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THE WEAK VOPĚNKA PRINCIPLE FOR DEFINABLE
CLASSES OF STRUCTURES

JOAN BAGARIA AND TREVOR M. WILSON

Abstract. We give a level-by-level analysis of the Weak Vopěnka Principle for definable classes of
relational structures (WVP), in accordance with the complexity of their definition, and we determine the
large-cardinal strength of each level. Thus, in particular, we show that WVP for Σ2-definable classes is
equivalent to the existence of a strong cardinal. The main theorem (Theorem 5.11) shows, more generally,
that WVP for Σn -definable classes is equivalent to the existence of a Σn -strong cardinal (Definition 5.1).
Hence, WVP is equivalent to the existence of a Σn -strong cardinal for all n < �.

§1. Introduction. The Vopěnka Principle (VP), which asserts that there is no
rigid proper class of graphs, is a well-known strong large-cardinal principle1 (see
[9]). Properly formulated as a first-order assertion, VP is a schema, that is, an
infinite collection of statements, one for each first-order formula defining a proper
class of graphs and asserting that the class defined by the formula is not rigid,
i.e., there is some non-identity morphism. An equivalent formulation of VP as
a first-order schema is given by restricting VP to proper classes of graphs that
are definable with a certain degree of complexity, according to the Levy hierarchy
of formulas Σn, n < � (see [8]). Thus, writing Σn-VP for the first-order assertion
that every Σn-definable (with parameters) proper class of graphs is rigid, we have
that VP is equivalent to the schema consisting of Σn-VP for every n. As shown
in [4, 5], Σ1-VP is provable in ZFC, while Σ2-VP is equivalent to the existence of
a proper class of supercompact cardinals, Σ3-VP is equivalent to the existence of a
proper class of extendible cardinals, and Σn-VP is equivalent to the existence of
a proper class of C (n–2)-extendible cardinals, for n ≥ 3. The level-by-level analysis
of Σn-VP, n < �, and the determination of their large-cardinal strength yielded
new results in category theory, homology theory, homotopy theory, and universal
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1As related in [2], “The story of Vopěnka’s principle [...] is that of a practical joke which misfired: In

the 1960’s P. Vopěnka was repelled by the multitude of large cardinals which emerged in set theory. When
he constructed, in collaboration with Z. Hedrlı́n and A. Pultr, a rigid graph on every set [...], he came to the
conclusion that, with some more effort, a large rigid class of graphs must surely be also constructible. He
then decided to tease set-theorists: he introduced a new principle (known today as Vopěnka’s principle), and
proved some consequences concerning large cardinals. He hoped that some set-theorists would continue this
line of research (which they did) until somebody showed that the principle was nonsense. However the latter
never materialized—after a number of unsuccessful attempts at constructing a large rigid class of graphs,
Vopěnka’s principle received its name from Vopěnka’s disciples.”
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146 JOAN BAGARIA AND TREVOR M. WILSON

algebra (see [5]). For example, the existence of cohomological localizations in the
homotopy category of simplicial sets (Bousfield Conjecture) follows from Σ2-VP.

The role of VP in category theory has a rich history. The first equivalences of
VP with various category-theoretic statements were announced by Fisher in [6].
Further equivalences were proved over the next two decades by Adámek, Rosický,
Trnková, and others. Their work showed that under VP “the structure of locally
presentable categories becomes much more transparent” [2, p. 241]. For example, the
statement that a category is locally presentable if and only if it is complete and
bounded is equivalent to VP. And so is the statement that every orthogonality class
in a locally presentable category is a small-orthogonality class [2, 6.9 and 6.14], [10].
Of the many category-theoretic statements now known to be equivalent to VP, the
following one (see [2, 6.D]) turned out to be of particular interest:

(1) Every full subcategory of a locally presentable category K closed under
colimits is coreflective in K.

What made (1) particularly interesting is that its dual statement

(2) Every full subcategory of a locally presentable category K closed under limits
is reflective in K,

while being a consequence of (1), could not be proved equivalent to it. Since VP—
hence also (1)—was known to be equivalent to

Ord cannot be fully embedded into Gra

(see [2, 6.3]), while statement (2) was proved equivalent to

Ordop cannot be fully embedded into Gra

(see [2, 6.22 and 6.23]), the latter assertion was then called the Weak Vopěnka
Principle (WVP). The term Weak was aptly given, for it is readily shown that VP
implies WVP [3] (Proposition 2.1). The question then remained if WVP implied
VP. Using a result of Isbell [7], which showed that Ordop is bounded iff there is no
proper class of measurable cardinals, Adámek and Rosický [2] proved that WVP
implies the existence of a proper class of measurable cardinals. This was seen as a
first step in showing that WVP was indeed a strong large-cardinal principle, perhaps
even equivalent to VP. Much work was devoted to trying to obtain stronger large
cardinals from it, e.g., strongly compact or supercompact cardinals, but to no avail.
A further natural principle, between VP and WVP, called the Semi-Weak Vopěnka
Principle (SWVP), was introduced in [1] and the further question of the equivalence
between the three principles, WVP, SWVP, and VP, remained open. The problem
was finally solved in 2019 by the second author of the present paper. In [13] he
showed that WVP and SWVP are equivalent, and they are also equivalent to the
large-cardinal principle “OR is Woodin,” whose consistency strength is known to
be well below the existence of a supercompact cardinal, thereby showing that WVP
cannot imply VP (if consistent with ZFC).

In the present paper we carry out a level-by-level analysis of WVP and SWVP
similar to the analysis of VP done in [4, 5]. Thus, for every n ≥ 2 we prove the
equivalence of both Σn-WVP and Σn-SWVP (see Definition 2.2) with the existence
of certain large cardinals. In particular, we show that Σ2-WVP and Σ2-SWVP are
equivalent to the existence of a proper class of strong cardinals. The main theorems
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THE WEAK VOPĚNKA PRINCIPLE FOR DEFINABLE CLASSES OF STRUCTURES 147

(Theorems 5.11 and 5.13) show, more generally, that Σn-WVP and Σn-SWVP are
equivalent to the existence of a proper class of Σn-strong cardinals (Definition 5.1).
It follows that WVP and SWVP are equivalent to the schema asserting the existence
of a Σn-strong cardinal for every n < �. Our arguments yield also a new proof of
the second author’s result from [13] that WVP implies “OR is Woodin” (Corollary
5.15). The main difference between the two proofs is that while in the present
paper we derive the extenders witnessing “OR is Woodin” from homomorphisms
on products of relational structures with universe of the form Vα , the proof in [13]
uses homomorphisms of so-called P-structures. We think, however, that it should
be possible to do a similar level-by-level analysis as done here by using P-structures
instead. A number of consequences in category theory should follow from our
results. For instance, the statement that every Σ2-definable full subcategory of a
locally presentable category K closed in K under limits is reflective in K, should be
equivalent to the existence of a proper class of strong cardinals. See [2, Chapter 6]
for more examples.

§2. Preliminaries. Recall that a graph is a structure G = 〈G,EG 〉, where G is a
non-empty set and EG is a binary relation on G. If G = 〈G,EG 〉 and H = 〈H,EH 〉
are graphs, a map h : G → H is a homomorphism if it preserves the binary relation,
meaning that for all x, y ∈ G , if xEGy, then h(x)EHh(y).

A class G of graphs is called rigid if there are no non-trivial homomorphisms
between graphs in G, i.e., the only homomorphisms are the identity morphisms
G → G , for G ∈ G.

The original formulation of the Vopěnka Principle (VP) (P. Vopěnka, ca. 1960)
asserts that there is no rigid proper class of graphs. As shown in [2, 6.A], VP
is equivalent to the statement that the category Ord of ordinals cannot be fully
embedded into the category Gra of graphs. That is, there is no sequence 〈Gα : α ∈
OR〉 of graphs such that for every α ≤ � there exists exactly one homomorphism
Gα → G� , and no homomorphism G� → Gα whenever α < � .

The Weak Vopěnka Principle (WVP) (first introduced in [3]) is the statement
dual to VP, namely that the opposite category of ordinals, Ordop, cannot be fully
embedded into Gra. That is, there is no sequence 〈Gα : α ∈ OR〉 of graphs such
that for every α ≤ � there exists exactly one homomorphism G� → Gα , and no
homomorphism Gα → G� whenever α < � .

The Semi-Weak Vopěnka Principle (SWVP) [1] asserts that there is no sequence
〈Gα : α ∈ OR〉 of graphs such that for everyα ≤ � there exists some (not necessarily
unique) homomorphism G� → Gα , and no homomorphism Gα → G� whenever
α < � .

Clearly, SWVP implies WVP. The second author showed in [12] that SWVP is in
fact equivalent to WVP. As shown in [3], VP implies WVP, and the same argument
also shows that VP implies SWVP. In fact, the argument shows the following:

Proposition 2.1. VP implies that for every sequence 〈Gα : α ∈ OR〉 of graphs
there exist α < � with a homomorphism Gα → G� .

