
Bull. Aust. Math. Soc. 93 (2016), 307–320
doi:10.1017/S0004972715001161

ERGODIC EXTENSIONS OF ENDOMORPHISMS

EVGENIOS T. A. KAKARIADIS� and JUSTIN R. PETERS

(Received 3 June 2015; accepted 26 June 2015; first published online 2 October 2015)

Abstract

We examine a class of ergodic transformations on a probability measure space (X, µ) and show that they
extend to representations of B(L2(X, µ)) that are both implemented by a Cuntz family and ergodic. This
class contains several known examples, which are unified in our work. During the analysis of the existence
and uniqueness of this Cuntz family, we find several results of independent interest. Most notably, we
prove a decomposition of X for N-to-one local homeomorphisms that is connected to the orthonormal
bases of certain Hilbert modules.
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Keywords and phrases: maximal abelian selfadjoint algebras, ergodic transformations, Hilbert modules.

1. Introduction

There is considerable interest in endomorphisms of nonselfadjoint operator algebras.
As in the theory of automorphisms of C*-algebras, where one asks if a representation
of the algebra admits a unitary operator which implements the automorphism, in the
case of endomorphisms there are various ways in which an endomorphism might
be implemented. In this paper, we examine the case when an endomorphism of
C(X), arising from a local homeomorphism, admits a representation in which the
endomorphism is realised by a family of Cuntz isometries. In other words, if α is
the endomorphism of C(X) associated with a representation π, when does there exist a
family S 1, . . . , S N of Cuntz isometries such that

π(α( f )) =

N∑
j=1

S j π( f )S ∗j for all f ∈ C(X)?

Such a quantisation of the dynamical system gives rise to a number of questions
relating the intrinsic properties of α to operator theoretic properties of the algebras
related to π(C(X)) and S 1, . . . , S N . In this paper, we address the problem of ergodicity.

We are motivated by and extend the recent work of Courtney et al. [1], in association
with earlier work of Laca [7] on ergodic transformations of B(H). In contrast to our
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previous work [6], which focuses on the abstract operator algebraic point of view, here
we analyse a class of particular transformations ϕ : X → X of a probability measure
space (X, µ). This leads to an analysis of a class of transformations of (X, µ) and
connects to the existence of a basis for Hilbert modules.

There are several well known examples (including the backward shift on infinite
words on N symbols, where N is finite, and finite Blaschke products with N factors)
where such transformations yield an endomorphism α : L∞(X, µ) → L∞(X, µ) that
is implemented by a Cuntz family. Our goal here is two-fold. Firstly, we give
conditions under which a transformation ϕ : X → X defines such an endomorphism
α : L∞(X, µ)→ L∞(X, µ) so that α( f ) = f ◦ ϕ (Proposition 2.2). Secondly, we show that
ergodicity of ϕ : X → X (as a transformation of a probability measure space) implies
ergodicity of the induced αS : B(L2(X, µ))→ B(L2(X, µ)) as a representation of a von
Neumann algebra (Theorem 3.2).

The existence of a Cuntz family implementing α : L∞(X, µ)→ L∞(X, µ) is connected
to a decomposition of the space X based on a maximal family of sets (Lemma 3.1).
One may ask whether different decompositions yield the same extension. We show
that the answer to this question is connected to the existence of an orthonormal basis
of a suitable W*-module (Proposition 4.5). As a consequence, we obtain a complete
invariant on multiplicity n crossed products after Stacey [12] (Corollary 4.6).

A useful tool for the study of the endomorphism α : L∞(X, µ)→ L∞(X, µ) is the
intertwining Hilbert module E(X, µ) used in Section 4. This construction appears in
the work of Muhly and Solel [10]; however, we will not require the technology of the
induced representations. Under certain conditions on the transformation ϕ : X → X,
there is a transfer operator, and our setting encompasses several cases, including
that described in [1, Theorem 5.2]. We conclude by showing that the existence of
a basis for the Hilbert module E(X, µ) is equivalent to the existence of a Cuntz family
implementing α : L∞(X, µ)→ L∞(X, µ) and, in turn, is equivalent to the existence of a
basis for L∞(X, µ) viewed as a Hilbert module, where the inner product is defined by
the transfer operator (Theorem 5.2).

Hilbert modules may not have a well-defined (up to unitary equivalence) basis,
in contrast to Hilbert spaces. Therefore, it is central to our analysis to achieve a
well-defined basis. For example, O2 is unitarily equivalent to

∑n
k=1 O2 for all n ∈ N,

as Hilbert modules over O2 (Remark 4.2). This phenomenon is also connected to
the multiplicity of multivariable C*-dynamics [5] and produces an obstacle for the
classification of these objects. To tackle this problem, Gipson [4] develops the notion
of the invariant basis number for C*-algebras, along with an in-depth analysis of C*-
algebras that do (or do not) attain such a number.

2. Preliminaries
Let us begin with a general comment on ∗-endomorphisms αS of B(H) that are

implemented by a Cuntz family {S 1, . . . , S N}: that is,

αS (T ) =

N∑
i=1

SiTSi
∗ for all T ∈ B(H).
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We write ON = C∗(S 1, . . . , S N) for the Cuntz algebra [2] inside B(H). Both αS and the
restriction αS |ON of αS to ON are injective, but they are not onto for N > 1. Indeed, if
there is a T ∈ B(H) such that αS (T ) = 0, then

T = S ∗1S 1TS ∗1S 1 = S ∗1αS (T )S 1 = 0.

