ON MAXIMAL ENERGY AND HOSOYA INDEX OF TREES WITHOUT PERFECT MATCHING
 HONGBO HUA

(Received 10 February 2009)

Abstract

Let G be a simple undirected graph. The energy $E(G)$ of G is the sum of the absolute values of the eigenvalues of the adjacent matrix of G, and the Hosoya index $Z(G)$ of G is the total number of matchings in G. A tree is called a nonconjugated tree if it contains no perfect matching. Recently, Ou ['Maximal Hosoya index and extremal acyclic molecular graphs without perfect matching', Appl. Math. Lett. 19 (2006), 652-656] determined the unique element which is maximal with respect to $Z(G)$ among the family of nonconjugated n-vertex trees in the case of even n. In this paper, we provide a counterexample to Ou's results. Then we determine the unique maximal element with respect to $E(G)$ as well as $Z(G)$ among the family of nonconjugated n-vertex trees for the case when n is even. As corollaries, we determine the maximal element with respect to $E(G)$ as well as $Z(G)$ among the family of nonconjugated chemical trees on n vertices, when n is even.

2000 Mathematics subject classification: primary 05C50; secondary 05C05, 05C35.
Keywords and phrases: tree, perfect matching, energy of graph, spectra of graph, Hosoya index, k matchings.

1. Introduction

Let G be a simple graph with n vertices and let $A(G)$ be its adjacency matrix. The characteristic polynomial $P_{G}(\lambda)$ of $A(G)$ is defined as

$$
P_{G}(\lambda)=\operatorname{det}(\lambda I-A(G))=\sum_{i=0}^{n} a_{i} \lambda^{n-i}
$$

where I is the unit matrix of order n.
The roots $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ of the equation $P_{G}(\lambda)=0$ are called the eigenvalues of G. It is evident that each $\lambda_{i}(i=1,2, \ldots, n)$ is real since $A(G)$ is symmetric.

For a graph G, the energy $E(G)$ of G is defined to be the sum of the absolute values of the eigenvalues of the adjacent matrix of G.

In chemistry, the (experimentally determined) heats of formation of conjugated hydrocarbons are closely related to total π-electron energy. Within the framework

[^0]of the so-called HMO model the total π-electron energy is calculated from the eigenvalues of a pertinently constructed molecular graph G by the equation $E(G)=$ $\sum_{i=1}^{n}\left|\lambda_{i}\right|$.

It is well known [2] that if G is a bipartite graph on n vertices, then $P_{G}(x)$ can be expressed as

$$
P_{G}(x)=\sum_{k=0}^{\lfloor n / 2\rfloor} a_{2 k}(G) x^{n-2 k}=\sum_{k=0}^{\lfloor n / 2\rfloor}(-1)^{k} b_{2 k}(G) x^{n-2 k},
$$

where $b_{2 k}(G) \geq 0$ for $k=0,1, \ldots,\lfloor n / 2\rfloor$. In particular, $b_{0}(G)=1$ and $b_{2}(G)$ equals the number of edges of G.

Suppose that G_{1} and G_{2} are bipartite graphs. If $b_{2 k}\left(G_{1}\right) \geq b_{2 k}\left(G_{2}\right)$ holds for all $k \geq 0$, then we write $G_{1} \succeq G_{2}$ or $G_{2} \preceq G_{1}$. If $G_{1} \succeq G_{2}$ and there exists some k_{0} such that $b_{2 k_{0}}\left(G_{1}\right)>b_{2 k_{0}}\left(G_{2}\right)$, then we write $G_{1} \succ G_{2}$ or $G_{2} \prec G_{1}$. Also, we write $G_{1} \sim G_{2}$ if $G_{1} \succeq G_{2}$ and $G_{2} \preceq G_{1}$.

It is known [8] that for a bipartite graph G of order n, its energy $E(G)$ can be expressed as the Coulson integral formula

$$
\begin{equation*}
E(G)=\frac{2}{\pi} \int_{0}^{+\infty} \frac{1}{x^{2}} \ln \left(\sum_{k=0}^{\lfloor n / 2\rfloor} b_{2 k}(G) x^{2 k}\right) d x \tag{1.1}
\end{equation*}
$$

From (1.1),

$$
\begin{aligned}
& G_{1} \succ G_{2} \Rightarrow E\left(G_{1}\right)>E\left(G_{2}\right) \\
& G_{1} \succeq G_{2} \Rightarrow E\left(G_{1}\right) \geq E\left(G_{2}\right) .
\end{aligned}
$$

The Hosoya index of G is the total number of matchings in G, namely

$$
Z(G)=\sum_{k=0}^{\lfloor n / 2\rfloor} m(G ; k),
$$

where n is the number of vertices in G, and $m(G ; k)$ is the number of k-matchings in G. A k-matching of G is a k-element subset of its edge set, in which any two edges are mutually independent.

