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INTERACTION OF A SHORT-WAVE FIELD
WITH A DOMINANT LONG WAVE IN DEEP WATER:

DERIVATION FROM ZAKHAROV'S SPECTRAL
FORMULATION

A. D. D. CRAIK

(Received 6 May, 1987; revised 2 August 1987)

Abstract

The leading-order interaction of short gravity waves with a dominant long-wave
swell is calculated by means of Zakharov's [7] spectral formulation. Results are
obtained both for a discrete train of short waves and for a localised wave packet
comprising a spectrum of short waves.

The results for a discrete wavetrain agree with previous work of Longuet-
Higgins Si Stewart [5], and general agreement is found with parallel work of
Grimshaw [4] which employed a very different wave-action approach.

1. Introduction

The quadratic and cubic interactions among a spectrum of deep-water gravity
waves were represented by Zakharov [7] in terms of an integro-differential equa-
tion. This formulation was later adopted and expounded in greater detail by
Crawford, Saffman & Yuen [2], Crawford, Lake, Saffman & Yuen [3] and Yuen
& Lake [6]; see also Craik [1] for a brief account. Not surprisingly, solutions of
Zakharov's equations are available only for special cases, but these known solu-
tions often improve upon previous approximations. For example, the evolution
of a weakly-nonlinear two-dimensional wavetrain centred on a single dominant
frequency is more accurately represented by the Zakharov method than by a
nonlinear Schrodinger equation; and the 'Type 1' two- and three-dimensional
modulational instabilities of periodic wavetrains are better described than by
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[2| Interaction of short and long waves 431

the Benjamin-Feir and Phillips resonance models; see Yuen and Lake [6] for
details.

However, no study has yet been undertaken on the interaction of short and
long waves from the Zakharov standpoint. Such a study provides an interesting
complement to an approach via wave action by Grimshaw [4], which developed in
parallel with the present work. Because of the algebraic complexity that under-
lies the simplicity of Zakharov's formulation, only a leading-order approximation
is discussed here. Thus, only quadratic interactions of long and short waves are
considered, much as Longuet-Higgins and Stewart [5] first did for discrete modes.
In this limiting case, the leading-order result of Longuet-Higgins and Stewart is
recovered, with the ratio of wavenumbers of long and short waves as govern-
ing parameter. Also, results are obtained for localised packets of short waves
modified by a long-wave 'swell', that agree at leading order with the findings
of Grimshaw's analysis based on wave action. The analysis described here is of
course capable of extension to higher orders of approximation, both in terms of
the characteristic wavenumber ratio and to incorporate cubic resonant and near-
resonant interactions. However, the algebraic complexity of doing so should not
be under-estimated!

2. General formulation

To avoid elaborate preamble, we adopt the notation and formulation of Yuen
and Lake [6, pp. 111-6]. As only quadratic interactions need be considered, the
governing integro-differential equation is (c.f. Yuen and Lake, equation 107)

bt-iub + i ff K(1)(k,k1,k2)6(k1)6(k2)<5(k-k1 - k3)dkidk3
J J—oo

f f°°+ i II V^2'(k,ki,k2)6*(ki)6(k2)<5(k + ki — k2)dkidk2

JJ-oo (2.1)

+ i ff°° K(3>(k,k1,k2)6*(k1)6'(k2)«5(k + k1 +k2)dk1(ik2
J J -oo

+ • • • = 0 ,

where the complex function 6(k, () is defined, in terms of the complex Fourier
transforms »7(k, t) and 0a(k, t) of the free-surface elevation and free-surface ve-
locity potential respectively, as

6(k, t) = [uj(k)/2\k\}^2fj(k, t) + i[|k|/2a;(k)]1/2^(k, t). (2.2)

The interaction coefficients V^(k,ki,k2) are lengthy algebraic expressions,
given incorrectly in Yuen and Lake's Appendix A but correctly in Appendix
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A of Crawford et al. [2], as

V^^(k,ki,k2) = y^~^ , V'2)(k,ki,k2) = 2V^~^ V^3Uk,ki,k2) = V^

voQ = -c—K \ (k-ki =*=fcfcl) S i r + (k-kz ± kk2

|

(2.3)
Throughout, superscript * denotes complex conjugate and the frequencies u>(k)
are given by the linear dispersion relation w(k) = (gk)1/2 where k = |k|.

In previous applications of Zakharov's formulation, the quadratic interactions
played a subsidiary role and the cubic resonant interactions provided the domi-
nant wave-coupling mechanism. Here, in constrast, the disparate wavelengths of
long and short waves allow quadratic interactions to dominate cubic ones; this
invalidates the assumption, made in previous applications, that the periodicities
of quadratic interactions are all far from those of linear waves.