Proof. Suppose 〈Gα : α ∈ OR〉 is a sequence of graphs. Without loss of
generality, if α < � , then Gα and G� are not isomorphic. Since there are only
set-many (as opposed to proper-class-many) non-isomorphic graphs of any given
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148 JOAN BAGARIA AND TREVOR M. WILSON

cardinality, there exists a proper class C ⊆ OR such that |Gα | < |G� | whenever
α < � are in C. For each α ∈ C , add to Gα = 〈Gα,Eα〉 a rigid binary relation
Sα on Gα [11], as well as the non-identity relation 	=, and consider the structure
Aα = 〈Gα,Eα, Sα, 	=〉. Since the cardinalities are strictly increasing, by the 	= relation
there cannot be any homomorphismA� → Aα withα < � . Also, because of the rigid
relation Sα , the identity is the only homomorphism Aα → Aα . Since the category
whose objects are the Aα , α ∈ C and the morphisms are the homomorphisms can
be fully embedded into Gra (see [2, 2.65]), by VP the class {Aα : α ∈ C} is not
rigid, and so there must exist α < � with a homomorphism Aα → A� , hence also a
homomorphism Gα → G� . 


The definitions of VP, WVP, and SWVP given above quantify over arbitrary
classes, so they are not first-order. Thus, a proper study of these principles must be
carried out in some adequate class theory, such as NBG. In particular, the proof
of the last proposition can only be formally given in such class theory. We shall
however be interested in the forthcoming in the first-order versions of VP, WVP,
and SWVP, which require us to restrict our attention to definable classes.

2.1. The VP, WVP, and SWVP for definable classes. Each of VP, WVP, and
SWVP can be formulated in the first-order language of set theory as a definition
schema, namely as an infinite list of definitions, one for every natural number n, as
follows:

Definition 2.2. Let n be a natural number, and let P be a set or a proper class.
The Σn(P)-Vopěnka Principle (Σn(P)-VP for short) asserts that there is no

Σn-definable, with parameters in P, sequence 〈Gα : α ∈ OR〉 of graphs such
that for every α ≤ � there exists exactly one homomorphism Gα → G� , and no
homomorphism G� → Gα whenever α < � .

The Σn(P)-Weak Vopěnka Principle (Σn(P)-WVP for short) asserts that there
is no Σn-definable, with parameters in P, sequence 〈Gα : α ∈ OR〉 of graphs such
that for every α ≤ � there exists exactly one homomorphism G� → Gα , and no
homomorphism Gα → G� whenever α < � .

The boldface versions Σn-VP and Σn-WVP are defined as Σn(V )-VP and
Σn(V )-WVP respectively, i.e., any set is allowed as a parameter in the definitions.

Πn(P)-VP and Πn(P)-WVP, as well as Πn-VP and Πn-WVP, and the lightface
(i.e., without parameters) versions Σn-VP, Σn-WVP and Πn-VP, Πn-WVP, are
defined similarly.

The Vopěnka Principle (VP) is the schema asserting that the Σn-VP holds for every
n < �. And the Weak Vopěnka Principle (WVP) is the schema asserting that the
Σn-WVP holds for every n < �.

If instead of requiring that for α ≤ � there is exactly one homomorphism
G� → Gα we only require that there is at least one, then we obtain the Semi-Weak
Vopěnka Principle (SWVP), formulated as the first-order schema consisting of Σn-
SWVP for all n < �.

It is well-known that the category of structures in any fixed (many-sorted,
infinitary) relational language can be fully embedded into Gra (see [2, 2.65]). Thus,
if in the original definitions of VP, WVP, and SWVP one replaces “graphs” by
“structures in a fixed (many-sorted, infinitary) relational language,” one obtains
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equivalent notions. The same is true for the first-order formulations of these
principles, but some extra care is needed to ensure there is no increase in the
complexity of the definitions. In particular, in the case of infinite language signatures,
an extra parameter for the language signature �, as well as a parameter for a rigid
binary relation on a binary signature associated with �, may be needed in the
definition. Namely, suppose Γ is one of the definability classes Σn, Πn, withn ≥ 1, P is
a set or a proper class, and C is a Γ-definable, with parameters in P, class of (possibly
many-sorted) relational structures in a language type �, i.e., � = 〈Rα : α < �〉, where
eachRα is an nα-ary relation symbol, nα being some ordinal, possibly infinite. As in
[2, 2.65], there is a Δ1-definable (i.e., both Σ1-definable and Π1-definable), using � as
a parameter, one-sorted binary type �′ (meaning that all the relations are binary),
and also a Γ-definable, with parameters in P plus � as an additional parameter,
full embedding of C into the category Rel �′ of �′-structures and homomorphisms.
Furthermore, there is a Δ1-definable, using � and a rigid binary relation r on �′ as
parameters, full embedding of Rel �′ into Gra. Hence, there is a Γ-definable (with
parameters in P, plus � and r as additional parameters) full embedding of C into
Gra. Therefore, in the definitions of Γ-VP, Γ-WVP, and Γ-SWVP we may replace
“graphs” by “structures in a fixed (many-sorted, infinitary) relational language”
and obtain equivalent principles, provided we allow for the additional parameters
(� and r) involved. Let us, however, stress the fact that in the case of finite �, or even
if � is countable infinite and definable without parameters (e.g., recursive), then no
additional parameters are involved, and therefore the versions of Γ-VP, Γ-WVP,
and Γ-SWVP for graphs and for relational structures are equivalent.

2.2. Strong cardinals. Recall that a cardinal κ is �-strong, where � is a cardinal
greater than κ, if there exists an elementary embedding j : V →M , with M
transitive, with critical point κ, and with V� contained in M. A cardinal κ is strong
if it is �-strong for every cardinal � > κ.

If κ is a strong cardinal, then for every cardinal � > κ there exists an elementary
embedding j : V →M , with M transitive, critical point κ, V� contained in M, and
j(κ) > �. Moreover, if κ is strong, then Vκ �Σ2 V . (See [9].)

It is well-known that the notion of strong cardinal can be formulated in terms of
extenders (see [9, Section 26]). Namely,

Definition 2.3. Given a cardinal κ, and � > κ, a (κ, �)-extender is a collection
E := {Ea : a ∈ [�]<�} such that:

(1) Each Ea is a κ-complete ultrafilter over [κ]|a|, and Ea is not κ+-complete for
some a.

(2) For each � < κ, there is some a with {s ∈ [κ]|a| : � ∈ s} ∈ Ea .
(3) Coherence: If a ⊆ b are in [�]<� , with b = {α1, ... , αn} and a = {αi1 , ... , αin},

and 	ba : [κ]|b| → [κ]|a| is the map given by 	ba({�1, ... , �n}) = {�i1 , ... , �in},
then

X ∈ Ea if and only if {s ∈ [κ]|b| : 	ba(s) ∈ X} ∈ Eb .

(4) Normality: Whenever a ∈ [�]<� andf : [κ]|a| → V are such that {s ∈ [κ]|a| :
f(s) ∈ max(s)} ∈ Ea , there is b ∈ [�]<� with a ⊆ b such that

{s ∈ [κ]|b| : f(	ba(s)) ∈ s} ∈ Eb .
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(5) Well-foundedness: Whenever am ∈ [�]<� and Xm ∈ Eam for m ∈ �, there is a
function d :

⋃
m am → κ such that d“am ∈ Xm for every m.

Proposition 2.4. A cardinal κ is �-strong if and only if there exists a
(κ, |V�|+)-extender E such that V� ⊆ME and � < jE(κ) (whereME is the transitive
collapse of the direct limit ultrapower ME of V by E , and jE : V →ME is the
corresponding elementary embedding).

Proof. See [9, Exercise 26.7]. 


§3. The Product Reflection Principle. For any set S of relational structures A =
〈A, ...〉of the same type, the set-theoretic product

∏
S is the structure whose universe

is the set of all functions f with domain S such that f(A) ∈ A for every A ∈ S, and
whose relations are defined pointwise.

Definition 3.1 (The Product Reflection Principle (PRP)). For Γ a definability
class (i.e., one of Σn, Πn, some n > 0), and P a set or proper class, Γ(P)-PRP asserts
that for every class C of graphs that is Γ-definable with parameters in P, the following
holds:

PRP: There is a non-empty subset S of C such that for every G in C there is a
homomorphism

∏
S → G .

If P = ∅, then we simply write Γ-PRP. If P = V , then we write Γ in boldface, e.g.,
Σn-PRP.

Note that in the case where C is a set, PRP is trivial because we may take S = C
and use the coordinate projection homomorphisms from

∏
S, so the nontrivial case

is the one where C is a proper class (and S is still required to be a set.)
In the definition of Γ(P)-PRP we may replace “graphs” by “structures in a fixed

(many-sorted, infinitary) relational language” and obtain equivalent principles,
provided we allow for some additional parameters (see our remarks after Definition
2.2). Thus, the boldface principle Σn-PRP for classes of graphs is equivalent to its
version for classes of relational structures.

