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TRANSITIVITY PROPERTIES OF FUCHSIAN GROUPS 

PETER J. NICHOLLS 

1. I n t r o d u c t i o n . A Fuchsian group G is a discrete group of fractional linear 
transforms each of which preserve a disc (or half plane). We consider only 
groups which preserve the unit disc A = [z: \z\ < 1} and none of whose t rans
forms, except the identity, fix infinity (any Fuchsian group is conjugate to 
such a group) . In this case the elements of G are of the form 

(1) V{z)=%±l, M 2- |C | 2 = l l C * 0 . 
CZ ~| (L 

In this paper we will investigate the relationships between the various types 
of t ransi t ivi ty properties which a Fuchsian group may have. In this section 
we give the relevant definitions, a brief survey of the known results in the 
area and we will s ta te our results. The remaining sections are devoted to the 
proofs of the theorems. 

T h e isometric circle of the transform V which has the form (1) is the circle 
{z: \cz + â\ — 1} being the set of points z for which | V(z)\ = 1. We note t ha t 
the transform V is a rigid motion of the non-euclidean metric p in A defined 
by the differential 

dp = 1 , ' ,2 , z e A. 
1 - \z\ 

We denote by D the Dirichlet fundamental region for G centered a t the origin 
—which is defined as the set of points z in A satisfying 

p(z,0) <P(z, 7 ( 0 ) ) 

for all V in G except the identity. Note [11, p. 151], tha t D is also the Ford 
fundamental region for G (the set of points in A exterior to all isometric circles 
of transforms in G). We set U = dA, e = U H dD, and E = {JVZG V(e). 

The set of points on U a t which G does not act discontinuously is the limit 
set L(G). I t is well known tha t L(G) is the set of points of accumulation of 
centers of isometric circles belonging to transforms in G [4, p. 42]. If L(G) — U 
then G is of the first kind, otherwise L(G) is a nowhere dense subset of f /and G 
is of the second kind. 

The group G is said to be of convergence type if 

Zveoil - \V(z)\) <cx) (z£D) 

otherwise of divergence type. We are now in a position to define the various 
t ransi t ivi ty properties with which we will be concerned. 
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The group G is said to be transitive on U if it has the proper ty t ha t every 
measurable set of points S on U which is invariant under G is either of Lebesgue 
measure 0 or 2w. This notion can clearly be generalized to two dimensions and 
one is led to a much stronger proper ty called metric t ransi t ivi ty. Consider 
the torus R = U X U. We say a subset 5 of R is G-invariant if 

S = { ( F ( Z l ) , V(z2))\(zuz2) eS} 

for all V G G. Then G is said to be metric transitive if each measurable G-
invariant set 5 has two-dimensional measure 0 or 47r2. Generalizations to higher 
dimensions are useless as the analogous condition becomes so strong t ha t it is 
not satisfied by any Fuchsian group [23, p. 541]. 

Let X be a hyperbolic ray ab, a Ç [/, K A. Let L be a hyperbolic line with 
end points a, 0 say. If there exists a sequence of transforms { Vn) C G such 
tha t ]r

v(a) —> a and Vn(b) —> 0 then we write FW(X) —» L. We say X is transitive 
under G if, for any hyperbolic line L, there exists a sequence F n such t h a t 
F„(X) —» L. A point £ of [ / is called transitive if every hyperbolic ray through £ 
is transit ive. We use T to denote the set of transit ive points. 

A horocycle is a euclidean circle which is internally tangent to U. A horocycle 
is said to be transitive if its G images approximate any horocycle. A point £ of 
U is called h-transitive if every horocycle with point of tangency £ is t ransi t ive. 
We use S to denote the set of /^-transitive points. 

Our last definition concerns the approximation to limit points by centers of 
isometric circles. A limit point £ is said to be a point of approximation for the 
group G if there exists a sequence {Vn} C G such tha t 

|£ - c(Vn)\ = 0(r(Vny) a s ^ - > a ) 

where c(Vn) and r(Vv) denote, respectively, the center and radius of the iso
metric circle of Vn. We use H to denote the set of points of approximation. 

