1, . . . , �2k ,�1, . . . , �k) ∼ (� ′
k+1+2m, . . . , � ′

2k+2m, � ′
1+2m, . . . , � ′

k+2m)

for m = 0, . . . , k − 1, (24)

where the indices are mod 2k. We will denote the equivalence class of both of
these identifications by [�−k , . . . , �−1, �1, . . . , �k]. The modulus of g is then
(k, b, [�−k , . . . , �−1, �1, . . . , �k]).

We describe the link between the Écalle–Voronin modulus of g and the modulus of
classification of an antiholomorphic parabolic germ f of positive type such that g = f ◦
f when such a f exists. The symmetry axis of f appears along one of the ‘symmetry
axes’ of g of the form e2i�π/k

R, � = 0, . . . , k − 1. (Note that for k even, e2i�π/k
R and

e2iπ(�+(k/2))/k
R are the same axis, so there are k/2 possible axes for f of positive type and

k/2 for f of negative type.) Therefore, we associate to the analytic invariant of g the regular
k-gon with the k symmetry axes ei�π/kR, � = 0, . . . , k − 1, in the following way. Divide
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Ψ1

Ψ2
Ψ3

Ψ4

Ψ−1

Ψ−2
Ψ−3

Ψ−4

Ψ5

Ψ−5

(a) Reflection s along e6iπ/5R.

Ψ1

Ψ2

Ψ3
Ψ4

Ψ−1

Ψ−2
Ψ−3

Ψ−4

Ψ5

Ψ−5

(b) Rotation r(z) = e4iπ/5z.

FIGURE 13. Codimension five. The permutations of indices induced by s and r are
s(1) = 2

s(3) = −1

s(4) = −2
...

r(1) = −4

r(2) = −3

r(3) = −2

...

Ψ1

Ψ2

Ψ3Ψ4
Ψ5

Ψ−1

Ψ−2
Ψ−3Ψ−4

Ψ−5

Ψ6

Ψ−6

(a) Reflection s along e4iπ/6R.

Ψ1Ψ2
Ψ3

Ψ4

Ψ5

Ψ−1

Ψ−2

Ψ−3

Ψ−4
Ψ−5

Ψ6
Ψ−6

(b) Rotation r1(z) = e2iπ/6z.

Ψ1 Ψ2

Ψ3

Ψ4

Ψ5

Ψ−1

Ψ−2

Ψ−3

Ψ−4

Ψ−5
Ψ6

Ψ−6

(c) Rotation r2(z) = e8iπ/6z.

FIGURE 14. Codimension six. Symmetry axis of f along e4iπ/6
R. The permutations of indices s, r1 and r2 are

s(1) = −5

s(2) = −6

s(3) = 6
...

r1(1) = −2

r1(2) = −1

r1(3) = 1
...

r2(1) = 5

r2(2) = 6

r2(3) = −6
...

the k-gon by its k symmetry axes to produce 2k sectors in the k-gon; then, starting with the
sector above the horizontal line on the right-hand side, we identify this sector with�1 and,
going anticlockwise, we associate �2, . . . , �k , �−k , . . . , �−1 to the subsequent sectors,
as in Figures 13(a) and 14(a). The dihedral group D2k of symmetries of the k-gon acts on
the sectors of the k-gon. It contains k rotations of order dividing k and k reflections. The
action is defined for an element u ∈ D2k by mapping a sector to its image by the linear
application represented by u (a rotation or a reflection).

Definition 5.5. Let u ∈ D2k and let �j be the sector of the k-gon associated with
�j . The action of u on the sectors of the regular k-gon defines a permutation on
{−k, . . . , −1, 1, . . . , k}, also denoted u by abuse of notation, defined so that u−1(�j ) =
�u(j) (see Figure 13 for k = 5 and Figure 14 for k = 6).
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PROPOSITION 5.6. Let g be a holomorphic parabolic germ with modulus (k, b, [�−k , . . . ,
�−1, �1, . . . , �k]). Suppose that f is an antiholomorphic parabolic germ of positive type
with the symmetry along e2iπ�/k

R for some � ∈ {0, 1, . . . , k − 1}. Let r be the rotation
z �→ e−2iπ�/kz and s the reflection with respect to e2iπ�/k

R. If f ◦ f = g, then there
exists a representative (� ′−k , . . . , � ′−1, � ′

1, . . . , � ′
k) of the analytic invariant of g such

that [� ′
r(1), . . . , � ′

r(k)] is the analytic invariant of f and satisfies

� ′
r(j) ◦� ◦ T1/2 = � ◦ T1/2 ◦� ′

r(−j) (25)

or, equivalently,

� ′
j ◦� ◦ T1/2 = � ◦ T1/2 ◦� ′

s(j). (26)

Proof. Let (�−k , . . . , �−1, �1, . . . , �k) be a representative of the analytic invariant
of g. Since r is a rotation with an order dividing k, it is an element of D2k . It rotates
the coordinate so that the symmetry axis corresponds to the real axis with a repulsive petal
on the side of R+ (this is the case because f is of positive type). The representative of the
modulus of g is permuted: (�r(−k), . . . , �r(−1), �r(1), . . . , �r(k)) as in (24); it now has
an equivalent representative (� ′

r(−k), . . . , � ′
r(−1), �

′
r(1), . . . , � ′

r(k)) under relation (23)
obtained from the Fatou coordinates of f, so that it satisfies

� ′
r(j) ◦� ◦ T1/2 = � ◦ T1/2 ◦� ′

r(−j).

Equation (26) follows from r−1sr = σ , where σ is the usual complex conjugation.
Indeed, on the indices, we have r(−j) = rσ (j) and, substituting � = r(j), the previous
equation becomes

� ′
� ◦� ◦ T1/2 = � ◦ T1/2 ◦� ′

s(�).

Definition 5.7. A reflection s ∈ D2k is a symmetry of the analytic modulus of g if it satisfies
(26). For each reflection s1, . . . , sn of the analytic invariant, we define H = 〈s1, . . . , sn〉
to be the group of symmetries of the modulus.

