ON THE NATURAL ORDERING OF \(\mathcal{J} \)-CLASSES AND OF IDEMPOTENTS IN A REGULAR SEMIGROUP

by T. E. HALL

(Received 23 September, 1969)

1. Introduction and summary. In this paper we prove the following:

MAIN THEOREM. Let \(S \) be a regular semigroup and \(a, b \) any elements of \(S \) such that \(J_b \preceq J_a \). Then, for each idempotent \(e \in J_a \), there exists an idempotent \(f \in J_b \) such that \(f \preceq e \).

This makes easy a conceptual proof of the result (see Theorem 6.39 [1], Theorem 3 [2] or Theorem 1 [4]) that a semigroup is primitive and regular if and only if it is a \(0 \)-direct union of completely \(0 \)-simple semigroups.

The above theorem can also be used in an obvious manner to simplify the statements of the results of Section 3, Chapter II of Lallement [3], in particular Theorem 2.17 [3].

We use wherever possible notations and conventions from Clifford and Preston [1].

2. The natural orderings. We shall prove in fact (see Theorem 1) a stronger result than the one above. The idea for the proof of this theorem came from the proof of the lemma in Warne's paper [6]. In fact Warne effectively proves Theorem 1 for the special case of a regular semigroup with only two principal factors, both completely \(0 \)-simple.

We prove first the following lemma.

LEMMA 1. Let \(a, b \) be elements of a semigroup \(S \) such that \(J_b \preceq J_a \) and such that each element of \(J_b \) is regular. Then for each idempotent \(e \in J_a \) (if such exists) there is an idempotent \(f \in J_b \) such that \(f \preceq e \).

Proof. Take any idempotent \(e \in J_a \). From Lemma 1, \((e J_b) \cap J_b \neq \emptyset \). Take any element \(y \in (e J_b) \cap J_b \) and any inverse, \(y' \) say, of \(y \). By a routine calculation, we find that \(y'y' = f \) (say) is an idempotent, \(f \in J_b \) and \(f \preceq e \).

REMARK 1. Proposition 3.1 of [5] is similar to Theorem 1. Its applications in common with Theorem 1 would include the two mentioned in paragraphs 3 and 4.

REMARK 2. It is clear that, for any idempotents \(e, f \) in a semigroup \(S, f \preceq e \) implies that \(J_f \preceq J_e \). Theorem 1 and this converse remain true when \(J \) is replaced by \(L \) or \(R \) (only
minor modifications of the proof are necessary to show this. It is then easy to show that the set of L- (or R- but not J-) classes of an inverse semigroup, under the natural ordering, is always a semilattice.

Corollary 1. (Due to Lallement and Petrich [2] Theorem 3, and Preston [4] Theorem 1. See also [1] Theorem 6.39.) A semigroup $S = S^0$ is primitive and regular if and only if it is a 0-direct union of completely 0-simple semigroups.

Proof. Suppose that S is primitive and regular. Let a, b be any non-zero elements of S such that $J_a \neq J_b$.

Now, for any element $x \in I(a)$, we have $J_x < J_a$; whence, from Theorem 1, $0 \in J_x$ and $I(a) = \{0\}$. Therefore $S^1 a S^1 = J_x \cup \{0\}$ for each non-zero element $a \in S$.

Also $J_{ab} \leq J_a$ and $J_{ab} \leq J_b$, whence either $J_{ab} < J_a$ or $J_{ab} < J_b$. In either case $ab = 0$, and so S is the 0-direct union of the subsemigroups $\{J_x \cup \{0\} : x \in S \setminus \{0\}\}$. But for each $x \in S \setminus \{0\}$, $J_x \cup \{0\}$ is isomorphic to the principal factor $J(x)/I(x)$ and hence is 0-simple and thence completely 0-simple.

Conversely, since a completely 0-simple semigroup is primitive and regular, it is clear that a 0-direct union of completely 0-simple semigroups is also primitive and regular.

References

Monash University

Clayton, Victoria, Australia, 3168