We shall denote by C (n) the Πn-definable closed and unbounded class of ordinals
κ that are Σn-correct in V, i.e., Vκ �Σn V . (See [4].)

Proposition 3.2. Σ1-PRP holds. In fact, for every κ ∈ C (1) and every Σ1-definable
with parameters inVκ proper class C of structures in a fixed relational language � ∈ Vκ,
the set S := C ∩ Vκ witnesses Σ1(Vκ)-PRP.

Proof. Letκ ∈ C (1), and let C be a Σ1-definable, with a set of parametersP ∈ Vκ,
proper class of structures in a relational language � ∈ Vκ. Note that since κ ∈ C (1),
Vκ = Hκ, and hence |TC({�} ∪ P)| < κ. Let ϕ(x) be a Σ1 formula, with parameters
in P, defining C. We claim that S := C ∩ Vκ satisfies PRP. Given A ∈ C, let � ∈ C (1)

be greater than κ and such that A ∈ V�. Let N � V� be of cardinality less than
κ and such that A ∈ N and TC({�} ∪ P) ⊆ N . Let 	 :M → N be the inverse
transitive collapse isomorphism, and let B ∈M be such that 	(B) = A. Notice that
	 fixes � and the parameters of ϕ(x). Since M is transitive and of cardinality less
than κ, B ∈ Hκ = Vκ. Also, since V� |= ϕ(A), we have N |= ϕ(A), and therefore
M |= ϕ(B). Hence, since M is transitive and ϕ is upwards absolute for transitive
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sets, B ∈ C. Thus, B ∈ S. Then the composition of 	 with the projection
∏
S → B

yields the desired homomorphism. 

Proposition 3.3. If κ is a strong cardinal, then Σ2(Vκ)-PRP holds.

Proof. Let κ be a strong cardinal and let C be a Σ2-definable, with parameters
in Vκ, proper class of structures in a fixed relational language � ∈ Vκ. Let ϕ(x) be
a Σ2 formula defining it. We will show that S := C ∩ Vκ witnesses PRP.

Given any A ∈ C, let � ∈ C (2) be greater than or equal to κ and with A ∈ V�.
Let j : V →M be an elementary embedding with crit(j) = κ, V� ⊆M , and

j(κ) > �.
By elementarity, the restriction of j to

∏
S yields a homomorphism

h :
∏
S →

∏
({X :M |= ϕ(X )} ∩ VMj(κ)).

Since A ∈ V�, and � ∈ C (2), we have that V� |= ϕ(A). Since � ∈ C (1) is
Π1-expressible and therefore downwards absolute for transitive classes, and
since V� ⊆M , it follows that V� �Σ1 M and therefore M |= ϕ(A). Moreover
A ∈ V� ⊆ VMj(κ). Thus, letting

g :
∏

({X :M |= ϕ(X )} ∩ VMj(κ)) → A

be the projection map, we have that

g ◦ h :
∏
S → A

is a homomorphism, as wanted. 

Corollary 3.4. If there exists a proper class of strong cardinals, then Σ2-PRP

holds.

We shall next show that SWVP is equivalent to the assertion that PRP holds for
all definable proper classes of structures. Let Γn be either Σn or Πn.

Proposition 3.5. Γn(P)-PRP implies Γn(P)-SWVP, for every n > 0 and every
class P.

Proof. Assume G = 〈Gα : α ∈ OR〉 is a sequence of graphs that is definable
by a Γn formula ϕ from a parameter p ∈ P, such that whenever α ≤ � there is a
homomorphism G� → Gα . We shall use Γn(P)-PRP to produce a homomorphism
G� → G� for some � > � , thereby witnessing the desired instance of SWVP.

In the case Γn = Σn we define the class of graphs C = {Gα : α ∈ OR}, which
is Σn-definable from the parameter p ∈ P because a graph G is in C if and only
if ∃α ∈ OR ϕ(α,G, p) and the formula ϕ is Σn. Therefore by Σn(P)-PRP, there
is a subset S of the class C such that for every G ∈ C there is a homomorphism∏

S → G . This gives a subset I of the class OR such that for every � ∈ OR there is
a homomorphism

∏
α∈I Gα → G� . In particular, letting � = sup I and � > � (for

example, � = � + 1), there is a homomorphism
∏
α∈I Gα → G� . Composing this

with a homomorphism G� →
∏
α∈I Gα (which exists because for each α ∈ I there

is a homomorphism G� → Gα) we obtain a homomorphism G� → G� , as desired.
In the case Γn = Πn, we will need the following preliminary observation. Namely,

we may assume without loss of generality that for every κ the class {α ∈ OR :
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|Gα | ≤ κ} is bounded by some ordinal f(κ), as otherwise it would contain two
distinct α and α′ such that Gα and Gα′ are isomorphic, trivially witnessing the
desired instance of SWVP. It follows that the class {α ∈ OR : |Gα | ≥ α} contains a
club class (namely the class of all closure points of this bounding function f ) and in
particular it is a proper class. We therefore define the class of graphs

C = {Gα : α ∈ OR and |Gα | ≥ α},
which is Πn-definable from the parameter p ∈ P because a graph G is in C if and
only if

∀� ∈ OR
(
|� | = |G | =⇒ ∃α ≤ � ϕ(α,G, p)

)

and the formula ϕ is Πn. (The main point is that the existential quantification
over α is bounded.) Therefore, by Πn(P)-PRP, there is a subset S of the class C
such that for every graph G ∈ C there is a homomorphism

∏
S → G . This gives a

subset I of the class {α ∈ OR : |Gα | ≥ α} such that for every ordinal � in that class,
there is a homomorphism

∏
α∈I Gα → G� . Letting � = sup I , because the class

{α ∈ OR : |Gα | ≥ α} is a proper class, it contains some ordinal � > � . We may then
proceed as in the Σn case to obtain a homomorphism G� → G� , as desired. 


The converse also holds, and in fact more is true. Namely,

Proposition 3.6. Πn(P)-WVP implies Σn+1(P)-PRP, for every n ∈ �, and
every P.

Proof. Let C be a Σn+1-definable, with parameter p ∈ P, class of graphs that
is a counterexample to PRP. We may represent this class as an increasing union:
C =

⋃
�∈C (n) CV� where CV� is the relativization of C toV� . Note that CV� is a subset

of C ∩ V� for any � ∈ C (n), and (unless C happens to be Πn) it may be a proper
subset, since the least witness to a Σn+1 property of a graph may have much larger
rank than the graph itself.

We recursively define a function f : Ord → Ord by letting f(0) be the least
� ∈ C (n) such that CV� 	= ∅, lettingf(α + 1) be the least � ∈ C (n) such that there is
no homomorphism

∏
CVf(α) →

∏
CV� , and lettingf(�) = supα<� f(α) if � is a limit

ordinal. To see that f is a total function, note that the ordinal � in the definition of
f(α + 1) exists: otherwise for any graph G ∈ C we could take � ∈ C (n) sufficiently
large that G ∈ CV� and then compose a homomorphism

∏
CVf(α) →

∏
CV� with

a projection homomorphism to obtain a homomorphism
∏

CVf(α) → G , thereby
witnessing PRP for C.

For every ordinal α we define the product graph

Hα =
∏

CVf(α) .

Note that the sequence 〈Hα : α ∈ Ord〉 is a counterexample to SWVP (which we
do not claim to be Πn or even Σn+1): for every pair of ordinals α ≤ α′ there is a
homomorphism from Hα′ to Hα given by restriction, and for every ordinal α the
definition of f implies there is no homomorphism fromHα toHα+1 (nor toHα′ for
any larger α′, or else we could compose with a restriction homomorphism to get a
homomorphism to Hα+1.) We will use this sequence to build a counterexample to
WVP, which moreover will be Πn.
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Let Λ be the class of all limit ordinals that are fixed points of f. Equivalently
because f is continuous and increasing, Λ is the class of all limit ordinals that
are closed under f. Note that Λ is a closed unbounded class and Λ ⊆ C (n) (so in
particular the elements of � are limit cardinals, although we won’t use this fact
directly.) For every pair of ordinals � ≤ �′ in Λ we define the function h�′� : V�′+1 →
V�+1 by

h�′�(x) = x ∩ V�.

We will define some structure (constants and relations) on the sets V�+1 (� ∈ Λ)
that is preserved by these functions h�′� and not by any other functions. To ensure
that the structure is not preserved by any other functions, it will encode our
counterexample 〈Hα : α ∈ Ord〉 to SWVP (among other things.) The coding will
use a “stratified” versionH ∗

α of the product graph Hα , which we define as a double
product of length 1 + α, having

∏
CVf(0) as initial factor, namely:

H ∗
α =

∏
CVf(0) ×

∏
(CVf(1) \ CVf(0) ) ×

∏
(CVf(2) \ CVf(1) ) × ··· .