Remark 5.8. A group H as in the definition is always a dihedral group of order at most 2k
(see [3, §2.2]). If it is non-trivial, it contains a rotation of order at most k. The group of
symmetries of a modulus is related to the number of distinct antiholomorphic square roots
of g. This problem is addressed in §7.2.

The analogous result of Proposition 5.6 for the case of negative type can be obtained
by studying the inverse of a holomorphic parabolic germ g. The following proposition is
probably well known, but we could not find it in the literature, so the proof is included.

PROPOSITION 5.9. Let g be a holomorphic parabolic germ. Let the modulus of g be
(k, b, [�−k , . . . , �−1, �1, . . . , �k]). Then the modulus of g−1 is given by

(k, −b, [�̃−k , . . . , �̃−1, �̃1, . . . , �̃k]), (27)

where �̃j stands for L−1 ◦�−1
r−1
1 (j)

◦ L−1, with L−1 : Y �→ −Y and with r1, the rotation

of the indices induced by y �→ eiπ/ky (see Definition 5.5).
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Proof. Suppose that g is prenormalized. The dynamics of g−1 is reversed; therefore, the
dynamics of g−1 in the first sector S0 is attractive, but the dynamics in S−1 is repulsive. We
apply the change of coordinate y = Lλ(z) = λz, where λ = eiπ/k . Let g̃−1 = Lλ ◦ g−1 ◦
L−1
λ .
At the formal level, we apply (z, t) �→ (y, −t) to the vector field (5) to obtain

ẏ = w(y) = yk+1

1 − byk
. (28)

The formal normal form of g̃−1 is the time-1 map w1 of (28). In particular, g̃−1 has formal
invariant −b. We will denote the sectors of g̃−1 in the y-coordinate by S̃j . Note that S̃j =
L−1
λ (Sj ) = Sj−1.
The time coordinate on the sector S̃j is defined as

Yj (y) = −1
kyk

− b log y + jiπb

k
. (29)

We have the relation L−1 ◦ Yj = Zj−1 ◦ L−1
λ , where the Zj are the time coordinates of g.

Indeed, we see that

Zj−1(e
(−iπ/k)y) = 1

kyk
+ b log y − iπb

k
− (j − 1)iπb

k
= −Yj (y).

Let �j be a Fatou coordinate of g in Sj . We know that �j ◦ Zj ◦ g−1 ◦ Z−1
j ◦�−1

j =
T−1. We will show that L−1 ◦�j ◦ L−1 is a Fatou coordinate of g̃−1 on S̃j+1. Indeed, we
have

(L−1 ◦�j ◦ L−1) ◦ Yj+1 ◦ g̃−1 ◦ Y−1
j+1 ◦ (L−1 ◦�j ◦ L−1)

−1

= L−1 ◦�j ◦ Zj ◦ g−1 ◦ Z−1
j ◦�−1

j ◦ L−1

= L−1 ◦ T−1 ◦ L−1 = T1.

It follows that the transition functions �̃j of g̃−1 are given by, for j �= 1, k odd,

�̃j = �̃j ◦ T− sgn(j)(iπb/k) ◦ (�̃j−sgn(j))
−1

= L−1 ◦�j−1 ◦ T− sgn(j)(iπb/k) ◦�−1
j−1−sgn(j−1) ◦ L−1

= L−1 ◦�−1
j−1 ◦ L−1.

The other values of j are done similarly. Note however that for j = 1, the equation becomes
�̃1 = L−1 ◦�−1

−1 ◦ L−1 and that, for j = k, we have �̃−k = L−1 ◦�−1
k ◦ L−1.

6. Space of orbits and classification under analytic conjugacy
When two antiholomorphic parabolic germs are analytically conjugate, it is clear that their
spaces of orbits are essentially the same. Our guiding principle is that the space of orbits
completely describes the dynamics of the germs; when two germs have the same space of
orbits, they should be analytically conjugate. A formal statement will be given in the form
of the classification theorem (Theorem 6.3) in §6.3.
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S0 S0 ∞

0

FIGURE 15. A fundamental domain obtained byZ−1
0 (B0) in the z-coordinate (in grey) and the sphere it represents.

6.1. Description of the space of orbits. The space of orbits in the holomorphic case
is well known. It is briefly described in [5]. We will introduce the objects from the
holomorphic case needed for the antiholomorphic description.

In each Fatou coordinate of f (and f ◦ f ), we may choose a fundamental domain of
g = f ◦ f by taking any vertical strip Bj of width one. We quotient by the action of T1,
obtaining the bi-infinite Écalle cylinders. Some orbits of g will appear in two consecutive
cylinders. Since �j ◦ T1 = T1 ◦�j , we identify together those orbits by identifying Wj

with �j(Wj ) (or �−1
j (Wj ) depending on j).

The universal covering E : C → C
∗ given by w = E(W) = exp(−2iπW) is a biholo-

morphism of each cylinder onto C
∗. This allows us to see the Écalle cylinders as Riemann

spheres punctured at 0 and infinity S
2
j \ {0, ∞} (see Figure 15). We will define the horn

maps using this universal covering.

Definition 6.1. The horn maps ψj , for j = 1, . . . , k, are defined by ψj = E ◦�j ◦ E−1,
where �j is a transition function and

E(W) = exp(−2iπW). (30)

For positive j odd (respectively j even), the horn maps are defined on a punctured
neighbourhood of the origin (respectively of infinity) with their image in a neighbourhood
punctured of the origin (respectively of infinity). By the Riemann removable singularity
theorem, they extend to

ψj :

{
(C, 0) → (C, 0) for j > 0 odd,

(C, ∞) → (C, ∞) for j > 0 even.

To retrieve the ψj for j < 0, we use equation (17) in the coordinate w = E(W)

ψ−j = L−1 ◦ τ ◦ ψj ◦ L−1 ◦ τ , (31)

where L−1(w) = −w and τ(w) = 1/w.
The space of orbits of g = f ◦ f is described by the 2k spheres with identifications at

the origin or at infinity, as seen in Figure 16.
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FIGURE 16. Space of orbits for f ◦ f of codimension four.