Points of approximation were first studied by Hedlund [5] in his investiga
tion of /z-transitive points. He proved t h a t for any Fuchsian group H d S 
and tha t for a finitely generated group of the first kind H comprises the whole 
of U with the exception of the parabolic fixed points. The result was extended 
by Lehner [11, p. 181] who showed tha t for any finitely generated group L{G) 
comprises H and the set of parabolic fixed points. This result has been general
ized to the Kleinian case by Beardon and Alaskit [3] who also give several 
equivalent definitions for points of approximation. A paper of the au thor ' s 
gives some further information and applications of points of approximation 
[14]. The original question as to the na ture of the set of /z-transitive points 
has been answered by the author who proved [15] tha t for any group 5 = U\E. 
We summarize this information as follows: 

T H E O R E M A. For any Fuchsian group, H C S and S = U\E. The group is 
finitely generated if and only if L(G) comprises H and the set of parabolic fixed 
points. 
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The existence of transitive points for groups of the first kind (it is clear t ha t 
there are no transitive points if G is of the second kind) was investigated by 
Artin [2], Myrberg [12] and Koebe [10]. In 1931 Myrberg [13] proved tha t if 
G is of the first kind and finitely generated then m(T) = 2ir. Using results of 
Tsuji [23, p. 530] and Yujobo [24], Shimada [21] generalized this result and 
proved tha t if G is a group of divergence type, then m(T) = 2w. The relation 
between T and H is clearly seen from the author 's paper [14] where it is proved 
t ha t T C H and tha t this is a strict inclusion (since any hyperbolic fixed 
point belongs to H bu t not 7"). We remark tha t for a group of convergence type 
m(H) = 0 (see [3, p. 4] and [23, p. 530] for the proof). Summarizing this 
information we have: 

T H E O R E M B. For any Fuchsian group, T C H C 5 where T is empty if G is 
of the second kind. The inclusion T C H is strict. If G is of divergence type then 
m(T) = 2-7T, while G of convergence type implies m (H) = 0. 

Concerning transi t ivi ty on U, it was proved by Seidel [20] tha t a group G is 
transit ive on U if and only if every bounded harmonic function in A which is 
automorphic with respect to G is identically constant . Thus G is transit ive on 
U if and only if the quotient surface A/G belongs to the class 0HB. I t is well 
known [23, p. 522] tha t a group G is of divergence type if and only if A/G 
belongs to the class 0G (A/G does not have a Green's function). Since 
0G C 0HB we have: 

T H E O R E M C. A Fuchsia n group G is transitive on U if and only if A/G £ OHB-
A group of divergence type is transitive on U. 

Our first result shows tha t the converse of the last s ta tement of Theorem C 
is false. 

T H E O R E M 1. There exists a Fuchsian group G of convergence type which is 
transitive on U. 

Tsuji has proved [23, p. 514] tha t any group for which m(E) > 0 is of con
vergence type. A very easy construction shows the stronger result tha t m (E) > 
0 implies G is intransit ive on U. The converse is false; in [18] Pommerenke 
gives an explicit construction of a group with m(E) = 0 and A/G (? 0HB so 
this group is intransitive. 

We have the following: 

COROLLARY 1. The inclusion H (Z S is, in general, strict. In fact there exists 
a group G for which m{H) = 0 and m(S) = 2T. 

T o prove the corollary we let G be the group of Theorem 1 ; then G is of 
convergence type, and so m(H) = 0 (Theorem B) . G is transitive on U so by 
our remarks above m(E) = 0 then by Theorem A, m(S) = 2ir. 
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Finally we consider metric t ransi t ivi ty . This is a very strong proper ty— 
in fact if G is metric t ransi t ive then G is t ransi t ive on U and m(T) = 2ir 
[23, p. 542]. Hopf [7] proved the t ransi t ivi ty proper ty for any group of the 
first kind which is finitely generated. Other proofs were subsequently given by 
Hedlund [6] and Tsuji [23, p . 537]. In the other direction Tsuji [22] has shown 
tha t if G is metric transit ive then it is of divergence type. Our main result shows 
tha t the converse is t rue. 

T H E O R E M 2. A Fuchsian group G is metric transitive if and only if it is of 

divergence type. 

We also have an analogue of Seidel's result. 

T H E O R E M 3. A Fuchsian group G is metric transitive if and only if any function 
u(z,w) which is harmonic in each variable in A X A, bounded and invariant under 
G reduces to a constant. 

Our application of the t ransi t ivi ty theorems is to uniform distr ibution 
questions of the following type. Let G be a Fuchsian group with fundamental 
polygon D and suppose A is a measurable subset of D. Since the images of D 
cover A without overlapping, we might expect t ha t the images of A would 
cover a subregion of A whose size would be proportional to the size of A. In 
order to make these ideas more precise we need some notat ion. 

