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TRANSITIVITY PROPERTIES OF FUCHSIAN GROUPS

PETER J. NICHOLLS

1. Introduction. A Fuchsian group G is a discrete group of fractional linear
transforms each of which preserve a disc (or half plane). We consider only
groups which preserve the unit disc A = {z: |3| < 1} and none of whose trans-
forms, except the identity, fix infinity (any Fuchsian group is conjugate to
such a group). In this case the elements of G are of the form

az +¢
cz+a’
In this paper we will investigate the relationships between the various types
of transitivity properties which a Fuchsian group may have. In this section
we give the relevant definitions, a brief survey of the known results in the
area and we will state our results. The remaining sections are devoted to the
proofs of the theorems.

The isometric circle of the transform V7 which has the form (1) is the circle
{z: |cz 4 a] = 1} being the set of points z for which |V (z)| = 1. We note that
the transform V7 is a rigid motion of the non-euclidean metric p in A defined
by the differential

2|dz|
dp = 3
P 1 — \Z!Z y
We denote by D the Dirichlel fundamental region for G centered at the origin
—which is defined as the set of points z in A satisfying

p(z,0) < plz, V(0))

for all 7 in G except the identity. Note [11, p. 151], that D is also the Ford
fundamental region for G (the set of points in A exterior to all isometric circles
of transforms in G). Weset U = 9A, e = UM 3D, and E = Uyeg Ve).

The set of points on U at which G does not act discontinuously is the limit
set L(G). 1t is well known that L(G) is the set of points of accumulation of
centers of isometric circles belonging to transformsin G [4, p. 42]. If L(G) = U
then G is of the first kind, otherwise L (G) is a nowhere dense subset of U and G
is of the second kind.

The group G is said to be of convergence type if

Zvec(l - |V(Z)D < (z€D)

otherwise of divergence type. We are now in a position to define the various
transitivity properties with which we will be concerned.

| 2

1 V@) =

la]* — |c]* = 1,¢ # 0.

z € A.
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The group G is said to be transitive on U if it has the property that every
measurable set of points S on U which is invariant under G is either of Lebesgue
measure 0 or 27. This notion can clearly be generalized to two dimensions and
one is led to a much stronger property called metric transitivity. Consider
the torus R = U X U. We say a subset S of R is G-invariant if

S = {(V(z1), V(22))[ (21, 22) € S}

for all 17 € G. Then G is said to be metric transitive if each measurable G-
invariant set .S has two-dimensional measure 0 or 472, Generalizations to higher
dimensions are useless as the analogous condition hecomes so strong that it is
not satisfied by any Fuchsian group [23, p. 541].

Let X be a hyperbolic ray ab, a € U, b € A. Let L be a hyperbolic line with
end points «, 8 say. If there exists a sequence of transforms {17,} C G such
that 17,(a¢) = a and 1,(b) — 8 then we write I7,(\) — L. We say \ is transitive
under G if, for any hyperbolic line L, there exists a sequence 17, such that
1, (N) = L. A point & of U is called transitive if every hyperbolic ray through &
is transitive. We use 7" to denote the set of transitive points.

A horocycle is a euclidean circle which is internally tangent to U. A horocycle
is said to be transitive if its G images approximate any horocycle. A point § of
U is called h-transitive if every horocycle with point of tangency £ is transitive.
We use S to denote the set of Z-transitive points.

Our last definition concerns the approximation to limit points by centers of
isometric circles. A limit point ¢ is said to be a point of approximation for the
group G if there exists a sequence {17,} C G such that

£ —c(V)l = 0@(1,)?) asn— o

where ¢(17,) and r(17,) denote, respectively, the center and radius of the iso-
metric circle of 17,. We use H to denote the set of points of approximation.