Remark 6.2. By differentiating E ◦�j ◦ E−1, we obtain

(ψj )
′(∞) = e2π2b/k for j odd,

(ψj )
′(0) = e2π2b/k for j even,

(32)

so the product of those derivatives for j ∈ {−k, . . . , −1} ∪ {1, . . . , k} is e4π2b.

6.2. The space of orbits of f. The complex conjugation � becomes τ(w) = 1/w on the
spheres, where w ∈ S

2
j and τ(w) ∈ S

2−j . The translation T1/2 becomes L−1(w) = −w. In
the Fatou coordinates, f is � ◦ T1/2, so that on the spheres, f is L−1 ◦ τ(w) = −1/w. To
obtain the space of orbits of f, we identify w and L−1 ◦ τ(w) in the space of orbits of
f ◦ f , that is, on the 2k spheres above.

Let us first consider the case of codimension one, so that we have two sectors S0 and
S1 = S−1 in the z-coordinate and two spheres S2

0 and S
2
1. Recall that for z ∈ S0, f−1(z) is

still in S0. This means that L−1 ◦ τ acts on S
2
0. It sends 0 to ∞, the northern hemisphere

to the southern hemisphere, and the equator on itself. On the equator |w| = 1, we identify
w to −w. The resulting surface is the real projective space RP

2. This is also true for S1

and S
2
1. The equators of both spheres play a special role; they each represent orbits along

an invariant half-curve that each forms a ‘semi-axis’ of reflection for f.
Therefore, in codimension one, the space of orbits is two real projective spaces with one

germ of a holomorphic diffeomorphism

[ψ1] : (RP2, [0]) → (RP2, [0]),
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FIGURE 17. The space of orbits of f in codimension four.

where [ψ1] is the equivalence class of ψ1 under the quotient of S2 to RP
2 and [0] is the

equivalence class of the points {0, ∞} identified together. The class [ψ1] is well defined,
since ψ1 ◦ L−1 ◦ τ = τ ◦ L−1 ◦ ψ−1.

In codimension k > 1, the spheres S0 and Sk both quotient to a real projective space,
but the other spheres are identified in pairs (Sj , S−j ), so that the quotient of the union of
the two spheres is diffeomorphic to a sphere. The space of orbits is then described by two
real projective spaces together with k − 1 spheres and k equivalence classes of horn maps
[ψj ] = {ψj , ψ−j }. The class [ψj ] defines a germ at [0] = [∞] on the quotiented spheres
(Sj , S−j ), since the representatives satisfy ψj ◦ L−1 ◦ τ = L−1 ◦ τ ◦ ψ−j .

On the two extreme projective spaces we have a distinguished curve given by the
equator. The only changes of coordinates on D preserving the equator and sending opposite
points to opposite points are the linear maps Lc with |c| = 1. Hence, the lines ImW = y

are invariant. This y is the generalization of the Écalle height introduced in [4]. However,
on the other spheres, there does not appear to be a quantity preserved by changes of
coordinates.

The two projective spaces correspond to the orbits of two Fatou petals containing the
formal symmetry axis of f. The equator of each projective space corresponds to a semi-axis
of symmetry in each respective petal. These axes meet at the origin, but generally they
cannot be extended into a real analytic curve. We will see in Theorem 7.6 exactly when
they extend into a real analytic curve. This formal symmetry axis explains the existence of
the Écalle height in the two projective spaces and why the Écalle height does not exist in
the other spheres.

6.3. Classification under analytic conjugacy. We can now state and prove the main
theorem of this paper.

CLASSIFICATION THEOREM 6.3. For antiholomorphic parabolic germs of codimension
k (and of positive type when k is even), we have:
(1) the modulus of classification is a complete invariant of analytic classification under

holomorphic conjugacy;
(2) the moduli space is the set of (k, b, [�1, . . . , �k]), where the constant terms of �j

satisfy (20), and [�1, . . . , �k] is the equivalence class under the relation (21) (and
(22) for k even).
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Proof. The proof is analogous to that in the holomorphic case, which can be found in
[5, 6].

(1) Let f� : (C, 0) → (C, 0) be a germ of an antiholomorphic diffeomorphism with
a parabolic fixed point at the origin and let (k�, b�, [�1,�, . . . , �k,�]) be its modulus of
classification for � = 1, 2. We can of course suppose that f� is prenormalized.

Suppose first that f2(u) = h ◦ f1 ◦ h−1(u) for some germ of an analytic diffeomor-
phism u = h(z). The germs f1 and f2 must have the same codimension and formal
invariant, since they are topological and formal invariants. For the analytic invariant, first
let F1, F2 and H denote the expressions of f1, f2, and h in the time coordinate. If �j is a
Fatou coordinate of F2 on Uj , then�j ◦H is a Fatou coordinate of F1. It follows that they
have the same transition functions.

Conversely, suppose that f1 and f2 have the same modulus. We can choose a common
normalized representative (�1, . . . , �k) for both classes and Fatou coordinates�j ,� for f�
(� = 1, 2) such that the �j are the transition maps for these Fatou coordinates. Let ϕj ,� =
Z−1
j ◦�j ,� ◦ Zj , for � = 1, 2, be the expression of Fatou coordinates in the z-coordinate.

Then we define

hj (z) = ϕ−1
j ,1 ◦ ϕj ,2(z)

on Sj . It sends the orbits of f2 to those of f1 on Sj . On the intersection of two consecutive
sectors Sj ∩ Sj+1, we see that

hj+1 ◦ h−1
j (z) = id,

so the hj agree on the intersection. We may define h on
⋃
j Sj by h(z) = hj (z) if z ∈ Sj .

It sends a punctured neighbourhood of the origin into another punctured neighbourhood of
the origin, so, by the Riemann removable singularity theorem, h extends to a holomorphic
diffeomorphism of a neighbourhood of the origin.

Finally, we see that h ◦ f2 = f1 ◦ h, since it sends the orbits of f2 to the orbits of f1 on
a whole neighbourhood of the origin.