Furthermore, if there is a T ∈ ON such that αS (T ) = S 1, then

I = S ∗1S 1 = S ∗1αS (T ) = TS ∗1,

and hence S 1 is a unitary, which holds if and only if N = 1.
Let (X, µ) and (Y, ν) be compact Hausdorff spaces, endowed with their Borel

structure and measures µ and ν. Then a continuous map ϕ : (X, µ)→ (Y, ν) is a Borel
homomorphism. However, the mapping

α : (L∞(Y, ν), ‖ · ‖∞)→ (L∞(X, µ), ‖ · ‖∞) : f 7→ f ◦ ϕ,

where ‖ · ‖∞ is the essential sup-norm, may not even be well defined. In particular,
one can show that α is well defined if and only if µ ◦ ϕ−1 � ν (that is, the set map ϕ−1

preserves the ν-null sets). When ϕ(Y) is, in addition, a Borel set, α is well defined and
injective if and only if ν(ϕ(Y)c) = 0 (that is, ϕ is almost onto X) and µ ◦ ϕ−1 ∼ ν.

In general, a Borel map ϕ : X→ Y is said to preserve the ν-null sets if ν ◦ ϕ� µ. In
this case, ν� µ ◦ ϕ−1. Note here that, if ν ◦ ϕ� µ, then ϕ(E) is Borel for every Borel
subset E of X. Indeed, a Borel subset E of X is the union of an Fσ set A and a µ-null
set N. Then ϕ(N) is a ν-null set, and compactness of X implies that A is σ-compact.
Hence ϕ(A) is Borel; thus ϕ(E) is measurable.

Recall that, if ϕ : X → Y is a Borel map, then a mapping ψ : ϕ(X)→ X is called a
Borel (cross) section of ϕ, where ψ is a Borel map and ϕ ◦ ψ = idϕ(X).

Proposition 2.1. Let ϕ : X → Y be an onto map, such that ϕ and ϕ−1 preserve the null
sets, and let ψ : Y → X be a Borel section of ϕ. Then X0 := ψ(Y) is Borel and there is
an isometry S : L2(Y, ν)→ L2(X, µ) such that

M f◦ϕ|L2(X0,ν|X0 ) = S M f S ∗ for all f ∈ L∞(Y, ν).

Proof. Observe that ψ preserves the null sets (which implies that X0 is Borel). Since
µ ◦ ϕ−1 � ν, then µ� ν ◦ ϕ. For a null set E ⊆ Y , we have ν ◦ ϕ(ψ(E)) = ν(E) = 0,
and thus µ ◦ ψ(E) = 0. Note that, since X0 is Borel, then ϕ|X0 is a Borel isomorphism
with ψ : Y → X0 as an inverse.

On the other hand, if µ ◦ ψ(E) = 0, then ν(E) = ν ◦ ϕ(ψ(E)) = 0, since ϕ preserves
the null sets. Therefore, ν is equivalent to µ ◦ ψ = µ|X0 ◦ ψ and the Radon–
Nikodym derivative u = d(µ|X0 ◦ ψ)/dν is defined. It is a standard fact that the operator
S ∗0 : L2(X0, µ|X0 )→ L2(Y, ν), defined by

S ∗0(g) = g ◦ ψ · u1/2 for all g ∈ L2(X0, µ|X0 ),

is a unitary such that

M f◦ϕ|L2(X0,ν|X0 ) = S 0M f S ∗0 for all f ∈ L∞(Y, ν).

Extend S ∗0 trivially to S ∗ on L2(X, µ) = L2(X0, µ|X0 ) ⊕ L2(Xc
0, µ|Xc

0
). Then the adjoint S

of S ∗ is an isometry and gives the required equation. �
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Proposition 2.2. Let ϕ : X → Y be an onto map, such that ϕ and ϕ−1 preserve the null
sets. Suppose that there is a family {ψ1, . . . , ψN} of N Borel sections of ϕ such that
ψi(Y) ∩ ψ j(Y) = ∅ for i , j, and

⋃
i ψi(Y) is almost equal to X. Then there is a Cuntz

family that implements α.

Proof. For every i = 1, . . . , N, let Xi = ψi(Y) and let Si be constructed as above on
Xi = L2(Xi, µ|Xi ). Note that Xi ⊥ X j for i , j. Thus, if X0 =

⋃
i Xi and X0 =

⊕
iXi, we

get M1|Xi
= Mα(1)|Xi = SiM1Si

∗ = SiSi
∗, and therefore

Mα( f )|X0 =

N∑
i=1

Mα( f )|Xi =

N∑
i=1

SiM f Si
∗.

Since X =
⋃

i Xi a.e., we obtain IX0 = M1|X0 =
∑N

i=1 M1|Xi =
∑N

i=1 SiSi
∗. Finally, X0 is

almost equal to X: hence L2(X, ν) = X0 and the proof is complete. �

3. Ergodic extensions

Let (X, µ) be a probability measure space such that X is a compact Hausdorff space
and µ is a regular Borel measure on X. A measure preserving map ϕ : X → X induces
an injective ∗-homomorphism α : L∞(X, µ)→ L∞(X, µ). We are interested in the case
where α is implemented by a Cuntz family {Si}

N
i=1 inB(L2(X, µ)). In this case, α extends

to an injective ∗-endomorphism αS of B(L2(X, µ)). A natural question is whether
ergodicity of the mapping ϕ implies ergodicity of the ∗-endomorphism αS . Recall that
αS is ergodic if the von Neumann algebra NαS := {T ∈ B(H) | αS (T ) = T } is trivial.
We aim to give a positive answer for a class of ergodic mappings that includes central
examples.