To study the interaction of a continuous spectrum of (relatively) short waves
with a single dominant long wave, one may set

b(k, t) = S(k, t) exp[-tw(k)<] + h.o.t., (2.4)

where

) , (2.5)

and the short-wave spectrum S(k, t) is regarded as nonzero only for a range of
wavenumbers k that are much larger than the wavenumber kw of the long wave.
Here, 6(k — kw) denotes the Dirac delta function and Bw may be taken to be a
complex constant to the required order of approximation. It follows (c.f. Yuen
and Lake, equation 109) that

idB/dt = V^lBiB260-i-2 exp[i(w - wt - w2)t]dk!dk2
J J-OO

1-2exp[i(w + wi-w 2 )«]dkidk2 (2.6)

OO

I/
J J —

where 60-1-2 = 6(k - kx - k2), V^\ = ^ ' ( k , ^ , ^ ) , B{ = B(kut), etc.

As short waves are assumed of sufficiently small amplitude that their inter-
action with the long wave dominates their mutual interactions, (2.6) simplifies
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to
idB/dt = BwB(k - kw)A exp[it{w -ww- w(k -

kw)B exp[it{u + ww- w(k + kw))]

BwB*{kw - k)Cexp[it(w - uw + u{kw - k))]

+ B^,B*{-k - kw)D exp[it{uj + ww

w i t h i n t e r a c t i o n coeff icients A , B , C , D d e n n e d a s

D = V(3)(k,kw, - k - kw + V<3)(k, - k - k,,,, k^).
(2.8)

From the expressions for VQ x 2(k,ki,k2) given by Crawford et al. it is found
that good approximations are

4TT

„ I1/2

C = -
kkw

(2.9)
The free-surface elevation r/(x, t) may be recovered (c.f. Yuen and Lake, equation
106) from

1/2 t /-oo r . -i 1/2-i
^ /

2TT

In the following sections, approximate particular solutions of (2.7) are given
for cases of (i) discrete short waves, as in the analysis of Longuet-Higgins and
Stewart [5], and (ii) a continuous but fairly narrow spectrum of short waves cen-
tred on wavenumber ko and with a characteristic spectral width A that satisfies
kw «C A «C ko- The latter case is exemplified by calculation of the modulations
of a particular finite wave packet as it is traversed by the long wave.

3. Discrete interactions

To gain an understanding of the Zakharov formulation, it is helpful first to re-
cover Longuet-Higgins and Stewart's [5] results for interaction of discrete modes.
Accordingly, it is here further assumed that the short-wave field is dominated
by a single Fourier mode. Then,

) (3.1)
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where B represents the modulations due to quadratic interaction of Bo with the

long wave. It follows from (2.7) that B satisfies

idB/dt = BwB06(k -kw - ko)A exp\it(u - uw - u>(k - k^))]

kw- ko)B exp[it(u> + uw- w(k + kw))]

- k0 - k)Cexp\it(u - u,n + oj(k,M - k))]

+ B*wB*Qb{-k -kw- ko)D exp[it{u + uw+ w(-k - k^))] + h.o.t.
(3.2)

Notice that the first two terms are slowly varying in time but that the last two
vary rapidly, with frequency close to 2u/(k). This equation may be integrated
directly to give

.^ BwB06(k-kw-k0)Aexp[it(u-ww-u}(k-kw))]
lB(k,t) = 7. 7j 1 yj

z[w - u>w - w ( k - kw)\

B^B06{k + kw- ko)B exp[
i[u> +UJW - ^ (k + ku,)]

- ko - k)C exp[it{oj - uw + u{kw - k))] (3-3)
i[ui —<JW+ u(kw — k)]

(-k -kw- ko)D exp[it(ui + uw+ w(-k -
i[ui + uw+ u(-k - kw)]

H •

Note that, owing to the respective denominators, which are 0{ww) and O(w),
the rapidly-oscillating terms have amplitudes smaller by a factor 0[{kw/ko)ll2\.
This will be exploited in the next section. An arbitrary constant of integration
has been omitted without loss.

Fourier synthesis in (2.10) yields the surface elevation

1/2 | £ .r fc() -jl/2
-uw + t + 6w)-i — cos(k0x-uj0+Oo)

•K

_ 2\BW\ \B0\A[ fc0 11/2'["u;o-l-MJ cos[(fc0 + kw)x - (u)0 + uw)t + 6W + 60]
n [2wo\ [ W

f (uw - UJQ) cos[(fc0 - kw)x - (up - ww)t + 0Q- 0W}\
l O f \O I T~

0 - ("0 - W » ) 2 J
(3.4)

after some reduction. In the latter, 9W and #o denote the constant phases of Bw

and Bo respectively. The short notation w0 = w(ko), ww = u(kw) and wo±to =
w(k0 ± kw) has been adopted. The first two terms denote the unmodulated
long and short waves while the remaining terms describe their interaction. For
simplicity, attention is further restricted to unidirectional wavenumbers, taken
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along the x-direction, and leading-order approximations (2.9) to A,B,C,D are
expressed in terms of

