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Abstract

Recently, H’michane et al. [‘On the class of limited operators’, Acta Math. Sci. (submitted)] introduced
the class of weak∗ Dunford–Pettis operators on Banach spaces, that is, operators which send weakly
compact sets onto limited sets. In this paper, the domination problem for weak∗ Dunford–Pettis operators
is considered. Let S , T : E → F be two positive operators between Banach lattices E and F such that
0 ≤ S ≤ T . We show that if T is a weak∗ Dunford–Pettis operator and F is σ-Dedekind complete, then S
itself is weak∗ Dunford–Pettis.
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1. Introduction

Throughout this paper X, Y are Banach spaces and E, F are Banach lattices. We write
sol(A) for the solid hull of a subset A of a Banach lattice. The positive cone of E is
denoted by E +. Following Andrews [3] (or Bourgain and Diestel [5]), we say that
a norm bounded subset A of X is a Dunford–Pettis set (respectively, a limited set)
whenever every weakly null sequence in X∗ (respectively, weak∗ null sequence in X∗)
converges uniformly to zero on A. Clearly, every relatively compact set in X is a limited
set, and every limited set in X is a Dunford–Pettis set, but the converses are not true
in general. Let us recall that a linear operator T : X → Y is called a Dunford–Pettis
operator if xn

w
−→ 0 in X implies ‖T xn‖ → 0 or, equivalently, if T carries relatively

weakly compact subsets of X onto relatively compact subsets of Y . Aliprantis and
Burkinshaw [1] introduced a class of operators related to the Dunford–Pettis operators,
the so-called weak Dunford–Pettis operators. A bounded linear operator T : X → Y
between Banach spaces is said to be a weak Dunford–Pettis operator whenever xn

w
−→ 0
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in X and fn
w
−→ 0 in Y∗ imply lim n fn(T xn) = 0 or, equivalently, whenever T carries

relatively weakly compact subsets of X onto Dunford–Pettis subsets of Y .
Recently, H’michane et al. [11] introduced the class of weak∗ Dunford–Pettis

operators, and characterised this class of operators and studied some of its properties
in [10]. Following H’michane et al. [11], we say that a bounded linear operator

T : X → Y is a weak∗ Dunford–Pettis operator whenever xn
w
−→ 0 in X and fn

w∗
−−→ 0 in

Y∗ imply fn(T xn)→ 0 or, equivalently, whenever T carries relatively weakly compact
subsets of X onto limited subsets of Y [10, Theorem 3.2].

Recall that in the literature the domination problem for a class C of operators acting
between Banach lattices is stated as follows:

• Let S , T : E → F be two positive operators between Banach lattices such that
0 ≤ S ≤ T . Assume that T belongs to the class C. Which conditions on E and F
ensure that S belongs to C?

In [12], Kalton and Saab established that a positive operator from E into F, dominated
by a positive weak Dunford–Pettis operator, must also be weak Dunford–Pettis, and
they obtained such a result for Dunford–Pettis operators provided the norm of F is
order continuous. Later, Wickstead [14] studied the converse for the Kalton–Saab
theorem: every positive operator from E into F dominated by a Dunford–Pettis
operator is Dunford–Pettis if and only if E has weakly sequentially continuous lattice
operations or F has order continuous norm.

Naturally, we come to the case of weak∗ Dunford–Pettis operators. The main
purpose of this paper is to study the domination problem for positive weak∗ Dunford–
Pettis operators between Banach lattices. Let S : E→ F be a positive operator between
Banach lattices E and F such that F is σ-Dedekind complete. We show that if S
is dominated by a positive weak∗ Dunford–Pettis operator, then S itself is weak∗

Dunford–Pettis.
Our notions are standard. For the theory of Banach lattices and positive operators,

we refer the reader to the monographs [2, 13].

2. Lattice properties of positive weak∗ Dunford–Pettis operators

It should be noted that in a Banach lattice (or in its dual) the lattice operations fail
to be weakly (respectively, weak∗) sequentially continuous in general. Let us recall
that every disjoint sequence in the solid hull of a relatively weakly compact subset of
a Banach lattice E converges weakly to zero (see [2, Theorem 4.34]). In particular,
if (xn) is a disjoint, weakly convergent sequence in E, then the sequences (xn), (| xn|),
(x+

n ), (x−n ) all converge weakly to zero. However, from [9, Example 2.1], we can see
that such a property need not be possessed by w∗-convergent disjoint sequences in the
dual space.