Points of approximation were first studied by Hedlund [5] in his investiga-
tion of h-transitive points. He proved that for any Fuchsian group H C S
and that for a finitely generated group of the first kind H comprises the whole
of U with the exception of the parabolic fixed points. The result was extended
by Lehner [11, p. 181] who showed that for any finitely generated group L(G)
comprises H and the set of parabolic fixed points. This result has been general-
ized to the Kleinian case by Beardon and Maskit [3] who also give several
equivalent definitions for points of approximation. A paper of the author's
gives some further information and applications of points of approximation
[14]. The original question as to the nature of the set of A-transitive points
has been answered by the author who proved [15] that for any group .S = U\E.
We summarize this information as follows:

TuEOREM A. For any Fuchsian group, H C .S and S = U\E. The group 1s
Jimitely generated if and only if L(G) comprises H and the set of parabolic fixed
points.
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The existence of transitive points for groups of the first kind (it is clear that
there are no transitive points if G is of the second kind) was investigated by
Artin [2], Myrberg [12] and Koebe [10]. In 1931 Myrberg [13] proved that if
G is of the first kind and finitely generated then m(7") = 2=. Using results of
Tsuji [23, p. 530] and Yujobo [24], Shimada [21] generalized this result and
proved that if G is a group of divergence type, then m(7") = 2. The relation
between 7" and H is clearly seen from the author’s paper [14] where it is proved
that 77 C H and that this is a strict inclusion (since any hyperbolic fixed
point belongs to H but not 7°). We remark that for a group of convergence type
m(H) = 0 (see [3, p. 4] and [23, p. 530] for the proof). Summarizing this
information we have:

THEOREM B. For any Fuchsian group, T C H C S where 1" is empty if G is
of the second kind. The inclusion T C H s strict. If G is of divergence type then
m (1) = 2m, while G of convergence type implies m(H) = 0.

Concerning transitivity on U, it was proved by Seidel [20] that a group G is
transitive on U if and only if every bounded harmonic function in A which is
automorphic with respect to G is identically constant. Thus G is transitive on
U if and only if the quotient surface A/G belongs to the class Oy p. 1t is well
known [23, p. 522] that a group G is of divergence type if and only if A/G
belongs to the class Oy (A/G does not have a Green's function). Since
O¢ C Ogp we have:

TaroreM C. 4 Fuchsian group G s transitive on U if and only if A/G € Oyp.
A group of divergence type is transitive on U.

Our first result shows that the converse of the last statement of Theorem C
is false.

TuroreM 1. There exists a« Fuchsian group G of convergence type which 1is
transitive on U.

Tsuji has proved [23, p. 514] that any group for which m (%) > 0 is of con-
vergence type. A very easy construction shows the stronger result that m (E) >
0 implies G is intransitive on U. The converse is false; in [18] Pommerenke
gives an explicit construction of a group with m(£) = 0 and A/G ¢ Oyp so
this group is intransitive.

We have the following:

COROLLARY 1. The inclusion H C S 1s, in general, strict. In fact there exists
a group G for which m(H) = 0 and m(S) = 2.

To prove the corollary we let G be the group of Theorem 1; then G is of
convergence type, and so m (/1) = 0 (Theorem B). G is transitive on U so by
our remarks above m (E) = 0 then by Theorem A, m(S) = 2.
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Finally we consider metric transitivity. This is a very strong property—
in fact if G is metric transitive then G is transitive on U and m(T) = 2r
(23, p. H42]. Hopf [7] proved the transitivity property for any group of the
first kind which is finitely generated. Other proofs were subsequently given by
Hedlund [6] and Tsuji [23, p. 537]. In the other direction Tsuji [22] has shown
that if G is metric transitive then it is of divergence type. Our main result shows
that the converse is true.

THEOREM 2. A Fuchsian group G is metric transitive if and only if it is of
diwver gence type.

We also have an analogue of Seidel’s result.

THEOREM 3. A Fuchsian group G is metric transitive if and only if any function
u(z, w) which 1is harmonic in each variable in A X A, bounded and invartant under
G reduces to a constant.

Our application of the transitivity theorems is to uniform distribution
questions of the following type. Let G be a Fuchsian group with fundamental
polygon D and suppose 4 is a measurable subset of D. Since the images of D
cover A without overlapping, we might expect that the images of 4 would
cover a subregion of A whose size would be proportional to the size of 4. In
order to make these ideas more precise we need some notation.