(2) The proof is in two steps. First we construct an abstract Riemann surface S on which
� ◦ T1/2 is well defined and we prove that this surface has the conformal type of a punctured
disk. Then we prove that � ◦ T1/2 is the germ we are looking for on the disk.

Consider a triple (k, b, [�1, . . . , �k]). We must find a parabolic germ of an antiholo-
morphic diffeomorphism with this modulus of classification.

Let (�1, . . . , �k) be a representative of the analytic invariant and let �−1, . . . , �−k
be the other transition functions obtained from (17). Let σ ◦ v1/2 be the normal form of
codimension k with formal invariant b. Let Uj be the charts in the time coordinate of v.

We consider the transition functions defined on those charts. More precisely, �1 is
defined on a domain of U0 containing an upper half-plane with its image in U1; �2 is
defined on a domain of U2 containing a lower half-plane with its image in U1, and so on.
We define the Riemann surface S by

S =
k⊔

j=−k
Uj/ ∼,
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where ∼ identifies Wj ∈ Uj with its image by �j or �j−1 (depending on j). As is
done in [6], we can build a smooth quasi-conformal mapping P : S → C

∗ and, from
the Ahlfors–Bers theorem (see [1]), find a diffeomorphism Q : D → (C, 0), where D =
P(S) ∪ {0}, so that the composition H = Q ◦ P : S → (C, 0) is holomorphic. In fact, H
is a biholomorphism of S onto some punctured disk of the origin.

By (15), we know that � ◦ T1/2 is well defined on S. The map f = H ◦� ◦ T1/2 ◦H−1

extends to the origin by f (0) = 0, since it is bounded around 0 (we can apply the Riemann
removable singularity theorem to f ◦ σ to see this). Lastly, T1 is also well defined on S,
so we set g = H ◦ T1 ◦H−1. Since T1 = (� ◦ T1/2) ◦ (� ◦ T1/2), it follows that g = f ◦ f
and, by the chain rule, |∂f/∂z|2 = g′(0). By the holomorphic case, we know that g is
a holomorphic parabolic germ of codimension k, so it follows that f is parabolic and of
codimension k. The formal invariant of f is b, since it is determined by (19).

It remains only to prove that f is of positive type. The formal symmetry axis of f is the
real line, since the �1 and �−1 are defined on U0 and �j ◦� ◦ T1/2 = � ◦ T1/2 ◦�−j .
Moreover, the petal S0 of f is repulsive, since H

∣∣
U0

◦ Z0 : U0 → U0 is a Fatou coordinate
of f and U0 contains a half-plane {ReZ < R}, that is, S0 contains all the backward iterates
of f. Therefore, f is of positive type.

We conclude that f is a germ with modulus (k, b, [�1, . . . , �k]).

7. Applications of the classification theorem
Here, we will solve Questions 1 to 5 of the introduction and other related questions.

Questions 1, 3, and 5 have holomorphic counterparts that are respectively about
the extraction of holomorphic roots, the embedding in a flow, and the centralizer of a
holomorphic parabolic germ. The answer to these questions can be found in [6] or in [8,
§2.8].

7.1. Embedding in a flow or the complex conjugate of a flow. If a holomorphic germ g is
conjugate to the normal form, that is, g = h ◦ v1 ◦ h−1, then it is embedded in the family
gt = h ◦ vt ◦ h−1. Similarly, we will say that f is embeddable if it is embedded in the
family ft := h ◦ σ ◦ vt ◦ h−1. When is an antiholomorphic parabolic germ embeddable?
This corresponds to Question 3. The answer is read in the modulus of classification.

THEOREM 7.1. (Embedding in a flow) An antiholomorphic parabolic germ f is analytically
conjugate to its normal form (that is, embeddable) if and only if the transition functions of
f are translations.

Proof. The transition functions of the normal form are translations, since the time
charts Zj are Fatou coordinates. Therefore, it follows from the classification theorem
(Theorem 6.3).

In Proposition 2.3, we proved that f is always formally conjugate to the sum of a formal
germ with real coefficients. We ask the related question.

Questions 7.2. When is a parabolic antiholomorphic germ analytically conjugate to a germ
with real coefficients?
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Of course, this is the case for any embeddable germ. But we will show in §7.3 that the
embeddable germs form a subset of infinite codimension in the set of antiholomorphic
parabolic germs conjugate to a germ with real coefficients. We first tackle Question 1.

7.2. Antiholomorphic nth root problem. Question 1 and its restatement Question 3.5, as
well as Question 3.6, are concerned with the existence of antiholomorphic roots and their
uniqueness.

THEOREM 7.3. (Antiholomorphic root extraction problem) Let g be a holomorphic
parabolic germ and let (k, b, [�−k , . . . , �−1, �1, . . . , �k]) be its Écalle–Voronin mod-
ulus (see §5.1), then:
(1) g has k one-parameter families of formal antiholomorphic nth roots, one for each of

the k formal axes of reflection;
(2) g has an antiholomorphic nth root (n even) tangent to the formal symmetry axis

eiπ�/kR if and only if there exists a representative (�−k , . . . , �−1, �1, . . . , �k)
of the equivalence relation (23) which has a symmetry property with respect to the
formal symmetry axis eiπ�/kR, namely

�j ◦� ◦ T1/n = � ◦ T1/n ◦�s�(j), (33)

where s� is the reflection of indices with respect to eiπ�/kR (see Definition 5.5);
(3) if g is not analytically conjugate to its normal form, then:

(i) each family has at most one convergent root, so g has at most k distinct
antiholomorphic nth roots fj ;

(ii) if g has m distinct antiholomorphic roots f�1 , . . ., f�m with distinct linear parts
e2iπ�j /kz, j = 1, . . . , m, then the modulus of g has gcd(�m − �1, . . . , �m −
�m−1, k) independent transition functions.

Proof. (1) That g has a one-parameter family of formal antiholomorphic nth roots on each
symmetry axis is a consequence of the fact that g is formally conjugate to the normal form
v1 and Proposition 3.4.