A =

The leading-order approximation in kw/k0 is easily recovered by Taylor-series
expansion of UJQ±W This is

T)(x, t) — aw cos(kwx - u>wt + 8W) + a0 cos(k0x - u>ot + 0O)
(3.5)

#o) sin(kwx — uwt + 0W),

with relative error O(kw/k), where

11/2 I D | r K. -i 1/2

aw =

denote the linear wave amplitudes. This result agrees with the result of Longuet-
Higgins and Stewart [5, eqs. 2.22 to 2.26] that the leading-order effect is a local
change in the wavenumber of the short wave to k' — ko + 6k, where

6k = awkwko cos(kwx — wwt + 6W). (3-6)

Note, however, that the local change in amplitude, in the present notation, is

CL — CLQ = ciQ(iwkw cos(kwx — u>wt + @w)

according to Longuet-Higgins & Stewart's equation (2.27); but this is not recov-
ered by the present theory at this order of approximation. This apparently para-
doxical result is due to the fact that the leading-order term (Longuet-Higgins
and Stewart's term in Q) is 90 degrees out of phase with the original wave,
whereas the next-order term in kw/ko in the above would give their term in P,
which has the same phase as the original wave. Since the change in amplitude
is more easily derived from the wave-action equation, once the change (3.6) in
wavenumber is known, this higher-order calculation is not presented.

4. Interactions of a continuous spectrum

Equation (2.7) may be used as starting point, with B(k, t) taken as a con-
tinuous, two-dimensional, short-wave spectrum centred on some wave-number
fco- For simplicity, it is assumed that the spectral bandwith, say A, is small
compared with fco but large compared with kw. The latter restriction enables
B(k ± kw) and cj(fc ± kw) to be approximated by their Taylor expansions

B ( k ± kw, t) = B ( k , t) ± k w B ' ( k , «) + ••• , ,

u ( k ± k w ) = w ( f c ) ± kwuj'(k) + ••• ,
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where the prime ( )' denotes partial differentiation with respect to k. It follows
that

dB/dt = awu>wk j - iB cos[t(uw - kwu') - 6W]

+ kw(dB/dk) sm[t(uw - kwJ) - 6W] (4.2)

4- (rapidly-varying terms in exp± 2 t w t ) \,

on using 2^415^1 = awujwk, where aw is the long-wave amplitude.
As in the discrete case described above, the rapidly-varying terms in (4.2) con-

tribute to B(k, t) at higher order in ko/kw than the slowly varying ones. These
may therefore be ignored in seeking the leading-order approximation; experience
of the discrete case indicates that the relative error incurred is O(kw/ko). With
the change to dimensionless quantities

6 = awkw 1 - — , K = 6k/kw, r = (uw - kwu), t - 9W, (4.3)
L w t « J

(4.2) becomes
d B / d r - (6 sin r)/cdB/d/c = -in cos TB (4.4)

at leading order, and this may be solved exactly by the method of characteristics.
Note also that kwu'/uw — 0[(fcU)/fc)1/2] Ĉ 1.

The characteristics are defined by

—dr — d/c/6/c sin r = dB/iK cos TB, (4.5)

and the solution is found to be

B(K,T) = B(/ce6-*CO9T)exp \-iKe-ScoST [*cosueScosudu] , (4.6)

where B(/c) = B{k, 0), the initial wave spectrum.
Since 6 is small, a consistent approximation is

B(K,T) = B[/c(l + 6 — 6COST)] exp[-i/csinr — |i/c6 + i^K,6sm2r + • • • ] . (4.7)

Note that /c = 6k/kw = awk need not be assumed small. Notice, too, that other
0(/c<5) terms may be dropped while retaining the /c<5-terms in the arguments of B
since B(k, 0) varies more rapidly with k, over the bandwidth A; this is equivalent
to assuming that awA is small as well as awkw.

From (2.10), the leading-order free-surface displacement is found to be

1 f°°
r)(x,t) = awcos(kwx — u>wt + 9W) H— / F(fc,r)cos[fci — ut — /csinr + 4>]dk,

"• Jo
F(k,r) = (fc/2w)1/2|B[/c(l +6 — <5cosr)]|,

(j>{k,r) = p/iB[/c(l + 6 — 6 COST)].

