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JOINT DISTRIBUTION OF DISTANCES IN
LARGE RANDOM REGULAR NETWORKS

JUSTIN SALEZ,∗ University of California, Berkeley

Abstract

We study the array of point-to-point distances in random regular graphs equipped with
exponential edge lengths. We consider the regime where the degree is kept fixed while
the number of vertices tends to ∞. The marginal distribution of an individual entry is
now well understood, thanks to the work of Bhamidi, van der Hofstad and Hooghiemstra
(2010). The purpose of this note is to show that the whole array, suitably recentered,
converges in the weak sense to an explicit infinite random array. Our proof consists in
analyzing the invasion of the network by several mutually exclusive flows emanating
from different sources and propagating simultaneously along the edges.
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1. Introduction

Assigning independent exponential random lengths (�e)e∈E to the edges of a graph G =
(V ,E) induces a natural random metric on the vertex set V , namely,

Di,j = min

{∑
e∈π

�e : π is a path from i to j

}
.

A now classical problem is that of understanding the asymptotic shape of a ball Bi(t) =
{j ∈ V : Di,j ≤ t} as t → ∞, when G is an infinite transitive graph (see, e.g. [12] and [25]).
More recently, growing attention has been devoted to the way in which random edge lengths
affect the inherent geometry of large finite graphs, and in particular their typical distance,
flooding time, and diameter [22], [26], [27], [2], [16], [6], [8], [7], [9], [3]. The present note
is concerned with one specific aspect of the above body of works, namely the remarkable
second-order behaviour established by Bhamidi et al. [8] for the distance between two typical
points in the configuration model. Although their result holds for an arbitrary prescribed degree
distribution with finite variance, we will for simplicity restrict ourselves to the regular case.

Throughout the paper, d ≥ 3 is a fixed integer. For n ≥ 1, such that dn is even, we consider
the random d-regular multigraph on {1, . . . , n} obtained by attaching d half-edges to every
vertex, and pairing these dn half-edges uniformly at random to create edges. The edges are
then assigned independent unit-rate exponential random lengths. As n → ∞, it was shown in
[8] that the distance between two fixed nodes—say 1 and 2—satisfies

D1,2 − log n

d − 2
d−→ W as n → ∞,
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whereW is a nondegenerate real-valued random variable whose distribution has been explicitly
described. Specifically,

W
d= X +X′ + Y, (1.1)

where X,X′, and Y are independent with the following explicit densities over R:

fX(u) = fX′(u) = d − 2

�(d/(d − 2))
e−due−e−(d−2)u

, (1.2)

fY (u) = 2de(d−2)ue−e(d−2)u/2d(d−2). (1.3)

However, two-point marginals do not capture correlations between distances, and it is natural
to look for a slightly more refined description of the relative geometry of the network. This is
precisely the aim of the present note.

1.1. Results

In light of the results obtained on the complete graph [2], [6], a reasonable hope is that the
whole array of re-centered distances converges in distribution to some infinite random array
W = {Wi,j : 1 ≤ i < j < ∞}. Weak convergence of arrays is understood with respect to the
usual product topology, i.e. for each fixed k ≥ 1,

{
Di,j − log n

d − 2
: 1 ≤ i < j ≤ k

}
d−→ {Wi,j : 1 ≤ i < j ≤ k} as n → ∞.

Note that such a limiting random array, if it exists, must be partially exchangeable in the sense
described in Equation (2.2) of the survey paper [1], which discusses a much broader picture of
representing complex random structures via induced substructures on randomly chosen points.
In addition, the marginal distribution of each entry must coincide with (1.1). A simple candidate
would be

Wi,j = Xi +Xj + Yi,j , (1.4)

where {Xi : i ≥ 1} ∪ {Yi,j : 1 ≤ i < j < ∞} is a collection of mutually independent random
variables, with each Xi admitting the density (1.2) on R, and each Yi,j admitting the density
(1.3) on R. Decomposition (1.4) admits the following intuitive interpretation: the random
variable Xi may be thought of as a ‘local cost’ to escape (or enter) the neighborhood of node i,
regardless of the destination (or source), and the random variable Yi,j as a ‘transfer cost’ to
switch from the peripheral neighborhood of i to that of j , as schematized in Figure 1.