(2) We first prove this for the case k odd. Let

� = (�−k , . . . , �−1, �1, . . . , �k)

be a representative of the analytic invariant of g.
First, we suppose that the representative satisfies (33). To realize an antiholomorphic

root tangent to the symmetry axis e2iπ�/k
R, we rotate the coordinate byR�(z) = e−2iπ�/kz

so that this axis is on the real line and the dynamics of R� ◦ g ◦ R−1
� on the side

of the positive real axis is repulsive. Let g� = R� ◦ g ◦ R−1
� and let r correspond to

the permutation of indices defined by R� (see Definition 5.5). The representative is
permuted into (�r(−k), . . . , �r(−1), �r(1), . . . , �r(k)). Also, we have that r−1s�r = s0,
where s0(j) = −j and s� is the reflection of indices induced by σ�. Equation (33) becomes

�r(j) ◦� ◦ T1/2 = � ◦ T1/2 ◦�r(−j).
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Now we may repeat the proof of part (2) of Theorem 6.3 to obtain an antiholomorphic germ
f� : (C, 0) → (C, 0) with analytic invariant [�r(1), . . . , �r(k)] such that f� is � ◦ T1/n in
each Fatou coordinate of g�. Since (� ◦ T1/n)

◦n = T1 in the Fatou coordinates, it follows
that f ◦n

� = g�.
Conversely, suppose that g has an nth root f� tangent to the reflection axis e2iπ�/k

R.
We rotate the coordinate by R�. Let f = R� ◦ f� ◦ R−1

� . Now, in every Fatou coor-
dinate of g�, f has the form � ◦ T(1/n)+iy , by Proposition 3.4. By changing Fatou
coordinates, we may obtain � ◦ T1/n. Those Fatou coordinates give us a representative
(� ′−k , . . . , � ′−1, � ′

1, . . . , � ′
k) that is equivalent to � under the relations (23) and (24)

and that satisfies

� ′
j ◦� ◦ T1/2 = � ◦ T1/2 ◦� ′−j .

It follows that (� ′
r−1(−k), . . . , � ′

r−1(−1), �
′
r−1(1), . . . , � ′

r−1(k)
) is a representative equiva-

lent to � under relation (23) which satisfies (33), using the fact that (r−1s�r)(j) = −j .
In the case where k is even, we may have antiholomorphic roots of positive and negative

type. Those of positive type are tangent to an axis eiπ�/kR with � even and are done as
before. Those of negative type are tangent to an axis eiπ�/kR with � odd. For such a root
f�, f−1

� will be a root of positive type of g−1. By Proposition 5.9, the modulus of g−1 is

(k, −b, [�̃−k , . . . , �̃−1, �̃1, . . . , �̃k]),

where �̃j = L−1 ◦�−1
r−1
1 (j)

◦ L−1 and r1 is the rotation of indices induced by z �→ eiπ/kz.

By the previous two paragraphs, g−1 has an nth antiholomorphic root of positive type tan-
gent to eiπ�/kR if and only if there exists a representative (�̃−k , . . . , �̃−1, �̃1, . . . , �̃k)
such that

�̃j ◦� ◦ T1/n = � ◦ T1/n ◦ �̃s�(j).
By simplifying L−1 and taking the inverse on both sides, we obtain (33).

(3) (i) Suppose that g has two roots f1 and f2 from the same family. In particular,
they have the same linear term, so we may suppose that they are tangent to σ , modulo
conjugating g by a rotation of order k. In the Fatou coordinates, they take the form � ◦
T(1/2)+iyj , for j = 1, 2, by Proposition 3.4. Since � ◦ T(1/2)+iyj satisfies (15) for j = 1, 2,
and by combining with (18), we see that either y1 = y2 or the �j ’s are translations.

(ii) Lastly, consider the dihedral group D2k with its action on the regular k-gon. Recall
that we can divide a regular k-gon by its k symmetry axes to form 2k sectors, which we
associate to the transition functions (see §5.1 and Figures 13 and 14).

Let H = 〈s1, . . . , sm〉 be the subgroup of D2k generated by the reflections along the
symmetry axes of f�1 , . . . , f�m . Each element of H acts on the modulus by introducing
relations of the type

� ◦ T1/2 ◦�j = �s�(j) ◦� ◦ T1/2,

thus reducing the number of independent �j (see Figure 18). The orbit by H of a sector
represents the transition functions tied together; therefore, the number of independent
transition functions corresponds to |D2k : H |. To compute this, we first observe that H
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FIGURE 18. The orbit of one sector by the subgroup H generated by two reflections (bold axes) in
codimension 12.

must itself be a dihedral group, so that H = D2j for some j (see [3]). In fact, j is given by

j = k

gcd(�m − �1, . . . , �m − �m−1, k)
,

since any rotation smsp has order k/ gcd(�m − �p, k). It follows that |D2k : H | =
gcd(�m − �1, . . . , �m − �m−1, k).

THEOREM 7.4. Let f : (C, 0) → (C, 0) be an antiholomorphic parabolic germ of codi-
mension k and of positive type when k is even. Let (k, b, [�1, . . . , �k]) be the modulus of
f and let n ≥ 3 be an odd number. Then f has a single antiholomorphic formal nth root (n
odd). Moreover, f has an antiholomorphic nth root (n odd) if and only if

�j ◦ T1/n = T1/n ◦�j . (34)

Proof. That f has a unique formal nth root follows from Proposition 3.4.
For the second part, f has an antiholomorphic nth root if and only if the transition

functions satisfy �j ◦� ◦ T1/2n = � ◦ T1/2n ◦�−j , since we may realize � ◦ T1/2n on
the Riemann surface of f ◦ f . We combine this last equation with (15) to obtain �j ◦
T(1/2n)−(1/2) = T(1/2n)−(1/2) ◦�j . To conclude, we note that gcd(1 − n, 2n) = 2 because
n is odd, so there exists p, q ∈ Z such that (1 − n)p − 2nq=2. In other words, we have
1/n=((1 − n)/2n)p − q. Since�j commutes with T((1−n)/2n)p and with Tq (because q is
an integer), it follows that �j commutes with T1/n.