For ¢ € Uandr, 0 <7 <1, we denote by L(¢, ) the ray joining 0 to r&.
If o denotes the non-euclidean area measure in A then we have the following
result of Tsuji [23, p. 547]:

THEOREM D. Let G be a Fuchsian group with (D) < o and let M C D be
measurable with M* = Uyece V(M). Then

CpM*NLEN] ()
im ™= Zen] ~ D)

for almost all £ € U.

We obtain the following extension of this result:

THEOREM 4. Let G be a Fuchsian group with (D) = o and let M be a disc
contained in D. Then, with M* = Uyee V (M),

M NLEN) _

lim
-1 P{L(E' 7)}

for almost all £ € U.
We have been considering the covering of radii—the corresponding results
for discs and circles seem to lie deeper. In what follows M will denote a small

disc centered at 0 and contained in D. C(r, M) will denote the non-eucli-
dean linear measure of that part of the circle {|z| = r} which lies in
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M* {= Uyee V(M)}. A(r, M) will denote the non-euclidean area measure of
that part of the disc {|z| < r} which lies in M*. We introduce also the orbital
counting function—for a € D, n(r, a) denotes the number of transforms V € G
such that |V (a)| < r. We have the following result:

THEOREM 5. If @ Fuchsian group G has one of the following properties it has

all three of them.
(1) lim sup,,; (1 — #) n(r,0) > 0

(i) lim sup,,;1 (1 — r) C(r, M) > 0

(iii) lim sup,;1 (1 —7) A(r, M) > 0

Property (i) of Theorem 5 is of independent interest. Tsuji proved [23, p. 518]
that if G is a group with ¢(D) < o then G has property (i). Very recently
S. J. Patterson [16] obtained an asymptotic estimate for (1 — r) n(r, 0) in
this case and in another paper [17] has shown that no group with ¢(D) = o
has property (i) of Theorem 5.

TurorEM E (Patterson). If G is a Fuchsian group and
(1) if (D) < O then

2m_ 1
o(D) 1 —7r
(it) if o(D) = 0 then

A —=r)yn(0)—0 asr—1.

asr— 1.

n(r,0) ~

2. Proof of Theorem 1. Theorem 1 is an easy consequence of the fact that
for Riemann surfaces the inclusion Oy C Opp is strict [1 and 19, p. 235, p. 304].
Let R be a surface in Oy but not in O4. The universal covering surface of R
is A with a discrete group T of covering transforms. It is well known that A/T
is conformally equivalent to R and is thus in Oy but not O,. By Theorem C,
T is transitive on U and from Tsuji’s result [23, p. 522], T' is of convergence

type.

3. Proofs of Theorems 2 and 4. To prove Theorem 2 we consider a geo-
desic flow in A and appeal to some results of Hopf [8, 9] which show that the
flow is ergodic in certain instances. The fact that the only measurable sets
preserved by an ergodic flow on a space have either measure zero or the
measure of the whole space leads to the conclusion of Theorem 2.

Let B be the subset of R? defined by:

B = {(x,y,0:x*4 3 <1,0 =06 < 2r|.

The point (x, y, 8) of B is to be regarded as a line element in A with carrier
point (x, ¥) and direction parallel to the line segment joining the origin to e®.
We introduce a metric in the line element space B by:

S(('xlrylvel)v (xi’v Ve, 02)) = p((xlryl)v (x‘lv 3’2)) + «
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where « is the least positive angle between the directions 6; and 6,. Clearly
s is a Riemannian metric on B and is invariant under bilinear transforms
preserving A. The invariant element of volume induced by ds in B is found
to be

(lm — ————z—q—.‘ , & =X + 7/:)7

We now define the geodesic flow. For ¢t real and b ¢ B, T%(b) is the line element
obtained by moving b, along the geodesic which it defines, through an s-distance
lf]. If £ > 0, we move in the direction determined by b; if ¢ < 0, we move in
the opposite direction.