Recall that a map ϕ : X → X is called a local homeomorphism if, for every point
x ∈ X, there is a neighbourhood U such that ϕ|U is a homeomorphism onto its
image. Clearly, local homeomorphisms are continuous and open. We begin with a
decomposition lemma tailored to our study.

Lemma 3.1. Let ϕ be a local homeomorphism of a compact Hausdorff space X such
that |ϕ−1(x)| = N > 1 for all x ∈ X. Then there exist pairwise disjoint open subsets
U1, . . . ,UN such that:

(1) ϕ|Ui is one-to-one for all i = 1, . . . , n;
(2) ϕ(Ui) = ϕ(U j) for all i, j = 1, . . . ,N;
(3) X =

⋃N
i=1(Ui ∪ ∂Ui); and

(4) X = ϕ(Ui) ∪ ∂ϕ(Ui) for all i = 1, . . . ,N.

Moreover, ϕ(∂Ui) ⊆ ∂ϕ(Ui) and ϕ−1(∂ϕ(Ui)) =
⋃N

j=1 ∂U j, for all i = 1, . . . ,N.
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Proof. Firstly, let us construct a family that satisfies (1) and (2). Let F be the
collection that consists of {U1, . . . ,UN} such that Ui are open and disjoint, ϕ|Ui is
one-to-one for all i = 1, . . . ,N and ϕ(Ui) = ϕ(U j).
Claim. The collection F is nonempty.
Proof of Claim. Choose y ∈ X and suppose that x1, . . . , xN are the N pre-images of y.
Let Vi be a neighbourhood of xi such that ϕ|Vi is one-to-one. Since X is a Hausdorff
space, we can choose Vi to be disjoint. Moreover, ϕ(Ui) are open sets, since ϕ is an
open map. Let V =

⋂N
i=1 ϕ(Vi), which is open, and let Ui = ϕ−1(V) ∩ Vi. Then the Ui

are disjoint and ϕ|Ui is one-to-one, since the Ui are subsets of the Vi. In addition

ϕ(Ui) = ϕ ◦ ϕ−1(V) ∩ ϕ(Vi) = V ∩ ϕ(Vi) = V,

and the proof of the claim is complete.
The collection F is endowed with the partial order ‘≤’ such that

{U1, . . . ,UN} ≤ {V1, . . . ,VN} if Ui ⊆ Vi, for all i = 1, . . . ,N.

Let C = {{Uk
1, . . . ,U

k
N} | k ∈ I} be a chain in F, with the understanding that, when

{Uk
1, . . . , Uk

N} ≤ {U
l
1, . . . , U l

N}, Uk
i ⊆ U l

i for all i = 1, . . . , N. Then the element
{
⋃

k Uk
1, . . . ,

⋃
k Uk

N} is an upper bound for C inside F . Indeed, it suffices to prove
that the

⋃
k Uk

i are disjoint (with respect to the indices i). If there were an x in two
such unions, then there would be some k, l ∈ I such that x ∈ Uk

i ∩ U l
j. Without loss of

generality, assume {Uk
1, . . . ,U

k
N} ≤ {U

l
1, . . . ,U

l
N}, so that x ∈ Uk

i ∩ U l
j ⊆ U l

i ∩ U l
j = ∅,

which is absurd. Thus the collection F has a maximal element by Zorn’s Lemma.
From now on, fix this maximal element to be {U1, . . . ,UN}. By definition, the sets
U1, . . . ,UN satisfy the properties (1) and (2) of the statement.

Secondly, we prove that X = ϕ(Ui) ∪ ∂ϕ(Ui), for i = 1, . . . ,N, where {U1, . . . ,UN}

is the maximal family constructed above. Since X \ ϕ(Ui) is closed, it suffices to show
that it has empty interior. To this end, let V be an open neighbourhood of some y ∈
int(X \ ϕ(Ui)) with N pre-images x1, . . . , xN . Then ϕ−1(V) is open, contains the xi and
ϕ−1(V) ∩ (

⋃N
i=1 Ui) = ∅. Indeed, if z ∈ ϕ−1(V) ∩ (

⋃N
i=1 Ui), then ϕ(z) = V ∩ ϕ(Ui) = ∅,

which is absurd. As in the proof of the claim above, we can find neighbourhoods Vi of
xi inside ϕ−1(V) such that Vi are disjoint, ϕ|Vi is one-to-one and ϕ(Vi) = V , perhaps by
passing to a sub-neighbourhood of y. Therefore, the family {U1 ∪ V1, . . . ,UN ∪ VN} is
in F , which contradicts the maximality of {U1, . . . ,UN}.