Another formula (see [6]) for the Hosoya index of a graph G is

$$
\ln Z(G)=\sum_{+} \ln \left(1+\lambda_{j}^{2}\right),
$$

where the summation is over all positive eigenvalues of G. It is convenient to set $m(G ; 0)=1, m(G ; 1)=|\mathcal{E}(G)|$ and $m(G ; k)=0$ (for $k>n / 2$), where $|\mathcal{E}(G)|$ is the number of edges in G. According to Sach's theorem [2], if G is a tree, then $b_{2 k}(G)=m(G ; k)$. Thus,

$$
\begin{aligned}
& G_{1} \succ G_{2} \Rightarrow Z\left(G_{1}\right)>Z\left(G_{2}\right) \\
& G_{1} \succeq G_{2} \Rightarrow Z\left(G_{1}\right) \geq Z\left(G_{2}\right)
\end{aligned}
$$

Figure 1. The graph $T_{r_{1}, r_{2}, r_{3}}$.

There are numerous recent results on these two subjects: see $[1,4,5,7,10,12$, $13,15,16,21-24,26]$ for graph energy, and $[6,9,11,14,17,19,20,23,25]$ for the Hosoya index.

It is well known that among all n-vertex trees, the path P_{n} is the unique maximal element with respect to $E(G)$ as well as $Z(G)$. A tree is called a nonconjugated tree if it contains no perfect matching. When n is odd, the path P_{n} is still the unique element which is maximal with respect to $E(G)$ as well as $Z(G)$ among all nonconjugated n-vertex trees. So it is of interest to find the maximal element with respect to $E(G)$ as well as $Z(G)$ among all nonconjugated n-vertex trees for the case when n is even. Ou [18] investigated the above problem and determined the unique element which is maximal with respect to $Z(G)$. Unfortunately, Ou's results have been found to be incorrect.

In this paper, we reconsider this question and determine the unique maximal element with respect to $E(G)$ as well as $Z(G)$ among all nonconjugated n-vertex trees for the case when n is even. As corollaries, we also determine the maximal element with respect to $E(G)$ as well as $Z(G)$ among the family of nonconjugated chemical trees on n vertices when n is even.

2. Revisiting Ou's results

Let $T_{r_{1}, r_{2}, r_{3}}$ be the star-like tree as shown in Figure 1.
If a graph G contains a perfect matching, we say that G has $\mathcal{P} \mathcal{M}$. Let $\mathcal{N} \mathcal{T}_{n}$ denote the set of trees of n vertices, which possess no $\mathcal{P} \mathcal{M}$. Recently, Ou [18] claimed the following results.

Lemma A. [18, Lemma 4] Let T be a $4 m$-vertex tree and k be a nonnegative integer. If $T \in \mathcal{N} \mathcal{T}_{4 m}$, then $m(T ; k) \leq m\left(T_{1,2 m-1,2 m-1} ; k\right)$ with equality holding if and only if $T \cong T_{1,2 m-1,2 m-1}$.
Lemma B. [18, Lemma 5] Let T be a $4 m+2$-vertex tree and k be a nonnegative integer. If $T \in \mathcal{N} \mathcal{T}_{4 m+2}$, then $m(T ; k) \leq m\left(T_{1,2 m+1,2 m-1} ; k\right)$ with equality holding if and only if $T \cong T_{1,2 m+1,2 m-1}$.

Let F_{n} denote the nth Fibonacci number.

THEOREM C. [18, Theorem 1] Let T be a $4 m$-vertex tree and k be a nonnegative integer. If $T \in \mathcal{N} \mathcal{T}_{4 m}$, then $Z(T) \leq 2 F_{2 m} F_{2 m+1}$ with equality holding if and only if $T \cong T_{1,2 m-1,2 m-1}$.

THEOREM D. [18, Theorem 2] Let T be a $4 m+2$-vertex tree and k be a nonnegative integer. If $T \in \mathcal{N} \mathcal{T}_{4 m+2}$, then $Z(T) \leq F_{2 m+2}^{2}+F_{2 m} F_{2 m+1}$ with equality holding if and only if $T \cong T_{1,2 m+1,2 m-1}$.

Lemmas A and B are evidently false, which can easily be seen from the following counterexample to Lemma A.

Example 2.1. Let $n=12$ and consider $T_{3,3,5}$ and $T_{1,5,5}$.
From Lemma 3.1 below,

$$
\begin{aligned}
& m\left(T_{1,5,5} ; k\right)=m\left(P_{5} \cup P_{7} ; k\right)+m\left(P_{4} \cup P_{5} \cup P_{1} ; k-1\right), \\
& m\left(T_{3,3,5} ; k\right)=m\left(P_{5} \cup P_{7} ; k\right)+m\left(P_{4} \cup P_{3} \cup P_{3} ; k-1\right) .
\end{aligned}
$$

Note that $m\left(P_{3} \cup P_{3} ; 2\right)=4>3=m\left(P_{5} \cup P_{1} ; 2\right)$. So, $m\left(T_{1,5,5} ; 3\right)<m\left(T_{3,3,5} ; 3\right)$, a contradiction to $T_{3,3,5} \leq T_{1,5,5}$, as claimed by Lemma A. Thus, Lemma A is incorrect. Similarly, Lemma B is also incorrect, and thus Theorems C and D turn out to be incorrect.