The following lemma, which deals with disjoint sequences in the dual of a
σ-Dedekind complete Banach lattice, is due to the authors of [9] and is needed in
the rest of this paper.
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Lemma 2.1 [9]. Let E be a σ-Dedekind complete Banach lattice and let ( fn) be a w ∗-
convergent sequence of E ∗. If (gn) is a disjoint sequence of E ∗ satisfying | gn| ≤ | fn|
for each n ∈ N, then the sequences (gn), (| gn|), (g +

n ), (g−n ) all weak ∗ converge to zero.
In particular, if ( fn) is a disjoint w∗-convergent sequence in its own right, then the
sequences ( fn), (| fn|), ( f +

n ), ( f −n ) are all weak∗ null.

Let T : E → F be a positive weak∗ Dunford–Pettis operator between Banach
lattices. For every weakly null sequence (xn) in E + and every weak∗ null sequence
( fn) in F ∗, by the definition of weak∗ Dunford–Pettis operators we have fn(T xn)→ 0.
Indeed, we can say more when F is σ-Dedekind complete.

Theorem 2.2. Let T : E → F be a positive weak∗ Dunford–Pettis operator between
Banach lattices E and F with F σ-Dedekind complete. Then, for every weakly null
sequence (xn) in E + and every weak∗ null sequence ( fn) in F ∗, we have | fn|(T xn)→ 0
(as n→∞).

Proof. Let ε > 0 be arbitrary. First, we claim that there exist 0 ≤ g ∈ F∗ and N ∈ N
such that

(| fn| − g)+(T xn) < ε (∗)

holds for all n > N. Suppose that (∗) is false. Then there exists an ε0 > 0 such that for
each 0 ≤ g ∈ F∗ and each N ∈ N, we have (| fk| − g)+(T xk) ≥ ε0 for at least one k > N.
Let us put g = 4| f1| and n1 = 1. Thus, there exists a natural number n2 > n1 satisfying

(| fn2 | − 4| f1|)+(T xn2 ) ≥ ε0.

Also, let us put g = 42 ∑2
i=1 | fni |. Then(
| fn3 | − 42

2∑
i=1

| fni |

)+

(T xn3 ) ≥ ε0

for some natural number n3 > n2. Proceeding with an inductive argument, we can
obtain a strictly increasing subsequence (nk) of N such that(

| fnk+1 | − 4k
k∑

i=1

| fni |

)+

(T xnk+1 ) ≥ ε0

for all k ∈ N. Let f =
∑∞

k=1 2−k| fnk | and put

gk+1 =

(
| fnk+1 | − 4k

k∑
i=1

| fni |

)+

, f̃k+1 =

(
| fnk+1 | − 4k

k∑
i=1

| fni | − 2−k f
)+

.

Note that 0 ≤ gk+1 ≤ f̃k+1 + 2−k f and gk+1(T xnk+1 ) ≥ ε0 for any k ∈ N. By [2, Lemma

4.35], ( f̃k+1) is a disjoint sequence. Since 0 ≤ f̃k+1 ≤ | fnk+1 | and fnk+1

w∗
−−→ 0, in view of

Lemma 2.1 we have f̃k+1
w∗
−−→ 0 in F ∗. From the weak∗ Dunford–Pettis property of T ,
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it follows that f̃k+1(T xnk+1 )→ 0. However,

0 < ε0 ≤ gk+1(T xnk+1 ) ≤ ( f̃k+1 + 2−k f )(T xnk+1 )

= f̃k+1(T xnk+1 ) + 2−k f (T xnk+1 )→ 0.

This leads to a contradiction. Hence, (∗) is true.
Now let 0 ≤ g ∈ F∗ and N ∈ N satisfy (∗). For all n > N, we have the inequalities

| fn|(T xn) = (| fn| − g)+(T xn) + (| fn| ∧ g)(T xn)
≤ (| fn| − g)+(T xn) + g(T xn)
≤ ε + g(T xn).

Because xn
w
−→ 0 in E, it follows that lim sup | fn|(T xn) ≤ ε. Since ε > 0 is arbitrary, we

have limn | fn|(T xn)→ 0, as desired. �

The next theorem describes an important approximation property of positive weak∗

Dunford–Pettis operators.

Theorem 2.3. Let T : E → F be a positive weak∗ Dunford–Pettis operator between
Banach lattices E and F with F σ-Dedekind complete. Let W be a relatively weakly
compact subset of E and ( fn) be a weak∗ null sequence in F∗. Then, for any ε > 0,
there exist some N ∈ N and some u ∈ E+ lying in the ideal generated by W such that

| fn|(T (|x| − u)+) < ε

for all n > N and all x ∈ W.