Thirdly, we show that X =
⋃N

i=1(Ui ∪ ∂Ui). It suffices to show that the closed set
X \ (

⋃N
i=1 Ui) has empty interior. Indeed, in this case, it will coincide with its boundary,

and hence with ∂
( ⋃N

i=1 Ui
)
. Since the Ui are open and disjoint, this boundary will

be
⋃N

i=1 ∂(Ui). To this end, let U be an open neighbourhood of an element x in the
interior of X \ (

⋃N
i=1(Ui ∪ ∂Ui)). If there were an x′ ∈ U such that ϕ(x′) ∈ ϕ(Ui),

then ϕ(x′) would have N + 1 pre-images, which is a contradiction. Indeed, recall
that ϕ(Ui) = ϕ(U j) and Ui ∩ U j = ∅. Therefore, ϕ(U) is contained in the interior of
X \ ϕ(Ui). But X \ ϕ(Ui) has empty interior, which gives the contradiction.
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Finally, let x ∈ ∂Ui. If ϕ(x) ∈ ϕ(Ui), then the element ϕ(x) would have N + 1 pre-
images, which is a contradiction. Therefore, ϕ(∂Ui) ⊆ X \ ϕ(Ui) = ∂ϕ(Ui). Note, also,
that by this construction we obtain

ϕ−1(∂ϕ(Ui)) = ϕ−1(X \ ϕ(Ui)) = X
∖ N⋃

j=1

U j =

N⋃
j=1

U j,

for all i = 1, . . . ,N, and the proof of the lemma is complete. �

Let ϕ be as in Lemma 3.1, such that ϕ and ϕ−1 preserve the null sets. If {Ui}
N
i=1 is

the family satisfying the properties of Lemma 3.1 and

the ∂Ui (equivalently the ϕ(∂Ui)) are null sets,

then the ∗-endomorphism α : L∞(X, µ)→ L∞(X, µ) : f → f ◦ ϕ is implemented by a
Cuntz family. Indeed, let X0 =

⋃N
i=1 Ui and Y0 = ϕ(Ui). Then ϕ0 := ϕ|X0 has N Borel

sections ψi, for i = 1, . . . ,N, with

ψi = [ϕ|Ui ]
−1 : Y0 → X0.

Moreover, ϕ0 and ϕ−1
0 preserve the null sets. By Proposition 2.2 there is a Cuntz family

{Si}
N
i=1 with

Si : L2(Y0, µ|Y0 )→ L2(X0, µ|X0 )

that implements the representation

L∞(X0, µ|X0 ) 3 f 7→ f ◦ ϕ0 ∈ L∞(Y0, µ|Y0 ).

Since X0 and Y0 are almost equal to X, the family {Si}
N
i=1 implements α.

Given a decomposition of X as above and a finite word iii = i1 . . . ik in {1, . . . ,N} we
can define the Borel sets

Ui1i2···ik = {x ∈ X | x ∈ Ui1 , . . . , ϕ
k−1(x) ∈ Uik }.

This definition is extended to infinite words iii = i1i2 . . . ik . . . with the understanding
that Uiii =

⋂
k Ui1...ik .

Theorem 3.2. Let (X, µ, ϕ) be a dynamical system such that:

(1) ϕ is a local homeomorphism of X such that each point of X has N > 1 pre-images;
(2) {Ui}

N
i=1 is a decomposition of X as in Lemma 3.1 such that the ∂Ui are null sets;

(3) ϕ is ergodic and preserves the null sets; and
(4) the sets Uiii, for iii ∈ F+

N generate the σ-algebra up to sets of measure zero.

Then α : M f 7→ M f◦ϕ admits an extension αS to B(L2(X, m)) which is ergodic.
Furthermore, αS defines (by restriction) an irreducible representation of ON .
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Proof. Under the assumptions, there is a Cuntz family {Si}
N
i=1 that implements α

and αS (T ) =
∑N

i=1 SiTSi
∗, the extension of α to B(L2(X, µ)), is a weak*-continuous

endomorphism of B(L2(X, µ)). Consequently, NαS = {T ∈ B(H) | αS (T ) = T } is a
von Neumann algebra. Fix a projection P ∈ NαS . Then αS (P) = P implies that
SiP = PSi and Si

∗P = PSi
∗, for all i = 1, . . . , N. In particular, P commutes with the

range projections of the Si and the products of the Si. But these projections are the
characteristic functions of the sets Uiii, for the words iii on the symbols {1, . . . ,N}. Since
the sets Uiii generate the σ-algebra up to null sets, the linear span of these projections
is weak*-dense in L∞(X, µ). It follows that P is in the MASA (maximal abelian sub-
algebra) L∞(X, µ), and hence P = χE for a measurable set E. However,

MχE = P = αS (P) = α(P) = MχE◦ϕ

and ergodicity of ϕ implies that E is either X or ∅. Thus we obtain NαS = CI. The
second part of the theorem follows by the comments after [7, Definition 3.2]. �

We give examples of dynamical systems that satisfy the conditions of Theorem 3.2.

Examples 3.3. The first example is the canonical Cuntz–Krieger example of a
dynamical system associated with Cuntz isometries. Let N ∈ N and

X =

∞∏
k=1

{1, . . . ,N}k with measure µ =

∞∏
k=1

µk,

where each µk = µ j for all j, k and such that µk(A) = |A|/N for all A ⊂ {1, . . . , N}. If
we consider X as a compact abelian group, with ‘odometer’ addition, then µ is the
Haar measure on X. Let ϕ denote the shift map ϕ(i1, i2, . . .) = (i2, i3, . . .), which is an
N-to-one local homeomorphism. Then ϕ is ergodic and the conditions of the theorem
are satisfied for the cylinder sets Ui := {(i1, i2, . . .) | i1 = i} (which are clopen so that
∂Ui = ∅).