Note that the graphH ∗
α is isomorphic toHα (the initial factor was added to ensure

this in the case α = 0), and it has the advantage that for every pair of ordinals
� ≤ �′ in Λ, the function h�′� is a homomorphism from H ∗

�′ to H ∗
� because it just

restricts the outermost product from
∏
α0<�

′ to
∏
α0<�

, whereas it might not be a
homomorphism fromH�′ toH� because CV�′ ∩ V� might not be equal to CV� .

Our structures will be defined as in [12] except using the graph H ∗
α in place

of Hα . Namely, we let Σ be the signature with a constant symbol c and ternary
relation symbols R, S, and T, and for every ordinal � ∈ Λ we define a corresponding
Σ-structure

M� =
〈
V�+1, c

M� , RM� , SM� , TM�
〉
,

where cM� = � and the interpretations of R, S, and T are defined as follows:

RM�(α, x, y) ⇐⇒
(
α = rank(x) and x ∈ y

)
or α = �,

SM�(α, x, y) ⇐⇒
(
α = rank(x) and x /∈ y

)
or α = �,

TM�(α, x, y) ⇐⇒ x is adjacent to y in H ∗
α .

(In the definition of TM� we take x and y to be vertices of H ∗
α .)

Essentially the same argument as in [12] shows that the only homomorphisms
among the structures M� for � ∈ Λ are the homomorphisms h�′� for � ≤ �′. Here
we will just remind the reader of the main idea of that argument, which is that for
any ordinals � and �′ in Λ:

(1) If � < �′, then preservation of the T relation and the constant c ensures
that any “forward” homomorphism from M� to M�′ would produce
a homomorphism from H ∗

� to H ∗
�′ , or equivalently from H� to H�′ ,

contradicting the fact that 〈Hα : α ∈ Ord〉 is a counterexample to SWVP.
(2) If � ≤ �′, then preservation of the R and S relations (which encode the

membership relation ∈) ensures that any “reverse” homomorphism from
M�′ to M� that is not equal to h�′� would have a critical point that is mapped
forward, which would then yield a contradiction using preservation of the T
relation by an argument similar to (1).
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Enumerating Λ in increasing order as 〈�� : � ∈ Ord〉, or in other words letting ��
be the �th fixed point of f, the sequence of structures

〈M��
: � ∈ Ord〉

is therefore a counterexample to WVP. It remains to check that this sequence of
structures is Πn. For any ordinal � and any structure M, the condition M = M��
is equivalent to the conjunction of the following conditions, each of which can be
expressed by a Πn formula (or simpler):

(1) M is a Σ-structure whose underlying set M contains a largest ordinal �. This
condition can be expressed by a bounded formula.

(2) M is a rank initial segment of V (which must therefore be equal to V�+1.)
This condition is Π1.

(3) � is in the class C (n). This condition is Πn.
(4) � is equal to �� , the �th closure point of f. Given that M = V�+1 where
� ∈ C (n), this condition can be expressed by a bounded formula over M. To
see this, first note that the definition of the class C (n) is Πn and therefore
absolute to V�. Second, note that the definition of f (as a relation and in
particular as a partial function) using C (n) is also absolute to V�. For the
absoluteness of f, note that the complexity of C doesn’t make f complex,
because f is defined using relativizations of C that can be computed locally;
also note that the construction of product graphs is absolute to V�, as is the
existence of a homomorphism between any two given graphs.

Third, note that because f is absolute to V�, it follows that V� can see
whether or not � is a closure point of f. (This holds if and only if the
relativization of f to V� is a total function on �.) Finally, note that M can see
more specifically whether or not � is the �th closure point of f : in the case
that � ∈M , this again follows from the absoluteness of f to V�, but actually
the case that � ∈M is the only case we need to consider, becauseM = V�+1

and for � to be the �th closure point of f would require � ≤ � and therefore
� ∈M .

(5) The constant and the three relations of the Σ-structure M are defined
correctly, meaning cM = cM� , RM = RM� , SM = SM� , and TM = TM� ,
defined as above. Given that the underlying set M of this structure is equal
to V�+1 where � is a closure point of f (and is therefore in C (n)) these four
conditions can be expressed by bounded formulas over the structure M.
We show this only for the condition TM = TM� , since the other three are
relatively straightforward.

First, note that the definition of the sequence of graphs 〈H ∗
α : α < �〉 is

absolute to V�: again the complexity of the class C doesn’t matter because
f and H ∗

α are defined using local relativizations of it. Second, note that
the vertex set and edge relation of the graph H ∗

� are definable by bounded
formulas over V�+1 for a similar reason. These two observations show that
the correct relation TM� is definable by a bounded formula over the set
M = V�+1, so the structure M can see whether or not TM� agrees with its
own relation TM.






The following is now an immediate consequence of Propositions 3.5 and 3.6.
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Theorem 3.7. For every n > 0 and every set or proper class P, the following are
equivalent:

(1) Σn+1(P)-PRP.
(2) Πn(P)-PRP.
(3) Σn+1(P)-SWVP.
(4) Πn(P)-SWVP.
(5) Σn+1(P)-WVP.
(6) Πn(P)-WVP.

Proof. The implications (1) ⇒ (2), (3) ⇒ (4), and (5) ⇒ (6) are trivial. The
implications (3) ⇒ (5) and (4) ⇒ (6) are clear. Proposition 3.5 yields (1) ⇒ (3) and
(2) ⇒ (4). Finally, Proposition 3.6 yields (6) ⇒ (1). 


In the next two sections we shall prove, for each n > 0, exact equivalences of
(1)–(6) above with large cardinals.

§4. The main theorem for strong cardinals.

Theorem 4.1. The following are equivalent:

(1) There exists a strong cardinal.
(2) Σ2-PRP.
(3) Π1-PRP.
(4) Σ2-SWVP.
(5) Π1-SWVP.
(6) Σ2-WVP.
(7) Π1-WVP.

Proof. (1)⇒(2) is given by Proposition 3.3. The equivalence of (2)–(7) is given
by Theorem 3.7. So, it will be sufficient to prove (3)⇒(1).

(3)⇒(1): Let A be the class of all structures

Aα := 〈Vα+1,∈, α, {Rαϕ}ϕ∈Π1〉,

where the constant α is the α-th element of C (1) and {Rαϕ}ϕ∈Π1 is the Π1 relational
diagram forVα+1, i.e., ifϕ(x1, ... , xn) is a Π1 formula in the language of 〈Vα+1,∈, α〉,
then

Rαϕ = {〈x1, ... , xn〉 : 〈Vα+1,∈, α〉 |= “ϕ(x1, ... , xn)”} .

We claim that A is Π1-definable without parameters. For X ∈ A if and only if
X = 〈X0, X1, X2, X3〉, where:

(1) X2 belongs to C (1),
(2) X0 = VX2+1,
(3) X1 = ∈ � X0,
(4) X3 is the Π1 relational diagram of 〈X0, X1, X2〉, and
(5) 〈X0, X1, X2〉 |= “X2 is the X2-th element of C (1).”

Note that A is a proper class. In fact, the class C of ordinals α such that Aα ∈ A
is a closed and unbounded proper class. By Π1-PRP there exists a subset S of C such
that for every � ∈ C there is a homomorphism j� :

∏
α∈S Aα → A� . By enlarging S,
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if necessary, we may assume that sup(S) ∈ S. Let us denote
∏
α∈S Aα by M. Notice

that

M = 〈
∏

α∈S
Vα+1,∈, 〈α〉α∈S, {R

α

ϕ}ϕ∈Π1〉,

where ∈ is the pointwise membership relation, and R
α

ϕ is the pointwise Rαϕ relation.
Let κ := sup(S).

Now assume, aiming for a contradiction, that no cardinal ≤κ is strong, and fix
some � ∈ C greater than κ, of uncountable cofinality, such that no cardinal ≤κ is
�-strong. Let j = j� . 


Claim 4.2. j preserves the Boolean operations ∩, ∪, –, and also the ⊆ relation.

Proof of claim. For every X,Y,Z ∈M ,

M |= “X = Y ∩ Z” iff Vα+1 |= “X (α) = Y (α) ∩ Z(α),” all α ∈ S .

So, letting ϕ(x, y, z) be the bounded formula expressing x = y ∩ z, we have that
〈X (α), Y (α), Z(α)〉 ∈ Rαϕ , for all α ∈ S. Hence 〈X,Y,Z〉 ∈ Rϕ , and since j is

a homomorphism 〈j(X ), j(Y ), j(Z)〉 ∈ R�ϕ , which yields A� |= “j(X ) = j(Y ) ∩
j(Z).”

Similarly for the operations ∪, –, and for the relation ⊆. 


Now define k : Vκ+1 → V�+1 by

k(X ) = j(〈X ∩ Vα〉α∈S) .

Claim 4.3. k also preserves the Boolean operations, as well as the ⊆ relation.