COROLLARY 7.5. f has an antiholomorphic nth root for n odd if and only if f is the square
root of g and g has a holomorphic nth root with n odd.
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Proof. Equation (34) is independent of the representative and it is equivalent to a
holomorphic parabolic germ having a holomorphic nth root (see [5]).

Suppose that g = f ◦ f and g has a holomorphic nth root. Then the modulus of g and
f satisfies (34), so that f has an antiholomorphic nth root.

The converse is direct.

7.3. Germs with an invariant real analytic curve. An antiholomorphic germ with real
coefficients preserves the real axis. Any germ f analytically conjugate to the latter will
preserve a real analytic curve; it is a property of the equivalence class of f. Therefore,
Question 7.2 is equivalent to asking when does an antiholomorphic parabolic germ f
preserve a real analytic curve?

Like the embedding problem, to preserve a germ of real axis is a condition of
codimension infinity, but it is a ‘smaller’ infinity, that is, not every transition function
needs to be a translation, but we will see that there are infinitely many conditions of the
form cn,j = c−n,−j for the Fourier coefficients in (18).

THEOREM 7.6. Let f : (C, 0) → (C, 0) be an antiholomorphic parabolic germ and
(k, b, [�1, . . . , �k]) be its modulus of classification. The following statements are
equivalent:
(1) f preserves a real analytic curve at the origin;
(2) f is analytically conjugate to a germ with real coefficients;
(3) each representative (�1, . . . , �k) satisfies �j ◦ T1/2 = T1/2 ◦�j ;
(4) each representative (�1, . . . , �k) satisfies �j ◦� = � ◦�−j , where �−j is

defined by (17).

Proof. (1) ⇒ (2) Let γ be the germ of real analytic parametrization of the invariant curve
of f. We can extend γ on a disk around the origin. Then γ−1 ◦ f ◦ γ fixes a germ of the
real axis, so its power series has real coefficients.

(2) ⇒ (3) We can of course suppose that the power series of f has real coefficients,
so that σ ◦ f = f ◦ σ . It follows that σ ◦ f is a holomorphic square root of g = f ◦ f .
Therefore, we have �j ◦ T1/2 = T1/2 ◦�j .

(3) ⇔ (4) It follows from equation (15).
(4) ⇒ (1) This is the harder part of the proof. The hypothesis implies that � is well

defined on the Riemann surface S constructed in the proof of part (2) of the classification
theorem (Theorem 6.3). Let z = H(W) be the coordinate given by H : S → (C, 0) \ {0},
the biholomorphism of S to a punctured neighbourhood of the origin. Let σ ′ and f ′ be
the expressions of � and � ◦ T1/2 in this coordinate (note that f and f ′ are analytically
conjugate). Since, on S, � and � ◦ T1/2 commute, it follows that σ ′ and f ′ commute also.
So, it remains only to show that σ ′ preserves a germ of real analytic curve at the origin.

We can extend σ ′ by σ ′(0) = 0 by the Riemann removable singularity theorem (this is
true for antiholomorphic functions, since we simply apply it to σ ′ ◦ σ , where σ(z) = z).
In the charts U0 and Uk , � fixes the real axis. These two curves carry in the z-coordinate
and meet at the origin to form a continuous curve γ fixed by σ ′. In fact, γ is a C1 curve,
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ϕA

B
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ϕ̃(B)

ϕ(γ)
a b

ϕ(∂A) = R

ϕ(A) = H

FIGURE 19. Mapping ϕ extended on A ∪ γ ∪ B.

A

B

γ

FIGURE 20. Triangle divided into two closed curves.

as H can be extended to a C1 diffeomorphism H̃ : S̃ → (C, 0), where S̃ is obtained from
S with the point ∞ = H−1(0) added.

This curve divides a small diskD(0, δ) into two connected components A and B. By the
Riemann mapping theorem, there exists a biholomorphism ϕ of A to the upper half-plane
that sends continuously the boundary of A on the real line; see Figure 19. The image of γ
corresponds to an interval [a, b]. We can extend ϕ to A ∪ γ ∪ B by

ϕ̃(z) =
{
ϕ(z) if z ∈ A ∪ γ ,

σ ◦ ϕ ◦ σ ′(z) if z ∈ B.

This is holomorphic on B, since it is the composition of a holomorphic map with two
antiholomorphic maps, and it is continuous on A ∪ γ ∪ B.

The argument to prove that ϕ̃ is holomorphic is similar to that of the Schwarz reflection
principle. The idea is to show that the integral of ϕ̃ along any triangle in A ∪ γ ∪ B
vanishes, and it will then follow from Morera’s theorem. If a simple closed curve is in
A ∪ γ or B ∪ γ , then it follows from Cauchy’s theorem (we may take a limit of closed
curves in A or B converging to the initial one). Then we can divide any triangle in
A ∪ γ ∪ B along γ to obtain a finite number of closed curves in A ∪ γ and in B ∪ γ ,
as in Figure 20. Thus, ϕ̃|−1

(a,b) is a real analytic parametrization of γ .

When f is conjugate to a germ with real coefficients, then so is the holomorphic germ
g = f ◦ f . However, it is not true that every holomorphic germ analytically conjugate to
a germ with real coefficients must have a germ f such that g = f ◦ f , as the next theorem
will show (see also Proposition 7.8). Even though this is not a property directly linked
to the antiholomorphic parabolic germs, we will still prove the following necessary and
sufficient condition for a holomorphic parabolic germ to preserve a real analytic curve.
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THEOREM 7.7. Let g : (C, 0) → (C, 0) be a parabolic holomorphic germ and let
(k, b, [�−k , . . . , �−1, �1, . . . , �k]) be its Écalle–Voronin modulus (see §5.1). The
following statements are equivalent:
(1) g preserves a germ of real analytic curve at the origin;
(2) g is analytically conjugate to a germ with real coefficients;
(3) for each representative (�−k , . . . , �−1, �1, . . . , �k), there exists y ∈ R such that

the transition functions satisfy � ◦ Tiy ◦�j = �−j ◦� ◦ Tiy;
(4) there exists a representative (�−k , . . . , �−1, �1, . . . , �k) such that �j ◦� = � ◦

�−j .