A second example arises when X is the circle T, µ is Lebesgue measure and ϕ is a
finite Blaschke product with N > 1 factors and zero Denjoy–Wolf fixed point (that is,
at least one of the Blaschke factors is z). Then ϕ is ergodic and the sets Ui are arcs on
the circle, so the condition µ(∂Ui) = 0 is satisfied. This example is considered in [1].

In view of Theorem 3.2, one can ask whether the σ-algebra generated by the sets
Uiii with iii ∈ F+

N always generates the full σ-algebra of measurable sets, up to measure
zero. This is not true, as the following example shows.

Example 3.4. Let (X, µ, ϕ) be the canonical Cuntz–Krieger example as above. Also
let τ be an irrational rotation on the circle T with Lebesgue measure. Set Y = X × T,
σ(x, z) = (ϕ(x), τ(z)) and ν = µ × λ. Then (Y, ν, σ) is ergodic as the product of the
mixing shift map with the ergodic irrational rotation. Let Ui = {(i1, i2, . . .) ∈ X | i1 = i}
and Vi = Ui × [0, 1]. Then the Vi are as in Lemma 3.1, but the Viii with iii ∈ F+

N do not
suffice to generate the σ-algebra of measurable sets up to measure zero.
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4. Uniqueness of the extension

The reader is referred to the work of Paschke [11] for an introduction to W*-
modules and to [8, 9] for the general theory of C*-modules.

Definition 4.1. Let M be a Hilbert module over a unital C*-algebra A. A subset
{ξ1, . . . , ξN} ofM is said to be an orthonormal basis for M if ξi ∈ M, 〈ξi, ξ j〉 = δi j1A

and

ξ =

N∑
i=1

ξi · 〈ξi, ξ〉 for all ξ ∈ M.

In the case where N =∞, the sum is understood as norm-convergent.

It follows that
∑N

i=1 θξi,ξi = idM, with the understanding that the sum is convergent
in the strong topology when N = ∞. When A is nonunital, we define the basis ofM
by using the unitisation A1 = A + C. Indeed, we can extend the right action to A1 by

ξ · (a + λ) = ξ · a + λξ,

for all a ∈ A and λ ∈ C. Then the basis ofM over A is defined as the basis ofM over
A1. This is just to ensure that the formula 〈ξi, ξ j〉 = δi j1A1 makes sense.

Remark 4.2. In general, a Hilbert module may not have an orthonormal basis.
However, W*-modules have a basis {ξi} such that 〈ξi, ξi〉 is a projection [11, Theorem
3.12]. Moreover, the size of an orthonormal basis is not well defined, meaning that
there may be bases {si}i∈I and {t j} j∈J with |I| , |J|. The reason is that the uniqueness
of the linear combinations is not guaranteed. For a counterexample, let M = O2 be
the trivial Hilbert module over itself, where O2 is the Cuntz algebra on two generators,
say s1 and s2. Then the sets {1O2} and {s1, s2} are both bases for the Hilbert module.
Indeed, for ξ ∈ O2, we trivially have that ξ = 1O2 · 〈1O2 , ξ〉 and

ξ = (s1s∗1 + s2s∗2)ξ = s1 · 〈s1, ξ〉 + s2 · 〈s2, ξ〉,

since s1s∗1 + s2s∗2 = 1O2 .
Therefore, the trivial Hilbert moduleM = O2 over O2 is unitarily equivalent to the

(interior) direct sumM +M over O2 by the unitary U = [s1 s2]. Inductively, we get
thatM is unitarily equivalent to

∑n
i=1M for all n ∈ N.

Similarly, ON is unitarily equivalent to
∑n

i=1 ON for an infinite number of n ∈ N.
This fact was later considered and examined in much more generality by Gipson [4].

Remark 4.3. Nevertheless, when the Hilbert module is over a stably finite C*-algebra
A, the size is unique. Indeed, let {ξi}i∈I and {η j} j∈J be two orthonormal bases of such a
Hilbert moduleM and form the rectangular matrix U = [〈ξi, η j〉]. Then the (i, j)-entry
of the |I| × |J| matrix UU∗ is

|J|∑
k=1

〈ξi, ηk〉〈ηk, ξ j〉 =
∑

k

〈ξi, ηk〈ηk, ξ j〉〉 = 〈ξi, ξ j〉 = δi j1A.
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Analogous computations for U∗U show that U is a unitary in M|I|,|J|(A). Since A is
stably finite, we get that |I| = |J|. In fact,

[η1, . . . , ηN] = [ξ1, . . . , ξN][Ui j],

and the unitary U is in MN(A). In contrast to [7] the unitary U may not be in MN(C).

Let α : L∞(X, µ)→ L∞(X, µ) be a *-homomorphism and define the linear space

E(X, µ) = {T ∈ B(L2(X, µ)) | Ta = α(a)T for all a ∈ L∞(X, µ)}.

Then E(X, µ) becomes a Hilbert module over L∞(X, µ) by defining

S · a := S a and 〈S ,T 〉 := S ∗T

for all a ∈ L∞(X, µ) and S ,T ∈ E(X, µ). Indeed, for b ∈ L∞(X, µ), we obtain

(S a)b = S ab = S ba = (S b)a = (α(b)S )a = α(b)(S a),

and thus S a ∈ E(X, µ). Also, we have that

〈S ,T 〉 · b = (S ∗T )b = S ∗Tb = S ∗α(b)T = bS ∗T = b · 〈S ,T 〉

for all b ∈ L∞(X, µ), which implies that 〈S , T 〉 ∈ L∞(X, µ)′ = L∞(X, µ). Thus, the inner
product and the right action are well defined, and routine calculations show that E(X, µ)
is a Hilbert module over L∞(X, µ). In particular, the Hilbert module E(X, µ) becomes a
W*-correspondence over L∞(X, µ) by defining

a · S = α(a)S for all a ∈ L∞(X, µ) and S ∈ E(X, µ).

