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Oscillations of an equation relevant

to an industrial problem

Alexander Tomaras

The oscillatory behaviour of the solutions of a functional

differential equation, of more general form than an equation

arising from in industrial problem, is examined. The question

of whether one can maintain the oscillatory properties of this

equation by adding a forcing term is also answered. The

results obtained extend already known results on the subject and

complete the relevant literature.

1. Introduction

The problem of analysing the dynamics of an overhead current

collection system for an electric locomotive has been the subject of

discussion in [9], where the analysis gave rise to a system of linear first

order ordinary differential equations, in which the argument of one of the

dependent variables is multiplied by a factor X . Asymptotic and

numerical methods to study the properties and practical solutions of such

systems were used in [4], where, in particular, a simple physical

situation, which gives rise to the scalar equation

(l.l) y'(t) = ay(Xt) + by(t) ,

was described.

Series and integral representations of the solutions to (1.1), where
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a and b are constants, were discussed in [4], while in [6] i t was

shovn, that the boundary-value problem associated with ( l . l ) and the

boundary condition j/(0) = 1 , is well-posed if X < 1 , but not if

A > 1 . Asymptotic properties of solutions of ( l . l ) , as £-*•<">, were also

treated in [6], as well as in [7, 2 for b = 0 ] , [3], and [5] and i ts

oscillatory behaviour (only for b = 0 ) was mentioned in [S]

The purpose of the present paper is to add information to the

li terature, related to ( l . l ) , extending and generalising notions contained

in i t .

Thus, we examine first the oscillatory behaviour of the solutions of

the functional differential equation

d.2) y'(t) = p(t)vigit)) + q{t)y{t) ,

which is of more general form than ( l . l ) - in fact, ( l . l ) can be derived

from (1.2) for pit) = a , git) = \t , qit) = b - and of course,

oscillatory properties concerning the solutions of (1.2), will also

concern those of ( l . l ) , under proper modifications. Secondly we extend the

results obtained for (1.2) to the functional differential equation,

resulting from i t by adding a forcing term, namely

(1.3) y'it) = p(t)y{g(t)) + q(t)ylt) + r(t) .

In the sequel, a solution y(t) of (1.2) or (1.3) is said to be

oscillatory, if it has arbitrarily large zeros, while it is said to be

nonosdilatory, if it is eventually of constant sign.

2. Unforced o s c i l l a t i o n

In this section, we give sufficient growth conditions on pit), g{t) ,

and q(t) , so that a l l solutions of (1.2) oscillate.

We shall need first the following lemma, which is an adaptation of a

corollary in IS, p. 222].

LEMMA 2 . 1 . Consider the functional differential equation

(2.1) x'(t) + p(t)x[g(t)) = 0 ,

where

(Cl) p(t) 6 C[[0, - ) , i?+] , git) € ^ [ [ O , « ) , i?+] , and
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(C2) git) < t , l i m git) = <*> , and g'{t) > 0 .

If, in addition,

f*(2.2) llm sup pis)ds > 1 ,

fr*» 'git)

then every solution x(t) of (2.1) oscillates.

Now, set z/(t)exp - g(t)<it = z{t) , to obtain (1.2) in the form
(2.3) «'(*) + K*)a(flr(*)) = 0 ,

flit)
- where l(t) = -p(t) exp q{T)dT - which is the same as (2.1) and

>t

for which Lemma 2.1 holds of course, under minor modifications. So,

observing that if z(t) oscillates, so does y(t) , we apply Lemma 2.1 to

(2.3), to establish the following result for (1.2).

THEOREM 2.1. Consider the functional differential equation (1.2)

subject to the following conditions:

(i) -p(t) € C[[O, ») , i?+] ;

(ii) git) € ̂ [ [ 0 , °°), fl+] , git) 5 t , lim git) = <*> , and

g'it) 2 0 ;

('iiij q(w) is continuous for all u t 0 .