Proof of claim. Suppose Vκ+1 |= “X = Y ∩ Z.” Then X ∩ Vα = (Y ∩ Vα) ∩
(Z ∩ Vα), for every α ∈ S. Hence,

M |= “〈X ∩ Vα〉α∈S = 〈Y ∩ Vα〉α∈S ∩ 〈Z ∩ Vα〉α∈S.”

Since j preserves the ∩ operation,

A� |= “k(X ) = k(Y ) ∩ k(Z).”

Hence,

V�+1 |= “k(X ) = k(Y ) ∩ k(Z).”

Similarly for the operations ∪, –, and the relation ⊆. 


Claim 4.4. k maps ordinals to ordinals, and is the identity on � + 1.

Proof of claim. Letϕ(x) be the bounded formula expressing that x is an ordinal.
Let � ≤ κ. Then � ∩ Vα is an ordinal, for all α < κ, and so

M |= “〈� ∩ Vα〉α∈S ∈ Rϕ.”

Since j is a homomorphism,

A� |= “j(〈� ∩ Vα〉α∈S) ∈ R�ϕ,”

which yields that k(�) = j(〈� ∩ Vα〉α∈S) is an ordinal in A� , hence also in V�+1.
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For every ordinal � ≤ �, we have that � ∩ Vα = �, for all α ∈ S. Moreover, � is
definable by some bounded formula ϕ� . Hence,

M |= “〈� ∩ Vα〉α∈S ∈ Rϕ�”
and therefore

A� |= “j(〈� ∩ Vα〉α∈S) ∈ R�ϕ� ,”

which yields k(�) = �. 

Note that k(κ) = j(〈α〉α∈S) = � .
For each a ∈ [�]<� , define Ea by

X ∈ Ea iff X ⊆ [κ]|a| and a ∈ k(X ) .

Since k(κ) = � and k(|a|) = |a|, we also have k([κ]|a|) = [�]|a|, and hence
[κ]|a| ∈ Ea . Moreover, since k preserves Boolean operations and the ⊆ relation,
Ea is an ultrafilter over [κ]|a|.

Claim 4.5. Ea is �1-complete.

Proof of claim. Given {Xn : n < �} ⊆ Ea , let Y = {〈n, x〉 : x ∈ Xn}. So, Y ⊆
Vκ. We can express that X =

⋂
n<� Xn by a bounded sentence ϕ in the parameters

X, Y, and �. Moreover, since α is a limit ordinal, for every α ∈ S, the sentence
ϕ(X ∩ Vα,Y ∩ Vα,�) expresses that X ∩ Vα =

⋂
n<� Xn ∩ Vα . So,

M |= “〈X ∩ Vα,Y ∩ Vα,�〉α∈S ∈ Rϕ.”
Since j is a homomorphism,

A� |= “〈j(X ∩ Vα), j(Y ∩ Vα), j(�)〉α∈S ∈ R�ϕ”

and so 〈k(X ), k(Y ), k(�)〉 satisfies ϕ. Since k(�) = �, we thus have k(X ) =⋂
n<� k(Xn). Hence, a ∈ k(X ), and so X ∈ Ea . 

Let E := {Ea : a ∈ [�]<�}.

Claim 4.6. E is normal. That is, whenever a ∈ [�]<� and f is a function with
domain [κ]|a| such that {s ∈ [κ]|a| : f(s) ∈ max(s)} ∈ Ea , there is b ⊇ a such
that {s ∈ [κ]|b| : f(	κba(s)) ∈ s} ∈ Eb , where 	κba : [κ]|b| → [κ]|a| is the standard
projection function.

Proof. Fix a and f, and suppose the set

X := {s ∈ [κ]|a| : f(s) ∈ max(s)}
belongs to Ea . For every α ∈ S,

Vα+1 |= “X ∩ Vα = {s ∈ [α]|a| : (f ∩ Vα)(s) ∈ max(s)}.”
Thus, letting ϕ[X ∩ Vα, α, |a|, f ∩ Vα] be the sentence

∀x(x ∈ (X ∩ Vα) ↔ x ∈ [α]|a| ∧ (f ∩ Vα)(x) ∈ max(x)),

we have that

Vα+1 |= ϕ[X ∩ Vα, α, |a|, f ∩ Vα].
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Since the formula ϕ(x, y, z) is equivalent to a bounded formula, we have
〈X ∩ Vα, α, |a|, f ∩ Vα〉 ∈ Rαϕ , for every α ∈ S. Hence,

M |= “〈〈X ∩ Vα〉α∈S, 〈α〉α∈S, 〈|a|〉α∈S, 〈f ∩ Vα〉α∈S〉 ∈ R
α

ϕ”

and therefore

V�+1 |= “〈j(〈X ∩ Vα〉α∈S), j(〈α〉α∈S), j(〈|a|〉α∈S), j(〈f ∩ Vα〉α∈S)〉 ∈ R�ϕ.”

Since j(〈α〉α∈S) = k(κ) = � and k(|a|) = |a|,

V�+1 |= “〈k(X ), �, |a|, k(f)〉 ∈ R�ϕ,”

which yields

k(X ) = {s ∈ [�]|a| : k(f)(s) ∈ max(s)} .

Also, since X ∈ Ea , we have that k(f)(a) ∈ max(a).
Let � = k(f)(a), and let b = a ∪ {�}. Thus,

b ∈ {s ∈ [�]|b| : k(f)(	�ba(s)) ∈ s},

where 	�ba : [�]|b| → [�]|a| is the standard projection function. So, since {s ∈ [�]|b| :
k(f)(	�ba(s)) ∈ s} = k({s ∈ [κ]|b| : f(	κba(s)) ∈ s}), we have

{s ∈ [κ]|b| : f(	κba(s)) ∈ s} ∈ Eb,

which shows that E is normal. 


For each a ∈ [�]<� , the ultrapower Ult(V,Ea) of V by the�1-complete ultrafilter
Ea is well-founded. So, let

ja : V →Ma ∼= Ult(V,Ea),

withMa transitive, be the corresponding ultrapower embedding. As usual, we denote
the elements ofMa by their corresponding elements in Ult(V,Ea).

Claim 4.7. E is coherent. That is, for every a ⊆ b in [�]<� ,

X ∈ Ea if and only if {s ∈ [κ]|b| : 	ba(s) ∈ X} ∈ Eb .

Proof. Let a ⊆ b in [�]<� , and suppose X ∈ Ea . Thus, X ⊆ [κ]|a| and
a ∈ k(X ). We need to see that b ∈ k({s ∈ [κ]|b| : 	ba(s) ∈ X}). Now notice that,
since k is the identity on natural numbers, and k(κ) = � ,

k({s ∈ [κ]|b| : 	ba(s) ∈ X}) = {s ∈ [�]|b| : 	ba(s) ∈ k(X )}.

Hence, since 	ba(b) = a, and a ∈ k(X ), we have that b ∈ {s ∈ [�]|b| : 	ba(s) ∈
k(X )}, as wanted.

Conversely, if {s ∈ [κ]|b| : 	ba(s) ∈ X} ∈ Eb , we have that b ∈ k({s ∈ [κ]|b| :
	ba(s) ∈ X}) = {s ∈ [�]|b| : 	ba(s) ∈ k(X )}. Hence, 	ba(b) = a ∈ k(X ), and
therefore X ∈ Ea . 


For each a ⊆ b in [�]<� , let iab :Ma →Mb be given by

iab([f]Ea ) = [f ◦ 	ba ]Eb
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for all f : [κ]|a| → V . By coherence, the maps iab are well-defined and commute
with the ultrapower embeddings ja (see [9, Section 26]).

LetME be the direct limit of

〈〈Ma : a ∈ [�]<�〉, 〈iab : a ⊆ b〉〉.

For notational simplicity, whenever we write [a, [f]] what we mean is that [f] =
[f]Ea , which belongs toMa . Thus, when we say, e.g., that [a, [f]] ∈ [b, [g]] inME ,
what we mean is that [f] = [f]Ea ∈Ma , [g] = [g]Eb ∈Mb , and [〈a, [f]Ea 〉]E ∈E
[〈b, [g]Eb 〉]E .

Let jE : V →ME be the corresponding limit elementary embedding, i.e.,

jE(x) = [a, [cax ]Ea ]

for some (any) a ∈ [�]<� , and where cax : [κ]|a| → {x}.
Let ka :Ma →ME be given by

ka([f]Ea ) = [a, [f]Ea ] .

It is easily checked that jE = ka ◦ ja and kb ◦ iab = ka , for all a ⊆ b, a, b ∈ [�]<� .
Thus, letting Id|a| : [κ]|a| → [κ]|a| be the identity function, we have

ME = {jE(f)(ka([id|a|]Ea )) : a ∈ [�]<� and f : [κ]|a| → V } .