Our result is that this remarkably simple metric structure is indeed the correct one.

Theorem 1.1. For thed-regular multigraph generated by the configuration model on {1, . . . , n}
with independent rate-1 exponential edge lengths,

{
Di,j − log n

d − 2
: 1 ≤ i < j ≤ n

}
d−→ W = {Wi,j : 1 ≤ i < j < ∞} as n → ∞,

where W is the partially exchangeable random array described above.

The configuration model was originally introduced by Bollobás [11] as a mechanism to
simplify the analysis of the uniform d-regular simple graph on {1, . . . , n}: with probability
bounded away from 0 as n → ∞, the d-regular multigraph produced by the configuration
model is simple, and conditioning on that event, it is uniformly distributed among all simple
d-regular graphs on {1, . . . , n}. As a result, any event that occurs with high probability under
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Figure 1: The typical relative geometry of a large random network.

the configuration model also does so under the uniform model (see [23] for a generalization
to graphs with an arbitrary prescribed degree sequence). However, this does not directly carry
over to weak convergence results such as Theorem 1.1, for which one needs to check that the
random object under study is asymptotically independent from the presence of loops or multiple
edges (see [24, Lemma 5] for a typical result along these lines). In Section 4 we provide a
direct argument that exploits the independence inherent to the limiting array W. Consequently,
our result applies to the uniform d-regular simple graph as well.

Theorem 1.2. For the uniform d-regular simple graph on {1, . . . , n} with independent
exponential edge lengths,

{
Di,j − log n

d − 2
: 1 ≤ i < j ≤ n

}
d−→ W = {Wi,j : 1 ≤ i < j < ∞} as n → ∞,

where W is the partially exchangeable random array described above.

1.2. Discussion and possible extensions

As already mentioned, the two-point analysis conducted in [8] is by no means restricted to the
regular case, and there is no doubt in the author’s mind that the multipoint refinement established
in the present paper should extend mutatis mutandis to arbitrary degree distributions with finite
variance. However, several technical hurdles arise in the nonregular case, and it would be
pleasant to find a clever way of dealing with them without substantially increasing the length
of the proof.

Also, the assumption that the edge lengths are exponentially distributed may seem somewhat
restrictive, especially from the point of view of modelling real-world networks. In a recent
preprint, Bhamidi et al. [10] managed to generalize the results in [8] to arbitrarily distributed
edge lengths. It would certainly be interesting to establish the joint convergence of the whole
array of point-to-point distances in such a general setting.

1.3. Outline of the proof

Our proof consists in analyzing the invasion of the network by k mutually exclusive flows
emanating from different sources and propagating simultaneously at unit speed along the
edges. Since the edge lengths are independent exponential random variables, this is exactly
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the multitype Richardson process introduced by Häggström and Pemantle [18] as a model for
competing spatial growth. A considerable amount of work has been devoted to understanding
the long-time behaviour of this process on lattices and other fixed infinite graphs [19], [20],
[14], [13], [15], [17], [21]. More recently, a version of the Richardson process was analyzed
on random regular graphs [4]. We note that our concern here is quite different, since we are
interested in the second-order behaviour of the times at which the various species collide. The
process is defined in Section 2, and analyzed on the configuration model in Section 3. The
results are finally transferred to uniform simple regular graphs in Section 4.

2. Competing first passage percolation

We first recall the definition of the multitype Richardson process on an arbitrary multi-
graphG. We then specialize to the situation whereG is generated by the configuration model,
in which case the competition can be coupled with an infinite branching process that will greatly
simplify our asymptotic analysis.