Indeed, for b ∈ L∞(X, µ),

(a · S )b = α(a)S b = α(a)α(b)S = α(b)α(a)S = α(b)(a · S ),

and hence a · S ∈ E(X, µ).
It is evident that E(X, µ) is a weak*-closed subspace ofB(L2(X, µ)). Hence, as a self-

dual W*-correspondence, it receives a basis {Si}i∈I such that 〈Si, S j〉 = Si
∗S j = 0 when

i , j, 〈Si, Si〉 = Si
∗Si is a projection in L∞(X, µ), and T =

∑
i SiSi

∗T for all T ∈ E(X, µ)
[11, Theorem 3.12].

Lemma 4.4. Let {Si}
N
i=1 be a basis for E(X, µ) with N < ∞. Then the following are

equivalent:

(1) {Si}
N
i=1 is an orthonormal basis for E(X, µ); and

(2) {Si}
N
i=1 is a Cuntz family that implements α on L∞(X, µ).

Proof. For convenience, we write I ∈ B(L2(X, µ)) also for the unit of L∞(X, µ). Since
{Si}

N
i=1 is a basis, we obtain I =

∑N
i=1 θSi,Si = SiSi

∗. Moreover, Si ∈ E(X, µ), and thus
Sia = α(a)Si for all a ∈ L∞(X, µ). Hence,

N∑
i=1

SiaSi
∗ = α(a)

N∑
i=1

SiSi
∗ = α(a).
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Conversely, if {Si}
N
i=1 is a Cuntz family, then 〈Si, S j〉 = δi jI and

∑N
i=1 SiSi

∗ = I, since
α(I) = I for the unit I ∈ L∞(X, µ). If α(a) =

∑N
i=1 SiaSi

∗, then Sia = α(a)Si for all
a ∈ L∞(X, µ), where i = 1, . . . , N. Thus we obtain Si ∈ E(X, µ). For T ∈ E(X, µ), set
ai = 〈Si,T 〉 = Si

∗T . Then
N∑

i=1

Siai =

N∑
i=1

SiSi
∗T = T,

and the proof is complete. �

Let {S 1, . . . , S N} be an orthonormal basis of E(X, µ), and let the extension αS of α
be given by

αS : B(L2(X, µ))→B(L2(X, µ)) : R 7→
N∑

i=1

SiRSi
∗.

We can then define the linear space

HS := {T ∈ B(L2(X, µ)) | TR = αS (R)T for all R ∈ B(L2(X, µ))}.

It becomes a Hilbert space endowed with the inner product

〈T1,T2〉 = T ∗1T2 for all T1,T2 ∈ HS .

Indeed, it is easy to check that 〈T1,T2〉 ∈ B(L2(X, µ))′ = C. Moreover, it has dimension
N and the Cuntz family {Si}

N
i=1 is inHS . The proof is the same as in Remark 4.2 taking

into account that αS (R)S j = S jR, for all R ∈ B(L2(X, µ)). These results were established
by Laca [7].

Proposition 4.5. Let {Si}
N
i=1 and {Qi}

N
i=1 be two orthonormal bases for E(X, µ). Then

the following are equivalent:

(1) the unitary U that induces a pairing of the bases is in MN(C); and
(2) the extensions αS and αQ in B(L2(X, µ)) coincide.

Proof. For convenience, we write I ∈ B(L2(X, µ)) also for the unit of L∞(X, µ).
(1)⇒ (2): we compute

αQ(R) =

N∑
i=1

QiRQ∗i =

N∑
i, j,k=1

S j〈S j,Qi〉R〈Qi, S k〉S ∗k

=

N∑
k, j=1

S jR
N∑

i=1

〈S j,Qi〉〈Qi, S k〉S ∗k

=

N∑
k, j=1

S jRδ j,kS ∗k =

N∑
k=1

S kRS ∗k = αS (R),

since
∑N

i=1〈S j,Qi〉〈Qi, S k〉 is the ( j, k)-entry of UU∗ = I, and the entry 〈S j,Qi〉 of U is
in C.
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(2)⇒ (1): if αQ = αS , then by definitionHS =HQ. Thus,

S ∗i QkR = S ∗i αQ(R)Qk = S ∗i αS (R)Qk = RS ∗i Qk

for all R ∈ B(L2(X, µ)), and hence S ∗i Qk ∈ B(L2(X, µ))′ = C. �

As a consequence, we have a complete invariant for the multiplicity n crossed
products on L∞(X, µ) [12]. Recall that, given a ∗-endomorphism α : A→ A of a C*-
algebra A, the multiplicity n crossed product A ×n

α N is the enveloping C*-algebra
generated by π(A) and a Toeplitz–Cuntz family {Qi}

n
i=1, such that π is a nondegenerate

representation of A and π(α(a)) =
∑n

i=1 Qiπ(a)Q∗i , for all a ∈ A. When α is unital,
nondegeneracy of π is redundant and {Qi}

n
i=1 can be considered to be a Cuntz family [6,

Section 3 and Proposition 3.1]. In [6, Subsection 3.3] we introduced the semicrossed
product A ×α T +

n as the noninvolutive subalgebra of A ×n
α N generated by π(A) and

{Qi}
n
i=1.