Proof. (1) ⇒ (2) and (4) ⇒ (1) are the same as in the previous theorem.
(2) ⇒ (3) Suppose that g is in a coordinate such that g = σ ◦ g ◦ σ . Let �j be a Fatou

coordinate on Uj for −k ≤ j ≤ k, where �−k = �k . Then � ◦�−j ◦� is also a Fatou
coordinate of g on Uj . By the uniqueness of the Fatou coordinate (for the holomorphic
case), there exists a constant C ∈ C such that

� ◦�−j ◦� ◦�−1
j = TC

for all j. In particular, for j = 0, by taking the inverse and conjugating both sides by �
of the previous equation, we obtain TC = T−C , so C must be pure imaginary, say iy with
y ∈ R. For j > 0 and odd, we conclude with

�j = �j ◦�−1
j−1 = T−iy ◦� ◦�−j ◦�−1

−j+1 ◦� ◦ Tiy = T−iy ◦� ◦�−j ◦� ◦ Tiy .

The other values of j are done similarly.
(3) ⇔ (4) It follows from the fact that for any two representatives (�−k , . . . , �−1,

�1, . . . , �k) and (� ′−k , . . . , � ′−1, � ′
1, . . . , � ′

k), there exists C ∈ C such that �j ◦ TC =
TC ◦� ′

j . We chooseC = −iy/2 to get a representative satisfying� ′
j ◦� = � ◦� ′−j .

PROPOSITION 7.8. There exists g with real coefficients that has no antiholomorphic
square root (see §7.2).

Proof. The holomorphic germ realized by the Écalle–Voronin modulus (1, 0, [W +
e2iπW , W + e−2iπW ]) has no antiholomorphic square root, but preserves a germ of real
analytic curve.

7.4. Centralizer in the group of holomorphic and antiholomorphic germs. Let
Diff1(0, C) (respectively Diff1(0, C)) be the set of germs of holomorphic (respectively
antiholomorphic) diffeomorphisms with a fixed point at the origin with multiplier 1. Note
in particular that an antiholomorphic germ must be tangent to σ . We set

Diff1(0, C, C) = Diff1(0, C) ∪ Diff1(0, C).

It forms a group with Diff1(0, C) as a subgroup. Next, let Ak,b ⊂ Diff1(0, C) (respectively
Ak,b ⊂ Diff1(0, C) when b is real) be the set of germs of holomorphic (respectively
antiholomorphic) diffeomorphisms with a parabolic fixed point of codimension k at the
origin and with formal invariant b.
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We will study the centralizer of g ∈ Ak,b and of f ∈ Ak,b in Diff1(0, C, C). Let us note
the following: if g ∈ Ak,b commutes with f ∈ Diff1(0, C), then the formal invariant b of
g is automatically real. In fact, we have that g and σ ◦ g ◦ σ are analytically conjugate by
means of (σ ◦ f ). So, we are interested only in b real, since, if b is not real, the centralizer
of g in Diff1(0, C, C) is the same as the centralizer of g in Diff(0, C), which is already
known (see [5]).

LEMMA 7.9. Let g ∈ Ak,b and let m ∈ Diff1(0, C, C) be a germ that commutes with g ∈
Ak,b. Then m is the identity, or analytically conjugate to σ , orm ∈ Ak,b ∪ Ak,b. Moreover,
in the Fatou coordinates of g, m will be of the form

TC or � ◦ TC for C ∈ C. (35)

Proof. If m is not the identity or analytically conjugate to σ , then m is parabolic. It must
have codimension k, since it maps the orbits of g on the orbits of g and the Fatou petals of
g on the Fatou petals of g. To see that m has the same formal invariant, we compare degree
by degree the power series on both sides of the equation m ◦ g(z) = g ◦m(z).

To see that m has one of the forms of (35), the first part of the proof of Proposition 4.5
applies almost identically to m.

The obvious germs in the centralizer of f or g are the iterates, the roots, and the iterates
of the roots, which we define below as the fractional iterates. We prove in Theorems 7.11
and 7.12 that these are all the possible elements of the centralizer, provided that f or g are
not conjugate to their respective normal forms.

Definition 7.10. Let f ∈ Ak,b (respectively g ∈ Ak,b). We say thatm ∈ Diff1(0, C, C) is a
fractional iterate of order p of f (respectively g) if there exists q ∈ Z such that gcd(p, q) =
1 and m◦p = f ◦q (respectively m◦p = g◦q ).

Note that a fractional iterate of order one is just an iterate of f or of g.

THEOREM 7.11. Let g ∈ Ak,b with b ∈ R. Then we have one of the following cases.
(1) g is embeddable, that is, g = h ◦ v1 ◦ h−1. Let gt = h ◦ vt ◦ h−1. Then the central-

izer of g is

Zg = {gt | t ∈ C} ∪ {h ◦ σ ◦ vt ◦ h−1 | t ∈ C}.
(2) g is not embeddable; then Zg contains only holomorphic and antiholomorphic

fractional iterates of g and Schwarz reflections. More precisely, there exists p ∈
N \ {0} such that the centralizer of g is one of the following:
• Zg =

⋃
d|p

{fractional iterates of order dofg};

• Zg =
⋃
d|p

{hol. fractional iterates of order dofg}

∪
⋃
d|2p
d even

{antihol. fractional iterates of order dofg};
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• Zg =
⋃
d|p

{hol. fractional iterates of order dofg}

∪
⋃
d|p
d even

{antihol. fractional iterates of order dofg}

∪ {Schwarz reflection tangent to σ }.
The centralizer includes a Schwarz reflection tangent to σ if and only if g is
analytically conjugate to a germ with real coefficients (see Theorem 7.7).

Proof. (1) Since g is embeddable, each of its transition functions is a translation, so any Tt
will commute with them. Each Tt represents a germ analytically conjugate to gt for some
t ∈ C. In the case where m is antiholomorphic, � ◦ Tt is compatible with the transition
functions with no restriction on t. It corresponds to h ◦ σ ◦ vt ◦ h−1 for t ∈ C.