A natural problem arising from this is the following. Among all graphs in $\mathcal{N} \mathcal{T}_{n}$ with n even, which graph is the maximum element with respect to $E(G)$ as well as $Z(G)$? Our theorems below will provide a satisfactory answer to this question.

3. Determining the nonconjugated tree with maximal energy and Hosoya index

We first recall some previously established results, which will be helpful in proving our main results.

Lemma 3.1. [8] Let G be a graph with $n \geq 2$ vertices and let uv be an edge in G. Then for all $k \geq 0$,

$$
m(G ; k)=m(G-u v ; k)+m(G-\{u, v\} ; k-1) .
$$

In particular, if $u v$ is an edge such that v is a pendent vertex, then

$$
m(G ; k)=m(G-v ; k)+m(G-\{u, v\} ; k-1)
$$

for all $k \geq 0$.
Lemma 3.2. [9] Let P_{n} be a path on $n=4 s+t, 0 \leq t \leq 3$ vertices. Then

$$
\begin{aligned}
P_{n} & \succeq P_{2} \cup P_{n-2} \succeq P_{4} \cup P_{n-4} \succeq \cdots \succeq P_{2 s} \cup P_{2 s+t} \\
& \succeq P_{2 s+1} \cup P_{2 s+t-1} \succeq P_{2 s-1} \cup P_{2 s+t+1} \succeq \cdots \succeq P_{3} \cup P_{n-3} \succeq P_{1} \cup P_{n-1}
\end{aligned}
$$

LEMMA 3.3.
(i) For $s \geq 2,3 \leq k \leq 2 s-1$ and k odd, $P_{2 s+1} \cup P_{2 s-1} \succ P_{2 s+k} \cup P_{2 s-k}$.
(ii) For $s \geq 1,3 \leq k \leq 2 s+1$ and k odd, $P_{2 s+1} \cup P_{2 s+1} \succ P_{2 s+k} \cup P_{2 s+2-k}$.

Proof. We only consider the proof of (i) here. The proof of (ii) can be derived in the same way. By Lemma 3.2, it suffices to prove that

$$
m\left(P_{2 s+1} \cup P_{2 s-1} ; 3\right)>m\left(P_{2 s+3} \cup P_{2 s-3} ; 3\right)
$$

It is well known [3] that

$$
m\left(P_{n} ; k\right)=\binom{n-k}{k}
$$

and therefore

$$
\begin{aligned}
& m\left(P_{2 s+1} \cup P_{2 s-1} ; 3\right)= m\left(P_{2 s+1} ; 3\right)+m\left(P_{2 s+1} ; 2\right) m\left(P_{2 s-1} ; 1\right) \\
&+m\left(P_{2 s+1} ; 1\right) m\left(P_{2 s-1} ; 2\right)+m\left(P_{2 s-1} ; 3\right) \\
&=\binom{2 s-2}{3}+\binom{2 s-1}{2}\binom{2 s-2}{1} \\
&+\binom{s}{1}\binom{2 s-3}{2}+\binom{2 s-4}{3} \\
&= \frac{1}{3}\left(8 s^{3}-48 s^{2}+100 s-72\right)+8 s^{3}-18 s^{2}+20 s-2, \\
& m\left(P_{2 s+3} \cup P_{2 s-3} ; 3\right)= m\left(P_{2 s+3} ; 3\right)+m\left(P_{2 s+3} ; 2\right) m\left(P_{2 s-3} ; 1\right) \\
&+m\left(P_{2 s+3} ; 1\right) m\left(P_{2 s-3} ; 2\right)+m\left(P_{2 s-3} ; 3\right) \\
&=\binom{2 s}{3}+\binom{2 s+1}{2}\binom{2 s-4}{1} \\
& \quad+\binom{2 s+2}{1}\binom{2 s-5}{2}+\binom{2 s-6}{3} \\
&= \frac{1}{3}\left(8 s^{3}-48 s^{2}+148 s-168\right)+8 s^{3}-24 s^{2}+4 s+30 .
\end{aligned}
$$

It follows that

$$
m\left(P_{2 s+1} \cup P_{2 s-1} ; 3\right)-m\left(P_{2 s+3} \cup P_{2 s-3} ; 3\right)=6 s^{2}>0
$$

which completes the proof.
Proposition 3.4. Let $s(\geq 3)$ be an odd number. There exist three odd numbers s_{1}, s_{2} and s_{3} such that $s_{1}+s_{2}+s_{3}=s$ and $\left|s_{i}-s_{j}\right| \leq 2$ for $1 \leq i<j \leq 3$.
Proof. Let $s(\geq 3)$ be an odd number. If $s=3 t$, we must have $t \equiv 1(\bmod 2)$, and thus we let $s_{i}=t$ for $1 \leq i \leq 3$. If $s=3 t+1$, we must have $t \equiv 0(\bmod 2)$, and thus we let $s_{1}=s_{2}=t+1, s_{3}=t-1$. If $s=3 t+2$, we must have $t \equiv 1(\bmod 2)$, and thus, we let $s_{1}=s_{2}=t+2, s_{3}=t$.