Let M ∗
E := {[a, [f]] ∈ME : f ∩ Vα : [α]|a| → Vα, all α ∈ S}. Suppose [a, [f]],

[b, [g]] ∈M ∗
E . Then the following can be easily verified:

(1) [a, [f]] ∈E [b, [g]] iff k(f)(a) ∈ k(g)(b).
(2) [a, [f]] =E [b, [g]] iff k(f)(a) = k(g)(b).

Claim 4.8. M ∗
E is well-founded and downward closed under ∈E .

Proof. Well-foundedness follows from items (1) and (2) above, as any infinite
∈E -descending sequence in M ∗

E would yield an infinite ∈-descending sequence in
V�+1.

Now suppose [a, [f]] ∈E [b, [g]], with [b, [g]] ∈M ∗
E . Then, for some c ⊇ a, b, and

some X ∈ Ec ,

(f ◦ 	ca)(s) ∈ (g ◦ 	cb)(s)

for every s ∈ X . Let Y = {	ca(s) : s ∈ X} ∈ Ea . Define h : [κ]|a| → V by:
h(s) = f(s) for all s ∈ Y , and h(s) = 0, otherwise. Then [h]Ea = [f]Ea , and
[a, [f]] = [a, [h]] ∈M ∗

E . 


By the last claim,M ∗
E is well-founded and extensional. So, letM ∗ be the transitive

collapse ofM ∗
E .

Claim 4.9. V� ⊆M ∗.

Proof of claim. Since κ and α, for α ∈ S, belong toC (1), we have that |Vκ| = κ
and |Vα | = α, all α ∈ S. Let f ∈ V be a bijection between [κ]1 and Vκ such that
f � [α]1 is a bijection between [α]1 andVα , all α ∈ S. Letϕ(x, y, z) be a Π1 formula
expressing that x = [u]1, with u an ordinal, y = Vu , and z : x → Vu is a bijection.
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Thus,

M |= “〈[α]1, Vα, f ∩ Vα〉α∈S ∈ Rϕ.”

Hence,

A� |= “〈k([κ]1), k(Vκ), k(f)〉 ∈ R�ϕ”

and so k(f) : [�]1 → V� is a bijection. Therefore, for every x ∈ V� there exists � < �
such that k(f)({�}) = x.

Thus, letting D := {[{�}, [f]] : � < �}, we have just shown that the map i :
〈D,∈E� D〉 → 〈V�,∈〉 given by

i([{�}, [f]]) = k(f)({�})

is onto. Moreover, if [{�}, [f]] ∈E [{�}, [f]], then for some X ∈ E{�,�}, we have

(f ◦ 	{�,�}{�})(s) ∈ (f ◦ 	{�,�}{�})(s)

for every s ∈ X . Lettingϕ be the bounded formula expressing this, sinceVα is closed
under f for every α, we have

M |= “〈X ∩ Vα, (f ◦ 	{�,�}{�}) ∩ Vα, (f ◦ 	{�,�}{�}) ∩ Vα〉α∈S ∈ Rϕ.”

Hence, in A� , for every s ∈ k(X ),

(k(f) ◦ 	{�,�}{�})(s) ∈ (k(f) ◦ 	{�,�}{�})(s) .

In particular, since {�, �} ∈ k(X ),

k(f)({�}) ∈ k(f)({�}) .

A similar argument shows that i is one-to-one. Hence, i is an isomorphism, and so
i is just the transitive collapsing map. Since D ⊆M ∗

E , to conclude that V� ⊆M ∗ it
will be sufficient to show that the transitive collapse of D is the same as the restriction
to D of the transitive collapse ofM ∗

E . For this, it suffices to see that every ∈E -element
of an element of D is =E -equal to an element of D. So, suppose [{�}, [f]] ∈ D and
[a, [g]] ∈E [{�}, [f]], with [a, [g]] ∈M ∗

E . Thenk(g)(a) ∈ k(f)(�), by (1) above (just
before Claim 4.8). Now k(f) : [�]1 → V� is surjective and V� is transitive, so there
is some � < � such that k(f)({�}) = k(g)(a). Hence, by (2) above, [{�}, [f]] =E
[a, [g]]. 


Claim 4.10. ME is closed under �-sequences, and hence it is well-founded.

Proof of claim. Let 〈jE(fn)(kan ([id|an |]Ean ))〉n<� be a sequence of elements of
ME . On the one hand, the sequence 〈jE(fn)〉n<� = jE(〈fn〉n<�) belongs to ME .
On the other hand, kan ([Id|an |]Ean ) = [an, [Id|an |]Ean ] belongs toM ∗

E for all n < �.
Since E is normal (Claim 4.6), as in [9, Lemma 26.2(a)] we can show that the
transitive collapse of [an, [Id|an |]Ean ] is precisely an. The sequence 〈an〉n<� belongs
to V� , because � has uncountable cofinality. Hence, since V� ⊆M ∗, the preimage
of 〈an〉n<� ∈ V� under the transitive collapsing map of M ∗

E to M ∗ is precisely the
sequence 〈kan ([Id|an |]Ean )〉n<� and belongs toME . It now follows that the sequence
〈jE(fn)(kan ([id|an |]Ean ))〉n<� is also inME . 
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Let 	 :ME → N be the transitive collapsing isomorphism, and let jN : V → N
be the corresponding elementary embedding, i.e., jN = 	 ◦ jE .

Claim 4.11. jN (κ) ≥ � .

Proof of claim. Let α < � . Let Id1 be the identity function on [κ]1, and let
c[κ]1 : [κ]1 → {[κ]1} and cκ : [κ]1 → {κ}. InM{α}, we have

[Id1]E{α} ∈ [c[κ]1 ]E{α} = [[cκ]E{α} ]1 = [j{α}(κ)]1,

and hence inME ,

k{α}([Id1]E{α}) ∈ k{α}([j{α}(κ)]1) = [jE(κ)]1,

and therefore, since 	(k{α}([Id1]E{α})) = {α}, in N we have

{α} ∈ [jN (κ)]1,

that is, α < jN (κ). 


Since � > κ, the last claim implies that the critical point of jN is less than or
equal to κ. Since V� ⊆ N by Claim 4.9, jN witnesses that its critical point is a
�-strong cardinal, in contradiction to our choice of � . This completes the proof of
Theorem 4.1. 


The boldface version of Theorem 4.1, i.e., with parameters, also holds by
essentially the same arguments. Namely,

Theorem 4.12. The following are equivalent:

(1) There exists a proper class of strong cardinals.
(2) Σ2-PRP.
(3) Π1-PRP.
(4) Σ2-SWVP.
(5) Π1-SWVP.
(6) Σ2-WVP.
(7) Π1-WVP.

For the proof of (3) implies (1), in order to show that there exists a strong cardinal
greater than or equal to a fixed ordinal � we need to consider the class of structures

Aα := 〈Vα+1,∈, α, {Rαϕ}ϕ∈Π1 , 〈�〉�<�〉,

where the structure

〈Vα+1,∈, α, {Rαϕ}ϕ∈Π1〉

is as in the proof of Theorem 4.1, and we have a constant � for every � < �.

§5. The general case. We shall now consider the general case of definable proper
classes of structures with any degree of definable complexity. For this we shall need
the following new kind of large cardinals.

If j : V →M is an elementary embedding, with M transitive and critical point
κ, and A is a class definable by a formula ϕ (possibly with parameters in Vκ),
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we define

j(A) := {X ∈M :M |= ϕ(X )} .

Note that

j(A) =
⋃

{j(A ∩ Vα) : α ∈ OR}

as j(A ∩ Vα) = {X ∈M :M |= ϕ(X )} ∩ VM
j(α). Also note that if A is a class of

structures of the same type � ∈ Vκ, then by elementarity j(A) is a subclass of M of
structures of type �.

5.1. Γn-strong cardinals. In the sequel, let Γn stand for one of the definability
classes Σn, Πn.

Definition 5.1. For n ≥ 1, a cardinal κ is �-Γn-strong if for every Γn-definable
(without parameters) class A there is an elementary embedding j : V →M with M
transitive, crit(j) = κ, j(κ) > �, V� ⊆M , and A ∩ V� ⊆ j(A).
κ is Γn-strong if it is �-Γn-strong for every ordinal �.

Note that in the definition above, A ∩ V� is only required to be contained in
j(A) ∩ V� and not equal to it. The reason is that in the Σ2 case, if A is the class of
non-strong cardinals (which is Σ2) and κ is the least strong cardinal, then κ /∈ A,
but κ ∈ j(A). See however the equivalence given in Proposition 5.9.

As with the case of strong cardinals, standard arguments show (cf. [9, Exercise
26.7(b)]) that κ is Γn-strong if and only if for every Γn-definable (without
parameters) class A and every ordinal � there is an elementary embedding
j : V →M with M transitive, crit(j) = κ, V� ⊆M , and A ∩ V� ⊆ j(A).

Proposition 5.2. Every strong cardinal is Σ2-strong.