2.1. Competition on a general multigraph

Let G = (V ,E) be a finite multigraph with k distinguished vertices o1, . . . , ok , called the
roots. Consider a continuous-time Markov process that colours vertices with integers {1, . . . , k}
as follows. Initially, all vertices are uncoloured except the roots, whose colours are 1, . . . , k,
respectively. Every edge is equipped with two independent unit-rate exponential clocks, one
for each orientation. A clock begins to tick as soon as its start vertex x gets coloured. When it
rings, the action depends on the state of the end vertex y:

• if y is uncoloured then y gets the same colour as x (invasion),

• if y is already coloured then nothing changes (collision).

Alternatively, one may view this process as describing the invasion of the network by k
mutually exclusive flows emanating from the roots and propagating simultaneously at unit
speed along the edges. For this interpretation to be valid, each edge must be considered as
having a random length equal to the sum of the values shown by its two clocks when the
first of them rings. This choice precisely results in the edge lengths being independent and
exponentially distributed with mean 1, thanks to the memoryless property of the exponential
distribution.

A consequence of this coupling is that the (random, possibly infinite) time τx at which a
given vertex x gets coloured is precisely its distance to the roots (that is, to the closest root),
and that the colour it receives is that of the closest root. Similarly, if one lets τi→j denote the
time at which the first collision from a node with colour i to a node with colour j occurs, then
2(τi→j ∧ τj→i ) is the minimum length of a path from oi to oj passing only through nodes that
are closer to the set {oi, oj } than to the set {o1, . . . , ok} \ {oi, oj }. In particular, almost surely
under this coupling,

Doi ,oj ≤ 2(τi→j ∧ τj→i ) (2.1)

for all 1 ≤ i < j ≤ k, with equality when k = 2.
It should be here noted that the distance Doi ,oj does not depend upon the number and choice

of the other roots, whereas the upper bound 2(τi→j ∧ τj→i ) implicitly does. In particular,
the distribution of the random array {2(τi→j ∧ τj→i ) : 1 ≤ i < j ≤ k} is not consistent as
one increases the number k of roots. However, we will see that it becomes asymptotically
consistent whenG is a large multigraph generated by the configuration model. More precisely,
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the asymptotic joint distribution of all collision times will be determined in Section 3, implying
in particular the following result.

Proposition 2.1. For the competing first passage percolation from k fixed roots on a d-regular
n-vertex multigraph generated by the configuration model,{

2(τi→j ∧ τj→i )− log n

d − 2
: 1 ≤ i < j ≤ k

}
d−→ {Wi,j : 1 ≤ i < j ≤ k} as n → ∞,

where W is the random infinite array defined by (1.4).

From Proposition 2.1 to Theorem 1.1. Combining Proposition 2.1 with inequality (2.1),
we already see that W is a limiting upper bound (in the weak sense) for the random array
D − log n/(d − 2). But, since the equality holds in (2.1) when k = 2, then the single marginals
of D − log n/(d − 2) converge to those of W. These two facts together imply Theorem 1.1, and
we can now focus on the proof of Proposition 2.1. The latter relies on a standard property of
the configuration model, namely that the pairings can be revealed progressively, as we explore
our way through the network.

2.2. Competition on the configuration model

An elementary and well-known (yet crucial) observation about the configuration model is
that the uniform perfect matching on the dn half-edges can be constructed sequentially: at each
step, one selects an arbitrary unpaired half-edge e and pairs it with a uniformly chosen other
unpaired half-edge e′. The distribution of the resulting multigraph does not depend on the rule
for selecting e, and we may exploit this degree of freedom to couple the construction of the
graph with the competition process. Specifically, we equip each half-edge with an independent
exponential clock programmed to start ticking as soon as the associated vertex gets coloured.
Initially, all vertices are uncoloured except the k roots, whose colours are 1, . . . , k. Whenever
the clock of an unpaired half-edge e rings, e is paired to a uniformly chosen remaining half-
edge e′. If the vertex to which e′ was attached is uncoloured then it gets coloured with the same
colour as the endpoint of e (invasion); otherwise, it keeps its own colour (collision).