Denote by $\mathcal{T}_{r_{1}, r_{2}, r_{3}}$ the set of all star-like trees of the form $T_{r_{1}, r_{2}, r_{3}}$ with $r_{1}+$ $r_{2}+r_{3}+1=4 m$ or $4 m+2$, and $r_{i} \equiv 1(\bmod 2)$ for each $1 \leq i \leq 3$. Further, we let $T_{r_{1}, r_{2}, r_{3}}^{*}$ be the tree in $\mathcal{T}_{r_{1}, r_{2}, r_{3}}$ with an additional condition that $\left|r_{i}-r_{j}\right| \leq 2$ for $1 \leq i<j \leq 3$. By Proposition 3.4, $T_{r_{1}, r_{2}, r_{3}}^{*}$ is well defined. Also, such a tree is unique by Proposition 3.4.

LEMMA 3.5. Let T be any graph in $\mathcal{T}_{r_{1}, r_{2}, r_{3}}$ with $n=4 m$ or $4 m+2$, and $m \geq 1$. Then $T \preceq T_{r_{1}, r_{2}, r_{3}}^{*}$. Moreover, $T \sim T_{r_{1}, r_{2}, r_{3}}^{*}$ if and only if $T \cong T_{r_{1}, r_{2}, r_{3}}^{*}$.
Proof. If $n=4 m$ and $m=1, T$ is isomorphic to $T_{1,1,1}$. If $n=4 m$ and $m=2, T$ is isomorphic to $T_{1,3,3}$. If $n=4 m+2$ and $m=1, T$ is isomorphic to $T_{1,1,3}$. The lemma is evidently true for these three cases. Suppose now that $T_{0}=T_{r_{1}, r_{2}, r_{3}}$ is a tree in $\mathcal{T}_{r_{1}, r_{2}, r_{3}}$ such that $T_{0} \succeq T$ for any $T \in \mathcal{T}_{r_{1}, r_{2}, r_{3}}$, but $T_{0} \not \equiv T_{r_{1}, r_{2}, r_{3}}^{*}$ both for $n=4 m, m \geq 3$ and for $n=4 m+2, m \geq 2$. Then there must exist r_{1} and r_{2}, such that $r_{2}-r_{1} \geq 4$ (or $r_{1}-r_{2} \geq 4$). Assume that $r_{1}+r_{2}=2 t$. Then by Lemmas 3.1, 3.2 and 3.3, $T_{0} \prec T_{x, y, r_{3}} \in \mathcal{T}_{r_{1}, r_{2}, r_{3}}$, where x and y are numbers chosen by the following rules: if $t \equiv 0(\bmod 2)$, we let $x=t-1$ and $y=t+1$, or $x=t+1$ and $y=t-1$; if $t \equiv 1(\bmod 2)$, we let $x=y=t$. In fact, by Lemma 3.1,

$$
\begin{aligned}
m\left(T_{0} ; k\right) & =m\left(P_{r_{1}+r_{2}+1} \cup P_{r_{3}} ; k\right)+m\left(P_{r_{3}-1} \cup P_{r_{1}} \cup P_{r_{2}} ; k-1\right), \\
m\left(T_{x, y, r_{3}} ; k\right) & =m\left(P_{r_{1}+r_{2}+1} \cup P_{r_{3}} ; k\right)+m\left(P_{r_{3}-1} \cup P_{x} \cup P_{y} ; k-1\right) .
\end{aligned}
$$

This contradicts our choice of T_{0}, which completes the proof.
We mention here a well-known result, as it will play an important role in proving our main result.

Lemma 3.6. [8] Let T be a tree with n vertices. Then $T \preceq P_{n}$. Moreover, $T \sim P_{n}$ if and only if $T \cong P_{n}$.

In the rest of this paper, we will always denote the number of elements in a vertex subset \mathcal{A} by $|\mathcal{A}|$. Before presenting our main results, it is necessary to state and prove the following lemma.