For £ G U and r, 0 < r < 1, we denote by L(£, r) the ray joining 0 to r£. 
If a denotes the non-euclidean area measure in A then we have the following 
result of Tsuji [23, p. 547]: 

T H E O R E M D. Let G be a Fuchsian group with <r(D) < GO and let M C D be 
measurable with M* = Uvea V(M). Then 

P{M*r\L{i,r)\ <r(Ml 

for almost all £ Ç U. 

We obtain the following extension of this result: 

T H E O R E M 4. Let G be a Fuchsian group with a(D) = oo and let M be a disc 
contained in D. Then, with M* = UVZG V(M), 

P{M*nL(£,r)\ 
lim ryjl rï = ° 

T_,i p\L(£,r)} 

for almost all £ Ç U. 

We have been considering the covering of radi i—the corresponding results 
for discs and circles seem to lie deeper. In wha t follows M will denote a small 
disc centered a t 0 and contained in D. C(r, M) will denote the non-eucli
dean linear measure of t h a t pa r t of the circle {|z| = r\ which lies in 
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M* { = [JVÇG V(M)}. Air, M) will denote the non-euclidean area measure of 
t ha t par t of the disc [\z\ < r) which lies in if*. We introduce also the orbital 
counting function—for a Ç D, n(r, a) denotes the number of transforms V 6 G 
such tha t | F ( a ) | < r. We have the following result: 

T H E O R E M 5. If a Fuchsian group G has one of the following properties it has 
all three of them. 

(i) Km s u p ^ i (1 — r) n(r, 0) > 0 
(ii) lim supr_^i (1 - r) C(r, M) > 0 

(hi) lim supr_>i (1 - r) A (r, M) > 0 

Proper ty (i) of Theorem 5 is of independent interest. Tsuji proved [23, p. 518] 
t ha t if G is a group with a(D) < GO then G has property (i). Very recently 
S. J. Pat terson [16] obtained an asymptot ic estimate for (1 — r) n(r, 0) in 
this case and in another paper [17] has shown tha t no group with a(D) = oo 
has property (i) of Theorem 5. 

T H E O R E M E (Pat terson) . If G is a Fuchsian group and 
(i) if a(D) < oo then 

^ - ^ ^ • r b flsr-*L 

(ii) if <J(D) = oo then 

(1 - r) n(r,0) -> 0 as r -> 1. 

2. Proof of T h e o r e m 1. Theorem 1 is an easy consequence of the fact t ha t 
for Riemann surfaces the inclusion 0G C 0HB is strict [1 and 19, p. 235, p. 304]. 
Let R be a surface in 0HB but not in 0 G. The universal covering surface of R 
is A with a discrete group V of covering transforms. I t is well known tha t A / T 
is conformally equivalent to R and is thus in 0HB but not 0G. By Theorem C, 
T is transit ive on U and from Tsuji 's result [23, p. 522], T is of convergence 
type. 

3. Proofs of T h e o r e m s 2 and 4. To prove Theorem 2 we consider a geo
desic flow in A and appeal to some results of Hopf [8, 9] which show tha t the 
flow is ergodic in certain instances. The fact tha t the only measurable sets 
preserved by an ergodic flow on a space have either measure zero or the 
measure of the whole space leads to the conclusion of Theorem 2. 

Let B be the subset of i?3 defined by: 

B = {(x, y, 6): x2 + y2 < 1, 0 g 6 < 2TT}. 

The point (x, y, 6) of B is to be regarded as a line element in A with carrier 
point (x, y) and direction parallel to the line segment joining the origin to eid. 
We introduce a metric in the line element space B by: 

s((xi, 3>i, 0i), (x2, y2, 02)) = p((*i, y i ) , (*2, 3^)) + a 
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where a is the least positive angle between the directions 6\ and 02. Clearly 
5 is a Riemannian metric on B and is invariant under bilinear transforms 
preserving A. The invariant element of volume induced by ds in B is found 
to be 

Mxdyda , . 
dm = -,- r ? ^ , z = x + ty. 

(! - \z\Y 
We now define the geodesic flow. For t real and b G B, Tf(b) is the line element 
obtained by moving b, along the geodesic which it defines, through an ^-distance 
|/|. If t > 0, we move in the direction determined by b; if / < 0, we move in 
the opposite direction. 

Now if G is a Fuchsian group let 2 be the quot ient space A/G. Directed line 
elements P on 2 are defined by identification of congruent line elements in B. 
The distance between two such elements P, P1 is defined by: 

s(P,P1)= inf sQubt1) 

T h e space of such elements P is denoted by 12. A set in 12 is said to have m-
measure zero if the set of all representat ive points in B has this proper ty . We 
define the m-measure of a general measurable set on 12 as the measure, J dm, 
of the intersection of the set of all representat ives with those elements of B 
carried by points in D. Measure zero defined this way clearly agrees with 
measure 0 defined above, due to the countabil i ty of G. 