Proof. Let κ be a strong cardinal and let A be a class that is Σ2-definable (even
allowing for parameters in Vκ). Let � ∈ C (2) be greater than κ. Let j : V →M be
elementary, with M transitive, crit(j) = κ, and V� ⊆M . Let ϕ be a Σ2 formula
defining A. If a ∈ A ∩ V�, then V� |= ϕ(a). Hence, since V� �Σ1 M , M |= ϕ(a),
and so a ∈ j(A) = {x :M |= ϕ(x)}. 


Proposition 5.3. If � ∈ C (n+1), then a cardinal κ is �-Πn-strong if and only if it is
�-Σn+1-strong.

Proof. Assume κ is �-Πn-strong, with � ∈ C (n+1), and let A be a Σn+1-definable
class. Let ϕ(x) ≡ ∃y (x, y) be a Σn+1 formula, with (x, y) being Πn, that defines
A. Now define B as the class of all structures of the form 〈Vα,∈, a〉, where α ∈
C (n), a ∈ Vα , and Vα |= ϕ(a). Then B is Πn-definable. By our assumption, let
j : V →M be an elementary embedding with M transitive, crit(j) = κ, V� ⊆M ,
and B ∩ V� ⊆ j(B). We just need to show that A ∩ V� ⊆ j(A). So, suppose a ∈
A ∩ V�. Since � ∈ C (n+1), we have that V� |= ϕ(a). Let b ∈ V� be a witness, so that
V� |= (a, b). For someα < � inC (n) we have that a, b ∈ Vα . Hence,Vα |= ϕ(a). So
〈Vα,∈, a〉 ∈ B ∩ V�, and therefore 〈Vα,∈, a〉 ∈ j(B). Thus, M |= “α ∈ C (n), a ∈
Vα, and Vα |= ϕ(a).” Hence,M |= ϕ(a), i.e., a ∈ j(A). 


Corollary 5.4. A cardinal κ is Πn-strong if and only if it is Σn+1-strong.
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Proposition 5.5. Suppose that n ≥ 2 and � ∈ C (n). Then the following are
equivalent for a cardinal κ < �:

(1) κ is �-Σn-strong.
(2) There is an elementary embedding j : V →M with M transitive, crit(j) = κ,
V� ⊆M , j(κ) > �, andM |= “� ∈ C (n–1).”

Proof. (1)⇒(2): Suppose κ is �-Σn-strong. Let A = C (n–1). Since A is Πn–1-
definable, hence also Σn-definable, by (1) there is an elementary embedding j : V →
M with M transitive, crit(j) = κ, j(κ) > �, V� ⊆M , and A ∩ V� ⊆ j(A). Since
� ∈ C (n), C (n–1) ∩ � is a club subset of �. For every α < � in C (n–1), α ∈ j(A), and
hence M |= “α ∈ C (n–1)” and so M |= “� is a limit point of C (n–1),” which yields
M |= “� ∈ C (n–1).”

(2)⇒(1): Let A be a class definable by a Σn formula ϕ, and let j : V →M be
an elementary embedding with M transitive, crit(j) = κ, j(κ) > �, V� ⊆M , and
M |= “� ∈ C (n–1).” Let a ∈ A ∩ V�. Since � ∈ C (n),V� |= ϕ(a). And sinceV� ⊆M
andM |= “� ∈ C (n–1),”M |= ϕ(a), i.e., a ∈ j(A). 


Proposition 5.6. If κ is Πn-strong, then κ ∈ C (n+1).

Proof. By induction on n. So let κ be Πn-strong and assume, inductively, that
κ ∈ C (n). Let ∃xϕ(x) be a formula, with ϕ(x) being a Πn formula which may
contain parameters in Vκ, and suppose that ∃xϕ(x) holds in V. Pick a witness b
and let � ∈ C (n) be such that b ∈ V�. Thus, V� |= ∃xϕ(x). By Corollary 5.4 and
Proposition 5.5, let j : V →M be an elementary embedding, with M transitive,
crit(j) = κ, V� ⊆M , j(κ) > �, and M |= “� ∈ C (n).” Then by elementarity of j,
in V there exists some �′ ∈ C (n) less than κ such that V�′ |= “∃xϕ(x),” and since
κ ∈ C (n), Vκ |= “∃xϕ(x),” as wanted. 


The last proposition suggests the following definition and the ensuing character-
ization of Σn-strong cardinals in terms of extenders.

Definition 5.7. Given n ≥ 1 and given cardinals κ < �, a Σn-strong (κ, �)-
extender is a (κ, |V�|+)-extender E (see Definition 2.3) such thatV� ⊆ME , � < j(κ),
and ME |= “� ∈ C (n–1),” where ME is the transitive collapse of the direct limit
ultrapower ME of V by E , and j : V →ME is the corresponding elementary
embedding.

Proposition 5.8. If n ≥ 2 and � ∈ C (n), then a cardinal κ < � is �-Σn-strong if
and only if there exists a Σn-strong (κ, �)-extender.

Proof. If E is a Σn-strong (κ, �)-extender, then the extender embedding j : V →
ME witnesses that κ is �-Σn-strong by Proposition 5.5.

Conversely, suppose j : V →M is an elementary embedding, with M transitive,
crit(j) = κ, j(κ) > �, V� ⊆M , and M |= “� ∈ C (n–1).” Note that since � ∈ C (1),
|V�| = �. Let E be the (κ, �+)-extender derived from j. Namely, for every a ∈ [�+]<�

let Ea be defined by

X ∈ Ea if and only if X ⊆ [κ]|a| and a ∈ j(X ).

One can easily check that E satisfies conditions (1)–(5) of Definition 2.3 (see [9,
Exercise 26.7]). So we only need to check thatME |= “� ∈ C (n–1).”
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Let jE : V →ME and kE :ME →M be the standard maps given by: jE(x) =
[a, [cax ]] (any a), where cax : [κ]|a| → {x}; and kE(	([a, [f]])) = j(f)(a), for f :
[κ]|a| → V , where 	 :ME →ME is the transitive collapse isomorphism. The maps
jE and kE are elementary and j = kE ◦ 	 ◦ jE . Moreover, kE � V� is the identity.

Since M |= “� ∈ C (n–1),” for each � < � in C (n–1), we have that M |= “� ∈
C (n–1).” So, since kE is elementary and is the identity on V�, we have that ME |=
“� ∈ C (n–1).” Hence,ME |= “� is a limit point of C (n–1),” which yieldsME |= “� ∈
C (n–1).” 


Similar characterizations may also be given for Πn-strong cardinals. Namely,
if n ≥ 2 and � ∈ C (n), then a cardinal κ < � is �-Πn-strong if and only if there
exists a Πn-strong (κ, �)-extender. Notice that (3) of the following proposition
characterizes Πn-strong cardinals as witnessing “OR is Woodin” restricted to Πn-
definable classes (see Definition 5.14). In particular, it says A ∩ V� = j(A) ∩ V�,
not just A ∩ V� ⊆ j(A) ∩ V�.

Proposition 5.9. Suppose that n ≥ 1 and � is a limit point of C (n). Then the
following are equivalent for a cardinal κ < �:

(1) κ is �-Πn-strong.
(2) There is an elementary embedding j : V →M with M transitive, crit(j) = κ,
j(κ) => �, V� ⊆M , andM |= “� ∈ C (n).”

(3) For every Πn-definable class A there is an elementary embedding j : V →M
with M transitive, crit(j) = κ, j(κ) > �, V� ⊆M , and A ∩ V� = j(A) ∩ V�.

Proof. (1)⇒(2): Suppose κ is �-Πn-strong. Let A = C (n). Since A is Πn-
definable, by (1) there is an elementary embedding j : V →M with M transitive,
crit(j) = κ, j(κ) > �, V� ⊆M , and A ∩ V� ⊆ j(A). Thus, for every α < � in A,
α ∈ j(A), and hence M |= “α ∈ C (n)” and so M |= “� is a limit point of C (n),”
which yieldsM |= “� ∈ C (n).”

(2)⇒(3): Let A be a class definable by a Πn formula ϕ(x), and let j : V →M be
an elementary embedding with M transitive, crit(j) = κ, j(κ) > �, V� ⊆M , and
M |= “� ∈ C (n).” Let a ∈ A ∩ V�. Since � ∈ C (n), V� |= ϕ(a). And since V� ⊆M
and M |= “� ∈ C (n),”M |= ϕ(a), i.e., a ∈ j(A). Conversely, suppose a ∈ j(A) ∩
V�, i.e.,M |= “ϕ(a).” SinceM |= “� ∈ C (n),”V� |= ϕ(a). And since � ∈ C (n), a ∈
A.

(3)⇒(1) is immediate. 


Let us remark that the implication (2)⇒(3) above also holds for classes A that
are Πn-definable with parameters in Vκ. Thus a corollary of Proposition 5.9 is that
a cardinal κ is Πn-strong if and only if it is �-Πn-strong for every Πn-definable, with
parameters in Vκ, class A.