Jf, in addition,

ttr r I"918' 1
(2.U) lim sup -p(e) exp qiT)dT\ds > 1 ,

solution yit) of (1.2) oscillates.

REMARKS. It would not seem too easy for someone to derive Theorem
2.1 from usual oscillation theory techniques, if he had worked directly
from (1.2) (note especially condition (2.U)). This theorem, however, came
out naturally, as an application of the exposition in [8], after the
transformation of (1.2) to (2.3). In this fact l ies the importance of that
transformation, which is a new concept in the relevant l i terature, as far
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as we know.

On the other hand, Theorem 2.1, as a "qualitative result", completes

the theory described in [6, paragraphs h, 5, and 6] and one can now easily

apply that theorem to. (l.l), under proper modifications, to extend results

obtained for it, in IS, p. 222], for b = 0 ; we leave the details to the

reader.

3. Forced oscillation

Proceeding further, we give sufficient growth conditions on pit),

git), qit) , and rit) , so that all solutions of (1.3) oscillate. To this

end, in addition to the transformations established in Section 2, set
( ! "I

r(i)exp - qit)dt\ = mit) , to obtain
(. J )

(3.1) z'it) + lit)z[git)) = mit) .

But for (3.1), the following lemma holds, which is a modification of a
theorem in [7, p. 27^], using Lemma 2.1 given previously.

LEMMA 3.1. Consider the functional differential equation (3.1)
subject to the following hypotheses:

(hi) lit), mit) € C[[O, «>), R] , lit) 5 0 ;

(h2) git) € £^[[0, °°), R] , git) £ t , lim git) = » ,

g'it) 2 0 ;

I*(h3) lim sup Hs)ds > 1 ;
'git)

(hit) qiu) is continuous for all u ± 0 ;

(h5) there exists a function Qit) € (^[[O, «),/?] , such that
Q'it) = mit) , t 5 0 , and either

(1) lim Qit) = 0 , or

(2) there exist constants q , <?„ and sequences

{*'}» {*"} ̂  ouch that lim t' = lim t" = »
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«(*;) = <?! . e(*^ = ?2 ' «i - QU) - «2 ' t - ° •

n, i/ (l) holds, every solution z(t) of (3.1) oscillates OP

lim z(t) = 0 , while i/ (2) holds, every solution z(t) of (3.1)

Now, using the above lemma and the previously given transformations,
we establish the following result for (1.3).

THEOREM 3.1. Consider the functional differential equation (1.3)
subject to the following hypotheses:

(HI) p(t), r{t) € C[[0, <»), R\ , -p(t) > 0 ;

(H2) g(t) € C^QO, ~) , i?] , g-(t) 5 t , lim g{t) = » ,

ff'(t) = 0 ;

(H3) lim sup -p(s)exp q{T)dl\ds > 1 ;

is continuous for all u t 0 ;

(H5) there exists a function Q{t) € Cr[[o, °°), i?] 3 SHCTZ

«'( t) = r(t)exp - j q(t)dt , t > 0 and either

(I) lim Q(t) = 0 , or

(II) there exist constants q^, q^ and sequences

{t'}> {*"} J such that lim t 1 = lim t"m = °°

(^) ^ ( $ ? 2 ^ q2 , t > o .

Then, if (I) holds, every solution y{t) of (1.3) oscillates or
lim y(t) = 0 , while if (II) holds, every solution y{t) of (1.3)

oscillates.

The above result accomplishes the purpose of this paper.

A QUESTION. We have seen so far, that one can deal directly with the
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oscillatory character of the solutions of (1.2) and (1.3), by transforming

them properly into equations which have already been examined. Could this

procedure - under suitable transformations - be applied to the higher-order

retarded differential equations

yM(t) =p(t)y[g(t)) + q(t)y(t)

and

y{H\t) = p(.t)y{g(.t)) + q(.t)y(t) + r(t) ,

respectively, for n > 1 ? This question remains open.
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