Lemma 3.7. Let T be a tree in $\mathcal{N} \mathcal{T}_{n}$ with $n=4 m$ or $n=4 m+2$, and $m \geq 1$. Then $T \preceq T_{r_{1}, r_{2}, r_{3}}^{*}$. Moreover, $T \sim T_{r_{1}, r_{2}, r_{3}}^{*}$ if and only if $T \cong T_{r_{1}, r_{2}, r_{3}}^{*}$.
Proof. We only consider here the case when $n=4 m$. The case when $n=4 m+2$ can be dealt with in a fully analogous manner. If $m=1$, then $T_{1,1,1}$ is the unique element in $\mathcal{N} \mathcal{T}_{n}$, and the result is evidently true. So we may suppose that $m \geq 2$. Since $T \in \mathcal{N} \mathcal{T}_{n}$, then $T \not \not P_{4 m}$. That is to say, T has at least one vertex of degree greater than or equal to 3. Let $\Delta(T)$ be the maximum vertex-degree in T. Also, we use $V_{\Delta}(T)$ to denote the set $\{v \in V(T) \mid d(v)=\Delta(T)\}$. For any T in $\mathcal{N} \mathcal{T}_{n}$, we clearly have $\left|V_{\Delta}(T)\right| \geq 1$. We shall prove the lemma by induction on $\left|V_{\Delta}(T)\right|$. When $\left|V_{\Delta}(T)\right|=1$, the lemma follows from Lemma 3.3 for the case $\Delta(T)=3$. So we may suppose that $\Delta(T) \geq 4$. In this case, T must be isomorphic to a star-like tree with maximum vertex-degree $\Delta(T) \geq 4$. Let $d(v)=\Delta(T)$ and $T-\{v\}=P_{r_{1}} \cup P_{r_{2}} \cup \cdots \cup P_{r_{\Delta(T)}}$. It can be seen that among all the r_{i}, there are at least three odd positive numbers. Assume without loss of generality that $r_{i}, i=1,2,3$, are odd positive numbers. Let $Q=\left\{r_{1}, r_{2}, r_{3}, \ldots\right\}$ be the set of all odd positive numbers among $r_{1}, r_{2}, r_{3}, \ldots$, $r_{\Delta(T)}$. If there exists some $r_{i} \in Q$ such that $r_{i}=1$, then one can easily prove that $T \prec$ $T_{1,(2 m-1),(2 m-1)}$. It follows from Lemma 3.5 that $T \prec T_{1,(2 m-1),(2 m-1)} \prec T_{r_{1}, r_{2}, r_{3}}^{*}$. Suppose now that $r_{i} \geq 3$ for any $r_{i} \in Q$. Let u be the vertex in $P_{r_{1}}$ (if there is more
than one $P_{r_{1}}$ in $T-\{v\}$, we may take any one of them) such that u is adjacent to v in T. Write $T-u v=P_{r_{1}} \cup T^{\prime}$. By Lemma 3.1, we obtain

$$
\begin{aligned}
m(T ; k) & =m\left(P_{r_{1}} \cup T^{\prime} ; k\right)+m\left(P_{r_{1}-1} \cup P_{r_{2}} \cup \cdots \cup P_{\Delta_{T}(G)} ; k-1\right), \\
m\left(T_{r_{1}, x, y} ; k\right) & =m\left(P_{r_{1}} \cup P_{4 m-r_{1}} ; k\right)+m\left(P_{r_{1}-1} \cup P_{x} \cup P_{y} ; k-1\right),
\end{aligned}
$$

where x and y are odd numbers with the condition that $x+y=4 m-r_{1}-1$. Also, if $4 m-r_{1}-1=4 t+2$, then $x=y=2 t+1$; if $4 m-r_{1}-1=4 t$, then $x=2 t+1$ and $y=2 t-1$, or $x=2 t-1$ and $y=2 t+1$.

Note that T^{\prime} is a tree of $4 m-r_{1}$ vertices not isomorphic to $P_{4 m-r_{1}}$. Then $T^{\prime} \prec$ $P_{4 m-r_{1}}$ by Lemma 3.6.

Note also that

$$
P_{r_{2}} \cup \cdots \cup P_{\Delta_{T}(G)} \prec P_{r_{2}} \cup P_{4 m-r_{1}-1-r_{2}},
$$

and that $4 m-r_{1}-1-r_{2}$ is an odd number. So

$$
P_{r_{2}} \cup \cdots \cup P_{\Delta_{T}(G)} \prec P_{r_{2}} \cup P_{4 m-r_{1}-1-r_{2}} \preceq P_{x} \cup P_{y}
$$

by Lemma 3.3. Thus, $T \prec T_{r_{1}, x, y} \preceq T_{r_{1}, r_{2}, r_{3}}^{*}$ by Lemma 3.5.
We now let $\left|V_{\Delta}(T)\right|=q \geq 2$ and suppose that the theorem is true for small values of q. We write $V_{p}(T)=\{v \in V(T) \mid d(v)=1\}$. For any vertex $w \in V_{\Delta}(T)$, let

$$
P_{w}(T)=\left\{u \in V_{p}(T) \mid d(u, w)<d(u, x) \text { for any } x \in V_{\Delta}(T)\right\} .
$$