When n is large, the local structure of the random multigraph around the k roots resembles
that of a forest consisting of k rooted d-regular trees (T1, o1), . . . , (Tk, ok) equipped with
independent exponential edge lengths. This infinite object is of course only an idealized
approximation, since every collision actually produces a transverse edge that violates the forest
structure. In fact, the whole competition process can be directly described as a mechanism
that randomly builds ‘bridges’ between the trees of the idealized forest (T1, o1), . . . , (Tk, ok).
We will now define this bridging process more formally. It turns out that its analysis is more
conveniently performed in a quenched way, i.e. by treating the edge lengths as deterministic.

2.2.1. The bridging process. Consider a forest consisting of k infinite d-regular rooted trees
(T1, o1), . . . , (Tk, ok), equipped with deterministic edge lengths. For each node x, we write τx
for its distance to the roots and [o, x] for the set of vertices along the unique path from the roots
to x. Also, we set Vt = {x : τx < t} and write ∂Vt for the outer boundary of Vt , consisting of all
nodes that do not belong to Vt but whose parent does. We shall make the following assumptions
(which hold almost surely for random independent exponential edge lengths):

(A1) (unique distances) the τx, x /∈ {o1, . . . , ok} are pairwise distinct,

(A2) (exponential growth) |Ti ∩ ∂Vt | ∼ ωie(d−2)t as t → ∞ for some ω1, . . . , ωk > 0,

(A3) (well balancedness) maxx∈Vt |[o, x]| = o(|Vt |) as t → ∞.
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Given a parameter n ≥ k, we add directed edges—called bridges—to this deterministic
forest by applying the following random procedure, which dynamically maintains a certain set
of active nodes and a decreasing counter N ∈ N. Initially, the active nodes are the d × k nodes
in the first generation of the forest, and N = n− k. Then, as long as the set of active nodes is
not empty, the following action is repeated.

• Deactivate the closest active node x, and pick y uniformly at random among the remaining
active nodes plus d ×N tokens.

• If y is a token, activate the children of x and decrease N by 1 (invasion). Otherwise,
deactivate y and build a bridge from x to y (collision).

We write {x → y} for the event that there is a bridge from x to y, and we call τx the height
of the bridge. We also define {x → Tj } = ⋃

y∈Tj {x → y}. For each 1 ≤ i, j ≤ k, we are
interested in the quantity τi→j = min{τx : x ∈ Ti, x → Tj }, which is the height of the closest
bridge from Ti to Tj . More generally, we introduce a random point process N (n)

i→j on R+ that
records the (suitably rescaled) heights of all bridges from Ti to Tj , i.e.

N (n)
i→j =

∑
x∈Ti

1{x→Tj }δψn(τx),

where the scaling function ψn is given by ψn(t) = e2(d−2)t /n.We will establish the following
weak convergence.

Theorem 2.1. (Quenched distribution of the collision times.) If the edge lengths satisfy
assumptions (A1), (A2), and (A3), then the k2 point processes {N (n)

i→j : 1 ≤ i, j ≤ k} converge
jointly in distribution as n → ∞ to k2 independent Poisson point processes with respective
rates {ωiωj/2d(d − 2) : 1 ≤ i, j ≤ k} on R+. In particular, jointly for all 1 ≤ i < j ≤ k,

2(τi→j ∧ τj→i )− log n

d − 2
d−→ 1

d − 2
(log ξi,j − logωi − logωj ) as n → ∞,

where the {ξi,j : 1 ≤ i < j ≤ k} are independent exponential random variables with mean
2d(d − 2).