Corollary 4.6. Let α be a unital weak*-continuous isometric endomorphism of
L∞(X, µ) and suppose that there is a representation (id, {Si}

n
i=1) of Stacey’s crossed

product L∞(X, µ) ×n
α N on L2(X, µ). Then the following are equivalent:

(1) L∞(X, µ) ×n
α N ' L∞(X, µ) ×m

α N via a ∗-isomorphism that fixes L∞(X, µ)
elementwise;

(2) there is a representation (id, {Qi}
m
i=1) of L∞(X, µ) ×m

α N acting on L2(X, µ);
(3) n = m; and
(4) L∞(X, µ) ×α T +

n ' L∞(X, µ) ×α T +
m via a completely isometric isomorphism that

fixes L∞(X, µ) elementwise.

Proof. The fact that α is an isometric endomorphism of a C*-algebra implies that it is
a ∗-homomorphism of the C*-algebra L∞(X, µ) and the multiplicity n crossed products
are well defined. The implication (3)⇒ (4) is immediate.
(4)⇒ (1): by [6, Theorem 3.13] the C*-algebra L∞(X, µ) ×n

α N is the C*-envelope of
L∞(X, µ) ×α T +

n , and thus the completely isometric isomorphism of (4) extends to a
∗-isomorphism of the corresponding C*-algebras.
(1)⇒ (2): if Φ is the ∗-isomorphism, let Qi := Φ(Si).
(2)⇒ (3): let (id, {Si}

n
i=1) and (id, {Qi}

m
i=1) be two such representations. Then α is

implemented by {Si}
n
i=1 and {Qi}

m
i=1, and thus they define a basis for E(X, µ). Therefore

n = m, by Remark 4.3. �

5. Existence of a transfer operator

In general, the mapping C(X) 3 f
Cϕ

7−→ f ◦ ϕ ∈ L2(X, µ) may not extend to an operator
on the Hilbert space L2(X, µ). However, if

c0‖ξ‖2 ≤ ‖Cϕξ‖2 ≤ c1‖ξ‖2 for all ξ ∈ L2(X, µ),

then Cϕ is an injective operator in B(L2(X, µ)), and ϕ−1 preserves the null sets. The
map µ is called ϕ-bounded if there is a constant K > 0 such that µ(ϕ(E)) ≤ Kµ(E), for
all measurable sets E ⊂ X. In this case, ϕ also preserves the µ-null sets.
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Under these assumptions let Cϕ = S ϕaϕ be the polar decomposition of Cϕ. Then S ϕ

is an isometry and aϕ is invertible. We can check that, by definition, Cϕa = α(a)Cϕ

for all a ∈ L∞(X, µ), and hence Cϕ ∈ E(X, µ). Therefore, a2
ϕ = C∗ϕCϕ ∈ L∞(X, µ)′, so

aϕ ∈ L∞(X, µ). Consequently, the isometry S ϕ = Cϕa−1
ϕ is also in E(X, µ) and the

mapping
L : L∞(X, µ)→ L∞(X, µ) : a 7→ S ∗ϕaS ϕ

defines a transfer operator of α: that is, L is positive and aL(b) = L(α(a)b), for all
a,b ∈ L∞(X, µ). Following Exel [3], let the semi-inner-product on the L∞(X, µ)-module
L∞(X, µ)L be given by

〈η, ξ〉L = L(η∗ξ), and ξ · a = ξα(a),

for all η, ξ, a ∈ L∞(X, µ).

Proposition 5.1. Assume that µ is ϕ-bounded and that Cϕ is a bounded below operator
of B(L2(X, µ)). Then L∞(X, µ)L is a Hilbert module over L∞(X, µ) and, as a vector
space, it coincides with L∞(X, µ).

Proof. It suffices to show that the norm ‖ · ‖L on the module L∞(X, µ)L is equivalent
to the norm ‖ · ‖ of L∞(X, µ).

First, we show that there is a constant M such that ‖a‖ ≤ M||aS ϕ|| for every
a ∈ L∞(X, µ). Since ||aS ϕ||

2 = || |a|S ϕ||
2 and ‖a‖ = || |a| ||, it is enough to show that

the relation ‖a‖ ≤ M||aS ϕ|| holds for all positive a in the norm-dense subspace of
simple functions. To this end, let a =

∑n
i=1 diχEi , where the sets Ei are disjoint and

of positive measure, and d1 > d2 > · · · > dn > 0. Hence ‖a‖ = d1. To compute the
norm ||aS ϕ|| we let a act on unit vectors in the range of Cϕ; equivalently with unit
vectors in the range of S ϕ. Let E = E1 and ξ = µ(ϕ−1(ϕ(E)))−1/2χϕ−1(ϕ(E)). Then ξ
is a unit vector in the range of S ϕ. Also, the assumptions on S ϕ and µ imply that
µ(ϕ−1(ϕ(E))) ≤ c2

1µ(ϕ(E)) ≤ c2
1Kµ(E). Therefore,

||aS ϕ||
2 ≥ ‖aξ‖22 =

∫
X

a2|ξ|2 dµ ≥
∫

X
d2

1χE |ξ|
2 dµ

=
1

µ(ϕ−1(ϕ(E)))

∫
X

d2
1χE dµ =

µ(E)
m(ϕ−1(ϕ(E)))

d2
1 ≥

1
c2

1K
d2

1.