Proof. Assume by way of contradiction that the claim is false. That is, there exists an
ε0 > 0 such that for each N ∈ N and each u ≥ 0 in the ideal generated by W we can find
a natural number m > N and some xm ∈ W satisfying | fm|(T (|xm| − u)+) ≥ ε0. Hence,
by an easy inductive argument we can choose a strictly increasing subsequence (nk) of
N and a sequence (xk) ⊆ W such that

| fnk+1 |

(
T
(
|xk+1| − 4k

k∑
i=1

|xi|

)+)
≥ ε0 > 0. (∗∗)

Let x =
∑∞

k=1 2−k|xk|. Also, put

wk+1 =

(
|xk+1| − 4k

k∑
i=1

|xi|

)+

, vk+1 =

(
|xk+1| − 4k

k∑
i=1

|xi| − 2−k x
)+

.

Clearly, | fnk+1 |(Twk+1) ≥ ε0 > 0 and 0 ≤ wk+1 ≤ vk+1 + 2−k x hold for all k ∈ N. By
[2, Lemma 4.35], (vk+1) is a disjoint sequence in E. Note that 0 ≤ vk+1 ≤ |xk+1|. It
follows that vk+1 ∈ sol(W) holds for all k. Since every disjoint sequence in the solid
hull of a relatively weakly compact set of a Banach lattice converges weakly to zero
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(see [2, Theorem 4.34]), we see that vk+1
w
−→ 0 in E. Hence, from Theorem 2.2 it

follows that | fnk+1 |(Tvk+1)→ 0. On the other hand,

0 < ε0 ≤ | fnk+1 |(Twk+1) ≤ | fnk+1 |(T (vk+1 + 2−k x))

= | fnk+1 |(Tvk+1) + 2−k| fnk+1 |(T x)→ 0,

which contradicts (∗∗). Therefore, the proof is complete. �

3. Domination by positive weak∗ Dunford–Pettis operators

Let us recall that a Banach space X is said to be a Gelfand–Phillips space whenever
all limited sets in X are relatively compact. It is well known that all separable Banach
spaces and all weakly compactly generated spaces are Gelfand–Phillips spaces. Note
that a σ-Dedekind complete Banach lattice E is a Gelfand–Phillips space if and only if
the norm of E is order continuous (see [6]). Further, X has the Dunford–Pettis property
(respectively, the Dunford–Pettis∗ property) whenever every relatively weakly compact
set in X is a Dunford–Pettis set (respectively, a limited set), in other words, for each
weakly null sequence (xn) in X and each weakly null sequence (respectively, weak∗

null sequence) ( fn) in X∗, lim n fn(xn) = 0. The Dunford–Pettis∗ property, introduced
first by Borwein et al. [4], is stronger than the Dunford–Pettis property. Carrión
et al. [8] showed that X has the Dunford–Pettis∗ property if and only if every bounded
linear operator T : X → c0 is a Dunford–Pettis operator.

It should be noted that if either X or Y has the Dunford–Pettis∗ property, then
every bounded linear operator from X into Y is weak∗ Dunford–Pettis. Also, If Y is a
Gelfand–Phillips space, weak∗ Dunford–Pettis operators from X into Y and Dunford–
Pettis operators between them coincide.

Now, since L1[0, 1] does not have weakly sequentially continuous lattice operations
and the norm of c is not order continuous, by the converse for the Kalton–Saab theorem
proved by Wickstead [14] we know that there exists a positive operator from L1[0, 1]
into c, which is dominated by a Dunford–Pettis operator, which is not Dunford–Pettis.
On the other hand, since c is a Gelfand–Phillips space, every weak∗ Dunford–Pettis
operator from L1[0, 1] into c is Dunford–Pettis. Therefore, there exists a positive
operator from L1[0, 1] into c dominated by a weak∗ Dunford–Pettis operator which is
not weak∗ Dunford–Pettis. It should be noted that c is not σ-Dedekind complete. In
case the range space is σ-Dedekind complete, we have the following domination result
for positive weak∗ Dunford–Pettis operators.

Theorem 3.1. Let E, F be two Banach lattices such that F is σ-Dedekind complete.
If a positive operator S : E → F is dominated by a positive weak∗ Dunford–Pettis
operator, then S itself is weak∗ Dunford–Pettis.

Proof. We shall follow the plan of Kalton and Saab in their weak Dunford–Pettis
version, but we have to make an effort to overcome some obstacles on our way since
the behaviour of weak∗ sequential convergence is quite different from that of weak
sequential convergence in general.
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Assume that F is σ-Dedekind complete and that T : E → F is a positive weak∗

Dunford–Pettis operator satisfying 0 ≤ S ≤ T . Let xn
w
−→ 0 in E and let fn

w∗
−−→ 0 in F∗.