The geodesic flow Tl(P) is unambiguously defined on 12 since 

VTl(b) = Tl Vib) 

holds for any transform V preserving A. 
Let P G 12 be a line element with carrier point p £ 2. The geodesic flow 

Tl(P) is said to be divergent on 12 if 

s{Tl{P), P) ->oo as * - > o o . 

In this case the geodesic defined by P is said to be divergent (see I lopf [9, p. 869] 
for more detai ls) . Following Hopf we make a definition: 

Definition. The surface 2 is of the first class if the divergent geodesies issuing 
from a fixed point p of 2 form a set of directions a t p of angular measure zero. 
2 is said to be of the second class if it is not of the first class. 

We recall t ha t a geodesic flow T defined on 12 is ergodic if and only if for 
every measurable set X invariant under T either m(X) = 0 or m(12\X) = 0. 
We have the following result of Hopf [9, p. 871]. 

LEMMA 1. For a surface S the geodesic flow on 12 is ergodic if and only if S is 
of the first class. 

Let G be a group such tha t 2 = A/G is of the first class and let 5 be a 
measurable G invar iant subset of U X U. W7e define a subset X of 12 in the 
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following way: P £ 12 is a point of X provided every point b Ç B which is a 
projection of P determines a geodesic whose end points 771 and 772 give a point 
(771, 772) of S. This definition of X makes sense because S is G invariant. 

Clearly P £ X if and only if Tl(P) £ X for all real /. Thus X is a measurable, 
T invariant subset of 12 and as 2 is of the first class, it follows from Lemma 1 
tha t either m(\) = 0 or m(12\X) = 0. 

Now if P G 12 and b £ B is a projection of P , let & = (s, 0) then z( = x + iy) 
lies on the geodesic joining 771 to 772 and is a non-euclidean distance r, say, from 
the mid-point of this geodesic. We have [23, p. 545] 

A — ^dxdyd<j> _ 2\dr]i\ [̂ 772! dr 
dm — , , | 2v2 — 1 1 2 

(1 - \z\ ) I771 - 772I 

I t follows easily tha t m(X) = 0 implies the two-dimensional measure of 5 is 
zero and m(12\X) = 0 implies the two-dimensional measure of (U X U)\S is 
zero. We have shown tha t if G is a group such tha t 2 = A/G is of the first 
class, then G is metric transitive. The proof of Theorem 2 is complete with 
the following: 

LEMMA 2. G is a Fuchsian group of divergence type if and only if A/G is of 
the first class. 

To prove Lemma 2 we note [3, p. 4] tha t £ is a point of approximation for G 
if and only if there exists a sequence of points {zn) approaching £ radially and 
a sequence { Vn) C G such tha t Vn(zn) lies in a compact subset of A for all n. 
So the geodesic flow along a radius to £ is divergent if and only if £ is not a 
point of approximation. Thus G is of the first class if and only if almost every 
point of U is a point of approximation and this is the case if and only if G is 
of divergence type [Theorem B]. 

We now prove Theorem 4. If £ G H we note from the proof of Lemma 2 
tha t only finitely many images of M will meet the radius to J. I t follows tha t 
p{M* H Z,(£, r)} is bounded as r —» 1. If G is of convergence type then m(H) = 
0 and Theorem 4 is proved in this case. 

Now suppose G is of divergence type and note the following easy consequence 
of ergodicity (it follows from [9, p. 871]). If T is ergodic and m(12) = 00 then 
for a bounded measurable function / on 12, 

(2) \im- T f(T'(P))dt = 0 

for almost all P G 12. 
Now suppose, for real numbers r\, . . . , rA, the subset \p of C defined by: 

\p = {x + iy: ?i têi x è ?2, r% S y è f\) 

is a rectangle in D, the fundamental polygon of the group G under considéra-
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tion. If rx . . . rA are rationals, it is called a rational rectangle. We define the 
function/(P) on 12 as follows: if P has a representative which is carried by a 
point in \p, set f(P) = 1 ; otherwise f(P) = 0. Now G is of divergence type 
so by Theorem 3, T is ergodic; since a(D) = oo it follows that m (12) = oo so 
we apply (2) above to the function / , 

(3) 15m; fXf(T'(P))dt = 0. 

which is valid provided P does not belong to a certain null set N(r}, . . . , r4) 
in 12. Now we define N, a null set in 12, by 

N = U N(n, . . . , r4) 
r i , . . . , r 4 

where the union is over all rationals. If P (? iV then (3) holds for any rational 
rectangle \p in D. Let M be a disc in D; then for any e > 0 we may choose two 
sets Mi and M2 each consisting of a finite number of non-overlapping rational 
rectangles in D, such that 

MiC M C M2 and a(M2\Mi) < e. 