It can be seen that for $\left|V_{\Delta}(T)\right| \geq 2$, there exist at least two vertices, say x and y, in $V_{\Delta}(T)$ such that $P_{x}(T) \neq \emptyset$ and $P_{y}(T) \neq \emptyset$. Moreover, for any $z \in V_{p}(T)$, there exists a unique $w \in V_{\Delta}(T)$ such that $z \in P_{w}(T)$. Furthermore, for $\left|V_{\Delta}(T)\right| \geq 2$, there exist at least two vertices x and y in $V_{\Delta}(T)$ such that $\left|P_{x}(T)\right| \geq 2$ and $\left|P_{y}(T)\right| \geq 2$. Let w be a vertex in $V_{\Delta}(T)$ such that $P_{w}(T)=\left\{w_{1}, w_{2}, \ldots, w_{\ell}\right\}$ for $(\ell \geq 2)$. Denote by S_{w} the set of vertices (other than w_{i} and w) lying on the path between w_{i} and w for all $i=1, \ldots, \ell$. We call the induced subtree $G\left[w, w_{1}, \ldots, w_{\ell}, S_{w}\right]$ of T the pendent subtree of T with respect to w, which is denoted by $P S_{w}(T)$. By our definition of pendent subtree and the above arguments, we know that:

- if $P S_{w}(T)$ is one pendent subtree of T, then $P S_{w}(T)$ contains no vertex other than w of degree greater than or equal to 3;
- \quad if T is a tree with $\left|V_{\Delta}(T)\right| \geq 2$, then T has at least two pendent subtrees.

We proceed by considering the following two cases.
CASE 1. T has a pendent subtree, say $P S_{w}(T)$, which has $\mathcal{P} \mathcal{M}$.
In this case, T can be viewed as the graph shown in Figure 2(a). By employing Operation I (see Figure 2) on T, we obtained a new graph T^{1}, which is obviously a graph in $\mathcal{N} \mathcal{T}_{n}$. Also, one can easily prove that $T \prec T^{1}$ by using Lemmas 3.1 and 3.6. Note that

$$
\left|V_{\Delta}\left(T^{1}\right)\right|=\left|V_{\Delta}(T)\right|-1=q-1
$$

Thus $T^{1} \preceq T_{r_{1}, r_{2}, r_{3}}^{*}$ by the induction assumption and then $T \prec T_{r_{1}, r_{2}, r_{3}}^{*}$.

Figure 2. (a) \Rightarrow (b) by Operation I.
(a) T

(b) T^{2}

Figure 3. (a) \Rightarrow (b) by Operation II; (a) \Rightarrow (c) by Operation III.

CASE 2. Any pendent subtree $P S_{w}(T)$ of T has no $\mathcal{P} \mathcal{M}$.
By our discussion above, if $\left|V_{\Delta}(T)\right| \geq 2$, then T has at least two pendent subtrees. Suppose that the pendent subtrees of T are $P S_{w_{1}}, P S_{w_{2}}, \ldots, P S_{w_{\ell}}(\ell \geq 2)$. We can always find two vertices, say w_{1} and w_{2}, among all the w_{i}, such that

$$
d\left(w_{1}, w_{2}\right)=\max \left\{d\left(w_{i}, w_{j}\right) \mid 1 \leq i<j \leq l\right\}
$$

In this case, T can be viewed as the graph shown in Figure 3(a).
SUBCASE 2.1. $\left|P S_{w_{1}}(T)\right| \equiv 1(\bmod 2)$ or $\left|P S_{w_{2}}(T)\right| \equiv 1(\bmod 2)$.
Assume without loss of generality that $\left|P S_{w_{1}}(T)\right| \equiv 1(\bmod 2)$.
SUBCASE 2.1.1. $\left|P S_{w_{1}}(T)\right| \equiv 1(\bmod 2)$ and $G\left[V\left(T_{0}^{\prime}\right) \cup V\left(P S_{w_{2}}(T)\right) \cup\left\{w_{1}\right\}\right]$ has no $\mathcal{P M}$, where $G[\bullet]=G_{T}[\bullet]$ denotes the subgraph of T induced by ' \bullet '.

By employing Operation II (see Figure 3) on T, we obtain a new graph T^{2}, which is obviously a graph in $\mathcal{N} \mathcal{T}_{n}$. Also, one can easily prove that $T \prec T^{2}$ by using Lemmas 3.1 and 3.6. Note that $\left|V_{\Delta}\left(T^{2}\right)\right|=\left|V_{\Delta}(T)\right|-1=q-1$. Thus $T^{2} \preceq T_{r_{1}, r_{2}, r_{3}}^{*}$ by the induction assumption and then $T \prec T_{r_{1}, r_{2}, r_{3}}^{*}$ by using Lemma 3.5.
SUBCASE 2.1.2. $\left|P S_{w_{1}}(T)\right| \equiv 1(\bmod 2)$ and $G\left[V\left(T_{0}^{\prime}\right) \cup V\left(P S_{w_{2}}(T)\right) \cup\left\{w_{1}\right\}\right]$ has $\mathcal{P M}$.