To prove that S is weak∗ Dunford–Pettis, we have to show that fn(S xn)→ 0. To this
end, put e =

∑∞
n=1 2−n|xn| ∈ E+ and let Ae be the ideal generated in E by e. Consider

the operators 0 ≤ S ≤ T : Āe → F, where Āe is the norm closure of Ae in E. Clearly,
xn

w
−→ 0 in Āe, and T : Āe → F is likewise weak∗ Dunford–Pettis. Let ε > 0 be fixed.

By Theorem 2.3, there exist some N1 ∈ N and some u ∈ E+ lying in the ideal generated
by (xn) such that

| fn|(T (|xn| − u)+) < ε

for all n > N1. Note that u ∈ Ae. Since F is σ-Dedekind complete and fn
w∗
−−→ 0 in F∗,

there exists 0 ≤ g ∈ F ∗ lying in the ideal generated by ( fn) in F∗ such that

(| fn| − g)+(Tu) < ε

holds for all n ∈ N (see [7]; see also [2, Theorem 4.42]).
On the other hand, by [2, Theorem 4.82], there exist positive operators M1, . . . , Mk

on Āe and order projections P1, . . . , Pk on F∗∗ satisfying〈
g,

∣∣∣∣∣S − k∑
i=1

PiT Mi

∣∣∣∣∣u〉 < ε and 0 ≤
k∑

i=1

PiT Mi ≤ T.

(The proof of the extension of each positive multiplication operator Mi on Ae to
a positive operator on Āe can be found in [2, Part(b), page 269].) Let us put
R = |S −

∑k
i=1 PiT Mi|. Obviously,

〈g,Ru〉 < ε and R =

∣∣∣∣∣S − k∑
i=1

PiT Mi

∣∣∣∣∣ ≤ S +

k∑
i=1

PiT Mi ≤ 2T.

For each n > N1,

〈| fn|,R|xn|〉 = 〈| fn|,R(|xn| − u)+〉 + 〈| fn|,R(|xn| ∧ u)〉
≤ 〈| fn|,R(|xn| − u)+〉 + 〈| fn|,Ru〉
≤ 2| fn|(T (|xn| − u)+) + 〈| fn|,Ru〉
≤ 2| fn|(T (|xn| − u)+) + 〈(| fn| − g)+,Ru〉 + 〈g,Ru〉
≤ 2| fn|(T (|xn| − u)+) + 2(| fn| − g)+(Tu) + 〈g,Ru〉
< 2ε + 2ε + ε = 5ε.

This implies that

| fn(S xn)| ≤
∣∣∣∣∣〈 fn,

(
S −

k∑
i=1

PiT Mi

)
xn

〉∣∣∣∣∣ +

k∑
i=1

|〈 fn, PiT Mixn〉|

≤

〈
| fn|,

∣∣∣∣∣S − k∑
i=1

PiT Mi

∣∣∣∣∣|xn|

〉
+

k∑
i=1

|〈 fn, PiT Mixn〉|
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= 〈| fn|,R|xn|〉 +

k∑
i=1

|〈 fn, PiT Mixn〉|

< 5ε +

k∑
i=1

|〈 fn, PiT Mixn〉|

holds for all n > N1. To prove that limn fn(S xn) = 0, we need only show that
〈 fn, PiT Mixn〉 → 0 (as n → ∞) for i = 1, 2, . . . , k. Note that each Pi is an order
projection on F∗∗. For each f ∈ F∗, we define Qi f by

(Qi f )y = 〈 f , Piy〉

for all y ∈ F. We can easily see that Qi f ∈ F∗ and Qi : F∗ → F∗ is a bounded linear
operator. Now we claim that Qi is sequentially w∗-continuous on F∗. If this claim is

true, then fn
w∗
−−→ 0 in F∗ implies that Qi fn

w∗
−−→ 0 in F∗. It turns out that, by the weak∗

Dunford–Pettis property,

〈 fn, PiT Mixn〉 = 〈T Mixn,Qi fn〉 → 0

(as n→∞), since Mixn
w
−→ 0 (as n→∞) in E (or Āe).

So, the key point is to prove the claim that each Qi defined above is sequentially w∗-

continuous on F∗. To this end, assume that fn
w∗
−−→ 0 in F∗ and let AF denote the ideal

generated by F in F∗∗. Then fn
σ(F∗, AF )
−−−−−−−→ 0 in F∗, since F is σ-Dedekind complete

(see [2, Theorem 4.43]). Let us recall that Pi is an order projection on F∗∗. Given
y ∈ F+, since 0 ≤ Piy ≤ y, we can see that Piy ∈ AF . Hence,

〈y,Qi fn〉 = 〈 fn, Piy〉 → 0

(as n→∞), which implies the sequential w∗-continuity of Qi. The proof is finished. �
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