We have equation (3) for Mi and M2 and thus also for M. 
For almost all % = eie we may find a point P of 12 which has a representative 

(x, y, 0) such that P Q N and the line segment joining 0 to (x, y) is in the 
direction eie. For such a point P 

<« s J>™* - ^ m ^ p(L(É,r)) 

where/(Q) is the function defined on 12 by: f(Q) = 1 if Ç has a representative 
carried by a point of M,f(Q) = 0 otherwise. The number r in (4) is the number 
such that p(L(£, r)) = x. 

The conclusion of Theorem 4 follows from (3) and (4). 

4. Proof of Theorem 3. Suppose G is metric transitive and let u(z, w) be 
a function harmonic in each variable, bounded and invariant under G. Then 
for almost all (eie, e*+) G U X £/. 

lim w(z, w) = u(ef , el4>) 

exists uniformly when z — » e^, w —• e^ from the inside of fixed Stolz domains 
with vertices at eie and ei<f> [23, p. 142]. For a < b real, let S(a, b) be the set of 
points (eie, ei4>) such that a < u(eid, ei(j>) ^ b. Since w(z, w) is invariant by G 
it follows that S (a, b) is also G-invariant. Since S (a, b) is clearly measurable 
and G is metric transitive it follows that S (a, b) has two dimensional measure 0 
or 47T2. Thus there exists K such that u(ei<f>, ei4>) = K for almost all (eid, e1*). 
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We know [23, p. 142] that u(z, w) can be expressed by 

u(z,w) = T~2 

xff ^ V ^ ) a-^ 2 ) ( i -p 2 ) . ^ é i 
J JuyuiX- 2r Cos (81 - 6) + r2) (1 - 2p Cos (01 - <£) + p2) " ^ 

where z = re^, w = pei(l>. Thus w(z, w) — K identically in A X A. 
To prove the converse we suppose G is not metric transitive—so there exists 

a measurable set S on U X U which is invariant by G and whose two-dimen
sional measure lies between 0 and 47r2. Let f(eie, ei(f>) be the characteristic 
function of S and set 

/ \ l Ç Ç St M i*\ 1 - \ Z \ 2 ! ~~ \W\2 JnJj. 

u(z, w) = —g I I f(e , e v) T yT2 • | L-î 72 ded$. 
47T J J uxu \z — e I \w — e \ 

Then u(z, w) is harmonic in each variable and is bounded and invariant under 
G [23, p. 537). Clearly u is not constant. 

5. Proof of Theorem 5. The fact that (i) implies (ii) is a result of Tsuji 
[22, p. 267]. We assume that lim sup^i (1 — r) C(r, M) > 0 so there exists a 
sequence {rn} converging to 1 on which (1 — rn) C(rn, M) ^ a ^ 0. Each 
image of M has hyperbolic diameter <5, say, and hyperbolic area b, say. Thus 
for each n the number of images of M which intersect the circle \\z\ = rn] is 
at least C(rn, M)/8 which is at least a/(I — rn)d. 

Set Rn = {rn + e)/( l + ern), (M = {\z\ < €j) and note [23, p. 511] that if 
an image of M meets {\z\ = rn) then this image lies in {\z\ < Rn}. Thus we 
see that 

A(Rn,M)>-n
 a , . ' b 

(1 — rn)o 

ab(l - e) 
ô ( l + r n € ) ( l -Rn) 

So lim supr_>i (1 — r)A(r, M) is positive and (ii) implies (iii). 
We assume that l im^i (1 — r)n(r, 0) = 0 and let a £ M. Clearly if |F(a) | 

< r then | F(0)| < (r + e)/( l + re) ( = R). Thus 

(1 - r)n(r, a) < - ~ ^ - (1 - R)n(R, 0) 

and we see that l im^i (1 — r) n(r, a) = 0 uniformly for all a £ M. Thus 
from the relation 

Air, M) = I n(r, a)da(a) 

it follows that limr_>i (1 — r)A(r, M) = 0. Thus (iii) implies (i) and the 
proof is complete. 
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