(2) Since g is not embeddable, one of the transition functions is not a translation.
Suppose that g1 ∈ Diff1(0, C, C) is holomorphic and commutes with g. By Lemma 7.9,
g1 becomes Tt in the Fatou coordinates for some t ∈ C. Then Tt must commute with the
transition functions. This will only happen if the transition functions expand in the form

�j(W) = W + (−1)j
iπb

k
+

∑
�∈Z∗

c�p,j e
2iπ�pW (36)

and t = a/p for some a, p ∈ N. This corresponds to g1 being a holomorphic fractional
iterate of order p of g. Let p denote the maximal order of holomorphic roots of g.

Suppose that f1 ∈ Diff1(0, C, C) is antiholomorphic and commutes with g. We can
suppose that f1 is not a Schwarz reflection, since this is covered in Theorem 7.7. Then,
by Lemma 7.9, f1 is � ◦ Tt in the Fatou coordinates and it must be compatible with the
transition functions. Therefore, T2Re t commutes with the �j and, by the previous case, we
have 2Re t = a/r with gcd(a, r) = 1 and r | p. We have � ◦ Tt ◦�j = �−j ◦� ◦ Tt for
some representative of the modulus if and only if

cn,j = e−iπan/re2nπyc−n,−j (37)

and t = (a/2r)+ iy (y ∈ R), where cn,j are the Fourier coefficients of �j from (18).
Of course, generically there exists no y that satisfy (37), so there are no antiholomorphic
germs that commute with g in the generic case. When such a y exists, by changing the �j
by T−(iy/2) ◦�j ◦ Tiy/2, we can suppose that y = 0.

Since T1/p commutes with the�j , we have cn,j = 0 if p� |n, so that (37) becomes csp,j =
e−iπsap/rc−sp,−j .

If p/r and a are odd, then (37) becomes

csp,j =
{

−csp,j , s odd,

csp,j , s even.

This is precisely the condition for g to have an antiholomorphic root of order 2p.
If p/r or a is even, then e−iπasp/r = 1 for all s, so we obtain the condition necessary

for � to be compatible with the transition functions and then there is a Schwarz
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reflection in the centralizer of g. In that case, the highest orders of the holomorphic and
antiholomorphic iterates coincide.

Lastly, we will study the centralizer of f ∈ Ak,b in Diff1(0, C, C). Of course, we have
Zf ⊆ Zf ◦f , so the details are similar to the previous theorem.

THEOREM 7.12. Let f ∈ Ak,b. Then we have one of the following cases:
(1) f is embeddable, that is, if f = h ◦ σ ◦ v1/2 ◦ h−1, then its centralizer is

Zf = {h ◦ vt ◦ h−1 | t ∈ R} ∪ {h ◦ σ ◦ vt ◦ h−1 | t ∈ R};
(2) f is not embeddable; then Zf contains only holomorphic and antiholomorphic

fractional iterates of f and Schwarz reflections. More precisely, there exists p ∈
N \ {0} such that the centralizer of f is one of the following:
• if p is odd, then

Zf =
⋃
d|p

{hol. fractional iterates of order doff ◦ f }

∪
⋃
d|p
d odd

{antihol. fractional iterates of order doff };

• if p is even, then

Zf =
⋃
d|p

{hol. fractional iterates of order doff ◦ f }

∪
⋃
d|p
d odd

{antihol. fractional iterates of order doff };

∪ {Schwarz reflection tangent to σ }.
The centralizer includes a Schwarz reflection tangent to σ if and only if f is
analytically conjugate to a germ with real coefficients (see Theorem 7.6).

Proof. (1) In the Fatou coordinates, Tt must commute with� ◦ T1/2, so t must be real. The
rest of the details are exactly as in the proof of Theorem 7.11.

(2) Let p ∈ N be the highest order of the holomorphic roots of f ◦ f . This number
might be one, in which case Zf contains only iterates of f. Indeed, if p = 1, Zf does
not contain a Schwarz reflection, otherwise f ◦ f would have the holomorphic root σ ◦
f , which would contradict that the highest order of the holomorphic root is one. Let us
suppose that p > 1.

Let (�1, . . . , �k) be a representative of the analytic invariant of f. Let �−j be
determined by (17) for j = 1, . . . , k. Suppose that the transition functions have a Fourier
expansion

�j(W) = W + Cj +
∑
n

cn,j e
2iπnW
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for all j, where C−j = Cj = (−1)j (iπb/k) for j > 0. Because the �j satisfy �j ◦� ◦
T1/2 = � ◦ T1/2 ◦�−j , we obtain

cn,j = eiπnc−n,−j . (38)

Since f ◦ f has a root of order p, we also have T1/p ◦�j = �j ◦ T1/p, which means that
cn,j = 0 for all j when p� |n. If we write n = �p in (38), it becomes

c�p,j = eiπ�pc−�p,−j (� ∈ Z).

We have two cases.
If p is odd, then we have

c�p,j =
{
c−�p,−j if � is odd,

−c−�p,−j if � is even.

This corresponds to the necessary condition for f to have an antiholomorphic pth root.
Therefore, the maximal order of antiholomorphic root of f is at least p. To see that it
is exactly p, we simply note that if f1 is an antiholomorphic root of order q ≥ p, then
f1 ◦ f1 is a holomorphic root of order q of f ◦ f and, because p is maximal, we must have
p = q. We must also prove that antiholomorphic fractional iterates of f ◦ f are fractional
iterates of f. Suppose that f ◦ f has an antiholomorphic root of order q, where q must be
even. Then we have q/2 | p. Since p is odd, we know that q/2 must be odd. It follows that
(� ◦ T1/q)

◦q/2 = � ◦ T1/2.
If p is even, then we have cn,j = c−n,−j , which corresponds to the condition necessary

for � to be compatible with the �j . In this case, the centralizer of f contains a Schwarz
reflection, and it follows that the highest order of antiholomorphic fractional iterates of f
and the highest order of holomorphic fractional iterates of f ◦ f coincide.
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