Now if G is a Fuchsian group let £ be the quotient space A/G. Directed line
elements P on X are defined by identification of congruent line elements in 5.
The distance between two such elements P, P! is defined by:

s(P,PY = inf  s(by b))
bi€P,bilep!
The space of such elements P is denoted by Q. A set in Q is said to have m-
measure zero if the set of all representative points in B has this property. We
define the m-measure of a general measurable set on Q as the measure,f dm,
of the intersection of the set of all representatives with those elements of B
carried by points in D. Measure zero defined this way clearly agrees with
measure 0 defined above, due to the countability of G.
The geodesic flow T(P) is unambiguously defined on @ since

VIue) =1T"V(b)

holds for any transform 17 preserving A.
Let P € Q be a line element with carrier point p € 2. The geodesic flow
T(P) is said to be divergent on Q if

s(Ir''(P), P) —>w ast-»>0.
In this case the geodesic defined by P is said to be divergent (see Hopf |9, p. S69]

for more details). Following Hopf we make a definition:

Definition. The surface 2 is of the first class if the divergent geodesics issuing
from a fixed point p of 2 form a set of directions at p of angular measure zero.
T is said to be of the second cluss if it is not of the first class.

We recall that a geodesic flow 7" defined on Q is ergodic if and only if for
every measurable set N\ invariant under 7" either m(\) = 0 or m(Q\\) = 0.
We have the following result of Hopf [9, p. 871].

LemMa 1. For « surface 2 the geodesic flow on Q s ergodic if and only if T 1is
of the first class.

Let G be a group such that £ = A/G is of the first class and let S be a
measurable G invariant subset of U X U. We define a subset N\ of Q in the
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following way: P € Q is a point of X\ provided every point b € B which is a
projection of P determines a geodesic whose end points 7, and 7. give a point
(n1, m2) of S. This definition of N makes sense because S is G invariant.

Clearly P € \if and only if T*(P) € X for all real ¢. Thus \ is a measurable,
T invariant subset of © and as Z is of the first class, it follows from Lemma 1
that either m(\) = 0 or m(Q\\) = 0.

Nowif P € Qand b € Bisaprojectionof P,let b = (z, ) then z(= x + 1y)
lies on the geodesic joining 7 to 7, and is a non-euclidean distance 7, say, from
the mid-point of this geodesic. We have [23, p. 545]

dm = 4dxdyd;ju2 _ 2|d7]11 |d7]2l %7’
(1 —[z[) In1 — mel

It follows easily that m(\) = 0 implies the two-dimensional measure of .S is
zero and m (Q\\) = 0 implies the two-dimensional measure of (U X U)\S is
zero. We have shown that if G is a group such that £ = A/G is of the first
class, then G is metric transitive. The proof of Theorem 2 is complete with
the following:

LEMMA 2. G is a Fuchsian group of diwergence type if and only if A/G is of
the first class.

To prove Lemma 2 we note [3, p. 4] that £ is a point of approximation for G
if and only if there exists a sequence of points {z,} approaching ¢ radially and
a sequence {V,} C G such that 17,(z,) lies in a compact subset of A for all #.
So the geodesic flow along a radius to & is divergent if and only if ¢ is not a
point of approximation. Thus G is of the first class if and only if almost every

point of U is a point of approximation and this is the case if and only if G is
of divergence type [Theorem B].

We now prove Theorem 4. If ¢ ¢ H we note from the proof of Lemma 2
that only finitely many images of M will meet the radius to & It follows that
pf M* M L (g, r)} is bounded as » — 1. If G is of convergence type then m (H) =
0 and Theorem 4 is proved in this case.

Now suppose G is of divergence type and note the following easy consequence
of ergodicity (it follows from [9, p. 871]). If 7 is ergodic and m () = oo then
for a bounded measurable function f on Q,

1" ~
(2) hma_cj; (T (P))dt =0

T

for almost all P € Q.
Now suppose, for real numbers 7y, ..., ry, the subset ¢ of C defined by:

v=f{xt+iyri Sx =Sy Sy Sy

is a rectangle in D, the fundamental polygon of the group G under considera-
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tion. If ry ... ry are rationals, it is called a rational rectangle. We define the
function f(P) on Q as follows: if P has a representative which is carried by a
point in ¢, set f(P) = 1; otherwise f(P) = 0. Now G is of divergence type
so by Theorem 3, T is ergodic; since ¢(D) = 0 it follows that m(Q) = o so
we apply (2) above to the function f,

®) lim}c f FTPY)dE = 0.
T-3c0 0

which is valid provided P does not belong to a certain null set N(ry, ..., 74)

in 2. Now we define N, a null set in 2, by

N: U N(T’l,...,74)

where the union is over all rationals. If P ¢ N then (3) holds for any rational
rectangle ¢ in D. Let M be a disc in D; then for any ¢ > 0 we may choose two
sets M7 and M. each consisting of a finite number of non-overlapping rational
rectangles in D, such that

MiCMCM, and o(M\M:) < e

We have equation (3) for M, and M, and thus also for M.