From Theorem 2.1 to Proposition 2.1. When the edge lengths are independent exponential
random variables, the bridging process is clearly equivalent to the competition process described
above: N is the number of not yet coloured vertices, active nodes represent those half-edges
whose endpoint is coloured, and building a bridge from an active node x to an active node y
corresponds to pairing the associated half-edges. In particular, the exact structure of the
finite multigraph can be obtained by simply deleting the endpoints of every bridge (as well
as all descendants) and placing a transverse edge between their parents. Now, each tree in
the forest realizes an independent continuous-time branching process for which it is classical
(see, e.g. [5]) that the assumptions (A1), (A2), and (A3) hold almost surely, with the random
variables w1, . . . , wk being independent gamma random variables with mean and variance
d/(d − 2). Thus, Theorem 2.1 implies Proposition 2.1, with Yi,j = log ξi,j /(d − 2) and
Xi = (d − 2)−1 logωi−1. We may now focus on the proof of Theorem 2.1.

3. Analysis of the bridging process: proof of Theorem 2.1

At any given time t ≥ 0 during the bridging process, the set of active nodes is included
in ∂Vt . More precisely, a node x ∈ ∂Vt is active if and only if its unique path to the root does
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not contain the head or tail of a bridge. Therefore, the bridging process can be equivalently
described as follows. For each nonroot node x, we first independently generate a random target
Yx uniformly in ∂Vτx \ {x} and a random mark Ux uniformly in [0, 1]. Then we build bridges
by applying the following deterministic rule, sequentially for every nonroot node x in the order
of increasing distance to the roots.

1. Determine the current set F of nodes whose unique path to the roots contains the head
or tail of a bridge.

2. Build a bridge from x to Yx if neither x nor Yx belongs to F , and

Ux ≤ |∂Vτx | − 1

dn+ 2k − 2|Vτx \ F | − 1
.

Strictly speaking, this new description is valid only until one reaches a vertex x for which the
right-hand side of the above inequality is larger than 1. However, any such vertex must satisfy
|Vτx | > n and, hence,ψn(τx) → ∞ as n → ∞, by our assumption (A2). Thus, bridges starting
from such remote nodes will not affect the convergence stated in Theorem 2.1, and we can now
safely analyze this new version.

Let us first observe that {x → y} ⊆ {x ⇀ y}, where, for any x, y ∈ V ,

{x ⇀ y} := {Yx = y} ∩
{
Ux ≤ |∂Vτx | − 1

dn+ 2k − 2|Vτx | − 1

}
.

The condition x ⇀ y can be viewed as obtained from x → y by setting F = ∅ in step 1 above.
The advantage of this approximation is that it suppresses the dependencies between bridges.
This makes the corresponding point processes N (n)

i⇀j much easier to analyze than N (n)
i→j .

Lemma 3.1. Theorem 2.1 holds if we consider N (n)
i⇀j instead of N (n)

i→j .

Proof. Since the events {x ⇀ y} are independent as x varies, it is enough, by the standard
Poisson approximation theorem, to fix 1 ≤ i, j ≤ k and 0 ≤ s < t and to verify that the
following two conditions hold:

max{x∈Ti : s≤ψn(τx)<t}
P(x ⇀ Tj ) → 0 as n → ∞, (3.1)

∑
{x∈Ti : s≤ψn(τx)<t}

P(x ⇀ Tj ) → ωiωj (t − s)

2d(d − 2)
as n → ∞. (3.2)

By construction we have

P(x ⇀ Tj ) = fn(τx) with fn(h) = |∂Vh ∩ Tj | − 1{i=j}
dn+ 2k − 2|Vh| − 1

.

Note that h 
→ fn(h) is nondecreasing and, therefore, s ≤ ψn(τx) < t implies that

(fn ◦ ψ−1
n )(s) ≤ P(x ⇀ Tj ) ≤ (fn ◦ ψ−1

n )(t).