Since ‖a‖ = d1, we have that ||aS ϕ|| ≥ (1/c1
√

K)‖a‖ on a norm-dense subspace.
The above inequality gives the equivalence of the norms ‖ · ‖L and ‖ · ‖. Indeed,

1
M2 ‖a‖

2 ≤ ‖ |a|S ϕ‖
2 = ‖S ∗ϕ|a|

2S ϕ‖ = ‖L(a∗a)‖

= ‖a‖2L = ‖S ∗ϕa∗aS ϕ‖ ≤ ‖a∗a‖ = ‖a‖2,

where we have used the fact that S ϕ is an isometry. The proof is now complete. �

The following theorem is the analogue of [1, Theorem 5.2].
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Theorem 5.2. Assume that µ is ϕ-bounded and that Cϕ is a bounded below operator of
B(L2(X, µ)). Then the following are equivalent:

(1) {ξi}
N
i=1 is an orthonormal basis for the Hilbert module L∞(X, µ)L;

(2) {ξiS ϕ}
N
i=1 is an orthonormal basis for the Hilbert module E(X, µ); and

(3) {ξiS ϕ}
N
i=1 is a Cuntz family that implements α.

Proof. It will be convenient to denote Si := ξiS ϕ. Note that, by definition, Si ∈ E(X, µ)
and recall that the equivalence (2)⇔ (3) is Lemma 4.4. We write I ∈ B(L2(X, µ)) also
for the unit of L∞(X, µ). The constant function of L2(X, µ) will be denoted by 1.
(1)⇒ (3): First we have that the Si have orthogonal ranges, since

Si
∗S j = S ∗ϕξ

∗
i ξ jS ϕ = L(ξ∗i ξ j) = 〈ξi, ξ j〉L = δi jI.

Recall that the constant function 1 : X→ C is a separating vector and Cϕ(1) = 1 ◦ ϕ = 1.
Therefore,

SiaSi
∗(1) = SiaSi

∗Cϕ(1) = ξiS ϕaS ∗ϕξ
∗
i S ϕaϕ(1)

= α(a)ξiS ϕL(ξ∗i α(aϕ))(1) = α(a)ξiα(L(ξ∗i α(aϕ)))S ϕ(1)

for all i = 1, . . . , N. Since {ξi}
N
i=1 defines a basis of L∞(X, µ)L, it then follows that

a =
∑N

i=1 ξi · 〈ξi, a〉L =
∑N

i=1 ξiα(L(ξ∗i a)) for all a ∈ L∞(X, µ). Thus, we compute

N∑
i=1

SiaSi
∗(1) =

N∑
i=1

α(a)ξiα(L(ξ∗i α(aϕ)))S ϕ(1)

= α(a)
N∑

i=1

ξiα(L(ξ∗i α(aϕ)))S ϕ(1)

= α(a)α(aϕ)S ϕ(1) = α(a)S ϕaϕ(1) = α(a)Cϕ(1) = α(a)(1).

Since 1 is a separating vector, we see that {Si}
N
i=1 implements α.

(3)⇒ (1): Note that the functions ξi are orthonormal, since

〈ξi, ξ j〉L = L(ξ∗i ξ j) = C∗ϕξ
∗
i ξ jCϕ = Si

∗S j = δi jI.

To see that the {ξi}
N
i=1 span L∞(X, µ)L, choose an element a ∈ L∞(X, µ) with 〈ξi, a〉L = 0

for all i. Then we obtain

(aS ϕ)∗ = S ∗ϕa∗ ·
N∑

i=1

SiSi
∗ = S ∗ϕa∗ ·

N∑
i=1

ξiS ϕSi
∗

=

N∑
i=1

(S ∗ϕa∗ξiS ϕ)Si
∗ =

N∑
i=1

〈a, ξi〉LSi
∗ = 0,

so that aS ϕ = 0. Hence aCϕ = 0, and thus a(1) = aCϕ(1) = 0. Since 1 is a separating
vector, we obtain a = 0. �
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Remark 5.3. Assume that ϕ : X → X has N Borel sections as in Proposition 2.2. Then
the N isometries Si of Proposition 2.2 can be written as

Si = MχYi
MuiCϕaϕ = MχYi

Muiα(aϕ)Cϕ = MχYi
Mui Mh◦ϕCϕ,

where ui are as in Proposition 2.1 for ψ = ψi and aϕ = Mh ∈ L∞(X, µ). Therefore, the
elements ξi = MχYi

Mui Mh◦ϕ ∈ L∞(X, µ) define a basis for L∞(X, µ)L.
There is a converse of this scheme that works at the level of ∗-homomorphisms.

We would like to thank Philip Gipson for bringing this to our attention. If there is
a Cuntz family {Si}

N
i=1 in B(L2(X, µ)) that implements α, then Si

∗aSi ∈ L∞(X, µ) for all
i = 1, . . . ,N. This follows because L∞(X, µ) is a MASA, Sib = α(b)Si and

Si
∗aSi · b = Si

∗α(b)aSi = b · Si
∗aSi for all b ∈ L∞(X, µ).

Furthermore, SiSi
∗ commutes with every a ∈ L∞(X, µ), so the ∗-homomorphisms

βi : L∞(X, µ)→ L∞(X, µ), given by βi(a) = Si
∗aSi, are N left inverses for α.
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