It easily follows from the last proposition that being a Πn-strong cardinal is a Πn+1

property. Moreover, if κ is Πn-strong, then κ ∈ C (n+1). Hence, if κ is Πn+1-strong,
then there are many Πn-strong cardinals below κ, which shows that the Πn-strong
cardinals, n > 0, form a hierarchy of strictly increasing strength.

Similarly as in Proposition 3.3 we can prove the following.

Proposition 5.10. If κ is a Σn-strong cardinal, where n ≥ 2, then Σn(Vκ)-PRP
holds.
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Proof. Let n ≥ 2. Let κ be Σn-strong and let C be a definable, by a Σn formula
with parameters in Vκ, proper class of structures in a fixed countable relational
language. We will show that the set S := C ∩ Vκ witnesses PRP.

Given any A ∈ C, let � ≥ κ be an ordinal with A ∈ V�.
Let j : V →M be an elementary embedding with crit(j) = κ,V� ⊆M , j(κ) > �,

and C ∩ V� ⊆ j(C).
By elementarity, the restriction of j to

∏
S yields a homomorphism

h :
∏
S →

∏
(j(C) ∩ VMj(κ)).

Since A ∈ C ∩ V�, we have that A ∈ j(C). Moreover A ∈ V� ⊆ VMj(κ). Thus, letting

g :
∏

(j(C) ∩ VMj(κ)) → A

be the projection map, we have that

g ◦ h :
∏
S → A

is a homomorphism, as wanted. 


5.2. The main theorem for Γn-strong cardinals. Using similar arguments as in
Theorem 4.1, we can now prove the main theorem of this section.

Theorem 5.11. The following are equivalent for n ≥ 2:
(1) There exists a Σn-strong cardinal.
(2) There exists a Πn–1-strong cardinal.
(3) Σn-PRP.
(4) Πn–1-PRP.
(5) Σn-SWVP.
(6) Πn–1-SWVP.
(7) Σn-WVP.
(8) Πn–1-WVP.

Proof. (1)⇒(3) is given by Proposition 5.10. The equivalence of (3)–(8) is given
by Theorem 3.7. So, we only need to prove (4)⇒(2).

The proof is analogous to the proof of Theorem 4.1, so we shall only indicate the
relevant differences. Theorem 4.1 proves the case n = 2 (see Proposition 5.2). Thus,
we shall assume in the sequel that n > 2.

Let A be the class of all structures

Aα := 〈Vα+1,∈, α, C (n–1) ∩ α, {Rαϕ}ϕ∈Π1〉,

where the constant α is the α-th element of C (n–1), and {Rαϕ}ϕ∈Π1 is the Π1

relational diagram for Vα+1, i.e., if ϕ(x1, ... , xn) is a Π1 formula in the language
of 〈Vα+1,∈, α, C (n–1) ∩ α〉, then

Rαϕ = {〈x1, ... , xn〉 : 〈Vα+1,∈, α, C (n–1) ∩ α〉 |= “ϕ(x1, ... , xn)”} .
Then A is Πn–1-definable without parameters. For X ∈ A if and only if

X = 〈X0, X1, X2, X3, X4〉, where:

(1) X2 belongs to C (n–1).
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(2) X0 = VX2+1.
(3) X1 = ∈ � X0.
(4) X0 satisfies that X3 = C (n–1) ∩ X2.
(5) X4 is the Π1 relational diagram of 〈X0, X1, X2, X3〉.
(6) 〈X0, X1, X2, X3〉 |= “X2 is the X2-th element of C (n–1).”

Note that the class C of ordinals α such that Aα ∈ A is a closed and unbounded
proper class. By Πn–1-PRP there exists a subset S of C such that for every � ∈ C
there is a homomorphism j� :

∏
α∈S Aα → A� . By enlarging S, if necessary, we may

assume that κ := sup(S) ∈ S.
Now fix some � ∈ C greater than κ, of uncountable cofinality, and assume,

towards a contradiction, that no cardinal ≤κ is �-Πn–1-strong. Let j = j� .
From this point, the proof proceeds as in Theorem 4.1. Namely, we define

k : Vκ+1 → V�+1 by

k(X ) = j(〈X ∩ Vα〉α∈S)

and note that k(κ) = � .
For each a ∈ [�]<� , define Ea by

X ∈ Ea iff X ⊆ [κ]|a| and a ∈ k(X ) .

As in Theorem 4.1,Ea is an�1-complete ultrafilter over [κ]|a|. Moreover, E := {Ea :
a ∈ [�]<�} is normal and coherent.

For each a ∈ [�]<� , the ultrapower Ult(V,Ea) is well-founded by
�1-completeness. So, let

ja : V →Ma ∼= Ult(V,Ea),

withMa transitive, be the corresponding ultrapower embedding, and letME be the
direct limit of

〈〈Ma : a ∈ [�]<�〉, 〈iab : a ⊆ b〉〉,
where the iab :Ma →Mb are the usual commuting maps. The corresponding limit
embedding jE : V →ME is elementary. As in Theorem 4.1, ME is closed under
�-sequences, and hence it is well-founded. Moreover, letting 	 :ME → N be the
transitive collapsing isomorphism, and jN : V → N the corresponding elementary
embedding, i.e., jN = 	 ◦ jE , we have thatV� ⊆ N and jN (κ) ≥ � . Since � > κ, this
implies that the critical point of jN is less than or equal to κ. The only additional
argument needed, with respect to the proof of Theorem 4.1, is the following:

Claim 5.12. N |= “� ∈ C (n–1).”

Proof. Since � is a limit point of C (n–1), it suffices to show that if � < � belongs
to C (n–1), then N |= “� ∈ C (n–1).” So, fix some � < � in C (n–1).

Let f : [κ]1 → κ be such that f({x}) = x. It is well known that k{�}([f]E{�}) =
�, where k{�} :M{�} → N is the standard map given by k{�}([f]E{�}) =
	([{�}, [f]E{�} ]) (see [9, Lemma 26.2(a)]).

Let X := {{x} ∈ [κ]1 : x ∈ C (n–1)}. Note that, since being a singleton is a
property expressible by a bounded formula, and C (n–1) ∩ α is a predicate in
the language of every structure Aα , the homomorphism k maps X to the set
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{{x} ∈ [�]1 : x ∈ C (n–1)}. Thus, {�} ∈ k(X ), and therefore X ∈ E{�}. Hence,
M{�} |= “[f] ∈ C (n–1),” and therefore ME |= “[{�}, [f]] ∈ C (n–1),” which yields
N |= “� ∈ C (n–1),” as wanted. 


Thus, by Proposition 5.9, jN witnesses that the critical point of jN is less than or
equal to κ and is �-Πn–1-strong, in contradiction to our choice of � . 


In a similar way we may obtain the following parameterized version of Theorem
5.11. For the proof of (4) implies (2), we need to consider the class of structures

Aα := 〈Vα+1,∈, α, C (n–1) ∩ α, {Rαϕ}ϕ∈Π1 , 〈�〉�<�〉,
where the structure

〈Vα+1,∈, α, C (n–1) ∩ α, {Rαϕ}ϕ∈Π1〉
is as in the proof of Theorem 5.11, and we have a constant � for every � < �.

Theorem 5.13. The following are equivalent for n ≥ 2:
(1) There exists a proper class of Σn-strong cardinals.
(2) There exists a proper class of Πn–1-strong cardinals.
(3) Σn-PRP.
(4) Πn–1-PRP.
(5) Σn-SWVP.
(6) Πn–1-SWVP.
(7) Σn-WVP.
(8) Πn–1-WVP.

Recall that a cardinal κ is Woodin if for every A ⊆ Vκ there is α < κ such that α
is <κ-A-strong, i.e., for every � < κ there is an elementary embedding j : V →M
with crit(j) = α, � < j(α), V� ⊆M , and A ∩ V� = j(A) ∩ V� . (See [9, Theorem
26.14].)

Definition 5.14. OR is Woodin if for every definable (with set parameters)
class A there exists some α which is A-strong, i.e., for every � there is an
elementary embedding j : V →M with crit(j) = α, � < j(α), V� ⊆M , and
A ∩ V� = j(A) ∩ V� .

The statement “OR is Woodin” is first-order expressible as a schema, namely as
“There exists α which is A-strong,” for each definable, with parameters, class A.
Or equivalently, by Proposition 5.9 and the remark that follows it, as the schema
“There exists α which is Πn-strong,” for every n. Let us note that, by Theorem
5.13, “OR is Woodin” is also equivalent to the schema asserting “There exist a
proper class of α which are Πn-strong,” for every n. Thus, Theorem 5.13 yields the
following corollary, first proved by the second author in [13] for arbitrary classes
(not necessarily definable), which gives the exact large-cardinal strength of WVP
and SWVP.

Corollary 5.15. The following are equivalent:
(1) OR is Woodin.
(2) SWVP.
(3) WVP.
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