(4.8)
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The integral need only be taken over positive values of k (in fact, just the band-
width centred on fco) since contributions from k < 0 involve only the smaller,
rapidly-oscillating terms neglected from (4.2) above. Comparison with the case
aw = 0, when no long wave is present, shows that each short-wave component
of wavenumber k undergoes a periodic frequency modulation, to

w(fc) + d/dt(K sin r) = u(k) + awuw k cos r;

also, that the amplitude and phase of each component are related through F(k, r)
to that of a different wavenumber,

k' = k[l - 6(COST - I)},

of the initial spectrum B(k,0). Recall, however, that the omitted next-order
terms may also affect the wave amplitude, as in the discrete case considered
above.

To demonstrate these results, the particular initial spectrum

{k/2u))V2B(k, 0) = K exp[-(fc - ko)
2/A2] (4.9)

is now considered, where if is a constant that may be taken as real without
loss. With no long wave, this spectrum represents a localised wave-packet with
displacement

V{x, t) = AKir-1'2 exp {-±A2{x - u)'0t)
2} cos{k0x - uot). (4.10)

Here, u'Q = dw/dk at fco is the group velocity of the wave packet.
Application of the saddle-point method to (4.8)-(4.9) shows that the presence

of the long wave modifies the displacement to

77(x, t) = aw cos(kwx - uwt + 9W)

+ a exp {-\A7r{x - u'ot + £)2}cos(k0x - uot + ?),

£ = —(/c/fco)sinr, f = -resinr + <5fc0(cosr — l)(x — u'ot),

K = K{k0), a = (AJK'/7r1/2)[l-l-0(5)], r = 1-2«(1-COST).
(4.11)

The local wavenumber and frequency at any instant are then found to be

k = ko + d$/dx = fco + <5fc0(cosT - 1),

CJ = WQ — d$/dt = wo + awuwkocosT + 6fcow0(cosr — 1) (4-12)

+ awkwu)wko(x — u'ot) sinr.

In the latter, note that the second term exceeds the third and fourth within the
packet; but retention of the latter terms is necessary to ensure 'conservation of
waves' according to dk/dt + dui/dx = 0. The centre of the wave-packet is at

x = xc{i) =wo< + (/c/fco)sinr (4.13)
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and the 'length' of the packet changes with time by the factor [1 + 8(1 — COST)].

Since kw <§; A •c fc0, the packet length 0(A- 1) is short compared with the long
wavelength.

It follows from (4.13) that, at leading order, the centre of the packet progresses
with a horizontal velocity equal to the sum of the group velocity u'o and the
horizontal orbital-velocity component of the long wave, evaluated at the surface.
This is as expected, and agrees with Grimshaw's [4] result (3.22).

There will also be a corresponding O(6) change in the amplitude at the centre
of the packet, not given at this level of approximation but derivable from the
wave action equation, given the local wavenumber, as done by Grimshaw [4].

It is instructive to re-express f in the form

f = -Ks'm(uiwt - kwx - 9W) - 6ko(x - u'ot),

on using the fact that, within the packet,

(Sko/K)(x - u'ot) = sin[fc^(i - u'ot)] « 1.

It follows that

cos(fco2; — ^o* + ?) = cos[fcix — u>it + K sm(kwx — uwt + 0w)],

ki=ko(l-S), uii=ui(ki).

Accordingly, the short waves have averaged wavenumber fci and frequency w\
and are modulated by the long waves through the /c-term precisely in agreement
with (3.6) and the results of ray theory (Grimshaw [4]).

5. Conclusion

The interaction of short gravity waves with a long-wave swell has been con-
sidered from a spectral viewpoint that employs Zakharov's [7] formulation. For
a discrete train of short waves, results agree with those of Longuet-Higgins and
Stewart [5]. Since the latter authors' analysis is strictly valid only for wavenum-
bers that are comparable in magnitude, it had been conjectured that their results
might not apply to interaction of very long and short gravity waves; this agree-
ment is therefore reassuring.

For the interaction of long waves with a continuous spectrum of short waves,
such as occurs with a finite wave packet, the present spectral formulation yields
new results that accord with Grimshaw's [4] parallel analysis via a wave-action
approach; this, too, is satisfying.

However, the spectral approach turns out to be considerably more complicated
in application than that using wave-action concepts. Whereas the wave-action
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approach may be applied, with no great additional complication, to capillary-
gravity waves in finite depth and to long waves that are both large and steep,
such extension of the spectral formulation is much less easy (and, for steep waves,
impossible). Higher-order approximations in kw/k, and extension to include
finite water depth and surface tension could certainly be achieved, but a fresh
analysis incorporating the separation of long and short length-scales 06 initio
would be preferable to reduction of the general Zakharov formulation, with its
lengthy interaction coefficients, as was done here.

It is only for broad short-wave spectra modified by swell that the present
approach is likely to prove advantageous. Then, wave-action concepts break
down, since there need no longer be a dominant local wavenumber and frequency
with which to work. Though the present analysis was restricted to fairly narrow
spectra, the methodology for tackling such problems is now established.
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