By employing Operation III (see Figure 3) on T, we obtain a new graph T^{3}, which is obviously a graph in $\mathcal{N} \mathcal{T}_{n}$. Also, one can easily prove that $T \prec T^{3}$. Note that $\left|V_{\Delta}\left(T^{3}\right)\right|=1$. Thus $T^{3} \preceq T_{r_{1}, r_{2}, r_{3}}^{*}$ by Lemma 3.5 and then $T \prec T_{r_{1}, r_{2}, r_{3}}^{*}$.
Subcase 2.2. $\left|P S_{w_{1}}(T)\right| \equiv 0(\bmod 2)$ and $\left|P S_{w_{2}}(T)\right| \equiv 0(\bmod 2)$.
It is obvious that $G\left[V\left(T_{0}^{\prime}\right) \cup V\left(P S_{w_{2}}(T)\right)\right]$ has no $\mathcal{P} \mathcal{M}$, since $P S_{w_{2}}(T)$ has no $\mathcal{P} \mathcal{M}$. Thus, Operation III can be employed on T once again, and we obtain the graph T^{3} (see Figure 3). As in Subcase 2.1.2, we can prove our desired result.

Combining all cases completes the proof.
REMARK 3.8. According to our proof of Lemma 3.7, $P S_{w_{1}}(T)$ and $P S_{w_{2}}(T)$ are pendent subtrees chosen such that

$$
d\left(w_{1}, w_{2}\right)=\max \left\{d\left(w_{i}, w_{j}\right) \mid 1 \leq i<j \leq l\right\}
$$

among all pendent subtrees $P S_{w_{i}}(T)$ of T for $1 \leq i \leq l$. In fact, one finds that the reasoning used in case 2 of the proof of Lemma 3.7 remains valid even when $d\left(w_{1}, w_{2}\right)=1$; that is, T_{0}^{\prime} is an empty set. Moreover, Lemma 3.7 still follows, using the same technique, even when $u=v$ (see Figure 3).

From Lemma 3.7 we immediately obtain the following two theorems.
THEOREM 3.9. Let T be a tree in $\mathcal{N} \mathcal{T}_{n}$ with $n=4 m$ or $n=4 m+2$, and $m \geq 1$. Then $Z(T) \leq Z\left(T_{r_{1}, r_{2}, r_{3}}^{*}\right)$. Moreover, $Z(T)=Z\left(T_{r_{1}, r_{2}, r_{3}}^{*}\right)$ if and only if $T \cong T_{r_{1}, r_{2}, r_{3}}^{*}$.
THEOREM 3.10. Let T be a tree in $\mathcal{N} \mathcal{T}_{n}$ with $n=4 m$ or $n=4 m+2$, and $m \geq 1$. Then $E(T) \leq E\left(T_{r_{1}, r_{2}, r_{3}}^{*}\right)$. Moreover, $E(T)=E\left(T_{r_{1}, r_{2}, r_{3}}^{*}\right)$ if and only if $T \cong T_{r_{1}, r_{2}, r_{3}}^{*}$.
Remark 3.11. Let F_{n} denote the nth Fibonacci number. Recall that $F_{n}=F_{n-1}+$ F_{n-2} with initial conditions $F_{0}=F_{1}=1$. Note that $Z\left(P_{0}\right)=1, Z\left(P_{1}\right)=1$ and $Z\left(P_{n}\right)=Z\left(P_{n-1}\right)+Z\left(P_{n-2}\right)$. Thus,

$$
Z\left(P_{n}\right)=F_{n}=\frac{\sqrt{5}}{5}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n+1}-\left(\frac{1-\sqrt{5}}{2}\right)^{n+1}\right]
$$

So, for a specified value of n in Theorem 3.9, we can compute the exact value of $Z\left(T_{r_{1}, r_{2}, r_{3}}^{*}\right)$.

A chemical tree is a tree in which no vertex has degree greater than 4 . If we denote by $\mathcal{N C} \mathcal{T}_{n}$ the set of nonconjugated chemical trees on n vertices, then by Theorems 3.9 and 3.10 we immediately have the following.
COROLLARY 3.12. Let T be a tree in $\mathcal{N C T}{ }_{n}$ with $n=4 m$ or $n=4 m+2$, and $m \geq 1$.
Then $Z(T) \leq Z\left(T_{r_{1}, r_{2}, r_{3}}^{*}\right)$. Moreover, $Z(T)=Z\left(T_{r_{1}, r_{2}, r_{3}}^{*}\right)$ if and only if $T \cong T_{r_{1}, r_{2}, r_{3}}^{*}$.
Corollary 3.13. Let T be a tree in $\mathcal{N C} \mathcal{T}_{n}$ with $n=4 m$ or $n=4 m+2$, and $m \geq 1$. Then $E(T) \leq E\left(T_{r_{1}, r_{2}, r_{3}}^{*}\right)$. Moreover, $E(T)=E\left(T_{r_{1}, r_{2}, r_{3}}^{*}\right)$ if and only if $T \cong T_{r_{1}, r_{2}, r_{3}}^{*}$.