For almost all § = ¢* we may find a point P of @ which has a representative
(x, v, 6) such that P ¢ N and the line segment joining 0 to (x, y) is in the
direction e¢?. For such a point P

P{M* N L(Ev 7)}
p(L(E 7))

where f(Q) is the function defined on Q by: f(Q) = 1if Q has a representative
carried by a point of M, f(Q) = 0 otherwise. The number r in (4) is the number
such that p(L (¢, 7)) = x.

The conclusion of Theorem 4 follows from (3) and (4).

w L[ e -

4. Proof of Theorem 3. Suppose G is metric transitive and let «(z, w) be
a function harmonic in each variable, bounded and invariant under G. Then
for almost all (e¥, e®) € U X U.

lim  u(zw) = u(e® e®)
2510, 100
exists uniformly when z — e%, w — ¢ from the inside of fixed Stolz domains
with vertices at ¢? and e [23, p. 142]. For a < b real, let S(a, b) be the set of
points (e*, ™) such that ¢ < u(e®, e**) < b. Since u#(z, w) is invariant by G
it follows that S(a, b) is also G-invariant. Since S(a, b) is clearly measurable
and G is metric transitive it follows that S(a, 0) has two dimensional measure 0
or 472 Thus there exists K such that u(e™, ¢®) = K for almost all (e, ¢%).
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We know [23, p. 142] that u (3, w) can be expressed by

1
u(z, w) = Zf;i

u@™, e (1—"Ha—ph Lo
Xf];“l—%meh—®+ﬁﬂl—%Cm@f~M+W5Md¢

where z = re'®, w = pe™. Thus u(z, w) = K identically in A X A.

To prove the converse we suppose G is not metric transitive—so there exists
a measurable set S on U X U which is invariant by G and whose two-dimen-
sional measure lies between 0 and 4x2. Let f(e%, e*) be the characteristic
function of .S and set

1 w 1= 2> 1 — |w/
s =g [ [ g e It L

eiBIZ : |w

Then u(z, w) is harmonic in each variable and is bounded and invariant under
G [23, p. 537). Clearly u is not constant.

5. Proof of Theorem 5. The fact that (i) implies (ii) is a result of Tsuji
[22, p. 267]. We assume that lim sup,,1 (1 — #) C(r, M) > 0 so there exists a
sequence {r,} converging to 1 on which (1 —r,) C(r,, M) = a 2 0. Each
image of M has hyperbolic diameter 4, say, and hyperbolic area b, say. Thus
for each n the number of images of M which intersect the circle {|z| = 7,} is
at least C(r,, M)/8 which is at least «/(1 — r,)é.

Set R, = (r, + ¢)/(1 4+ er,), (M = {|z] < ¢}) and note [23, p. 511] that if
an image of M meets {|z| = r,} then this image lies in {]z| < R,}. Thus we
see that

&
(1 —r)s
. ab(l — €)

T 5(1 4 re) (1 — Ry)

So lim sup,,; (1 — 7)A(r, M) is positive and (ii) implies (iii).
We assume that lim,,; (1 — 7)n(r, 0) = 0 and let « € M. Clearly if |V (a)]
< 7 then |[V(0)| < (r + ¢)/(1 + re) (=R). Thus

S0 - Ryn(R, 0)

and we see that lim,,; (1 — r) n(r, @) = 0 uniformly for all ¢« € M. Thus
from the relation

A(r, M) = feMn(r, a)do(a)

it follows that lim,,; (1 — r)4(r, M) = 0. Thus (iii) implies (i) and the
proof is complete.

ARn, M) > b

A —=rmn@a) <
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