Acknowledgement

This work was sponsored by Qing Lan Project for the key young teacher of Jiangsu province, People's Republic of China.

References

[1] G. Caporossi, D. Cvetković, I. Gutman and P. Hansen, 'Variable neighborhood search for extremal graphs. 2. Finding graphs with external energy', J. Chem. Inf. Comput. Sci. 39 (1999), 984-996.
[2] D. Cvetković, M. Doob and H. Sachs, Spectra of Graphs (Academic Press, New York, 1980).
[3] C. D. Godsil, Algebraic Combinatorics (Chapman \& Hall, London, 1993).
[4] I. Gutman, 'Acyclic systems with extremal Huckel π-electron energy', Theor. Chim. Acta. 45 (1977), 79-87.
[5] _, 'The energy of a graph: old and new results', in: Algebraic Combinatorics and Applications (Gößweinstein, 1999) (eds. A. Betten, A. Kohnert, R. Laue and A. Wassermann) (Springer, Berlin, 2001), pp. 196-211.
[6] I. Gutman and S. J. Cyvin, 'A new method for the enumeration of Kekulé structures', Chem. Phys. Lett. 136 (1987), 137-140.
[7] I. Gutman, B. Furtula and H. Hua, 'Bipartite unicyclic graphs with maximal, second-maximal and third-maximal energy', MATCH Commun. Math. Comput. Chem. 58 (2007), 75-82.
[8] I. Gutman and O. E. Polansky, Mathematical Concepts in Organic Chemistry (Springer, Berlin, 1986).
[9] I. Gutman and F. Zhang, 'On the ordering of graphs with respect to their matching numbers', Discrete Appl. Math. 15 (1986), 25-33.
[10] Y. Hou, 'Unicyclic graphs with minimal energy', J. Math. Chem. 3 (2001), 163-168.
[11] , 'On acyclic systems with minimal Hosoya index', Discrete Appl. Math. 119 (2002), 251-257.
[12] H. Hua, 'On minimal energy of unicyclic graphs with prescribed girth and pendent vertices', MATCH Commun. Math. Comput. Chem. 57 (2007), 351-361.
[13] , 'Bipartite unicyclic graphs with large energy', MATCH Commun. Math. Comput. Chem. 58 (2007), 57-73.
[14] , 'Minimizing a class of unicyclic graphs by means of Hosoya index', Math. Comput. Modelling 48 (2008), 940-948.
[15] H. Hua and M. Wang, 'Unicyclic graphs with given number of pendent vertices and minimal energy', Linear Algebra Appl. 426 (2007), 478-489.
[16] X. Li, J. Zhang and L. Wang, 'On bipartite graphs with minimal energy', Discrete Appl. Math. 157(4) (2009), 869-873. doi: 10.1016/j.dam.2008.07.008.
[17] H. Liu and M. Lu, 'A unified approach to extremal cacti for different indices', MATCH Commun. Math. Comput. Chem. 58 (2007), 193-204.
[18] J. Ou, 'Maximal Hosoya index and extremal acyclic molecular graphs without perfect matching', Appl. Math. Lett. 19 (2006), 652-656.
[19] - 'On extremal unicyclic molecular graphs with prescribed girth and minimal Hosoya index', J. Math. Chem. 42 (2007), 423-432.
[20] -, 'On extremal unicyclic molecular graphs with maximal Hosoya index', Discrete Appl. Math. 157 (2009), 391-397.
[21] D. Wang and H. Hua, 'Minimality considerations for graph energy over a class of graphs', Comput. Math. Appl. 56 (2008), 3181-3187.
[22] M. Wang, H. Hua and D. Wang, 'Minimal energy on a class of graphs', J. Math. Chem. 43 (2008), 1389-1402.
[23] W. Yan and L. Ye, 'On the maximal energy and the Hosoya index of a type of trees with many pendant vertices', MATCH Commun. Math. Comput. Chem. 53 (2005), 449-459.
[24] A. Yu and X. Lv, 'Minimum energy on trees with k pendent vertices', Linear Algebra Appl. 418 (2007), 625-633.
[25] , 'The Merrifield-Simmons and Hosoya indices of trees with k pendent vertices', J. Math. Chem. 41 (2007), 33-43.
[26] B. Zhou and F. Li, 'On minimal energies of trees of a prescribed diameter', J. Math. Chem. 39 (2006), 465-473.

HONGBO HUA, Department of Computing Science, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, PR China
e-mail: hongbo.hua@gmail.com

[^0]: (C) 2009 Australian Mathematical Publishing Association Inc. 0004-9727/2009 \$16.00