SinceTj is d-regular, we have |∂Vh∩Tj | = (d−2)|Vh∩Tj |+2 for anyh > 0. Using assumption
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(A2), we obtain the following asymptotics:

√
n(fn ◦ ψ−1

n )(s) → ωj
√
s

d
as n → ∞,

√
n(fn ◦ ψ−1

n )(t) → ωj
√
t

d
as n → ∞,

1√
n

|{x ∈ Ti : s ≤ ψn(τx) < t}| → ωi(
√
t − √

s)

d − 2
as n → ∞.

Thus, condition (3.1) is guaranteed, as well as the following inequalities:

lim inf
n→∞

∑
{x∈Ti : s≤ψn(τx)<t}

P(x ⇀ Tj ) ≥ ωiωj

d(d − 2)

√
s(

√
t − √

s),

lim sup
n→∞

∑
{x∈Ti : s≤ψn(τx)<t}

P(x ⇀ Tj ) ≤ ωiωj

d(d − 2)

√
t(

√
t − √

s).

When t is sufficiently close to s,
√
s(

√
t − √

s) ≈ √
t(

√
t − √

s) ≈ (t − s)/2. Thus, condition
(3.2) follows by subdividing [s, t) into M small intervals, adding up the inequalities obtained
on each of them, and finally letting M → ∞.

To prove Theorem 2.1, it now simply remains to show that our upper bound N (n)
i⇀j is

asymptotically indistinguishable from the true process N (n)
i→j .

Lemma 3.2. For any 1 ≤ i, j ≤ k and t > 0,

N (n)
i⇀j [0, t)− N (n)

i→j [0, t)
P−→ 0 as n → ∞.

Proof. Set Xn = {x ∈ V : ψn(τx) < t} and X̄n = Xn ∪ ∂Xn. We want to show that the
set of pairs (x, y) ∈ Xn × X̄n satisfying {x ⇀ y} coincides with high probability (as n → ∞)
with the set of pairs (x, y) ∈ Xn × X̄n satisfying {x → y}. By construction, there are only
two possibilities for those sets to differ.

The first possibility is that, for some (x, y) ∈ Xn × X̄n, {x ⇀ y} occurs but one of the
two branches [o, x], [o, y] already contains the head or tail of a bridge, thereby violating the
requirement x /∈ F , y /∈ F . In particular, {u ⇀ v} must occur for some u ∈ [o, x) ∪ [o, y),
v ∈ X̄n or some u ∈ Xn, v ∈ [o, x] ∪ [o, y]. Assumptions (A2) and (A3) guarantee that this
is asymptotically unlikely, by a simple union bound: the number of choices for (x, y, u, v) is
bounded above by

4 ×
(

max
x∈X̄n

|[o, x]|
)

× |X̄n|3 = o(n2),

and, for each such choice, the probability of joint occurrence {x ⇀ y} ∩ {u ⇀ v} is (by
independence) at most

(
max

(x,y)∈Xn×X̄n

Pn(x ⇀ y)
)2 =

(
1

dn+ 2k − 2|Xn| − 1

)2

= �

(
1

n2

)
.

The second possibility is that, for some x ∈ Xn, the uniformly distributed mark Ux ∈ [0, 1]
falls between the real threshold and its approximation, i.e.

|∂Vτx | − 1

dn+ 2k − 2|Vτx \ F | − 1
< Ux ≤ |∂Vτx | − 1

dn+ 2k − 2|Vτx | − 1
.
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Again, this is highly unlikely since the difference between these thresholds is at most

2|X̄n|2
(dn+ 2k − 2|Xn| − 1)2

= �

(
1

n

)
,

while there are only �(
√
n) nodes in Xn by assumption (A2).

4. From the configuration model to the uniform simple model

In this last section we transfer the result obtained for the configuration model (Theorem 1.1)
to the uniform simple graph model (Theorem 1.2). Write simple for the event that the random
d-regular multigraph G generated by the configuration model on {1, . . . , n} is simple. Recall
from [11] (see also [23] for a generalization to graphs with an arbitrary prescribed degree
sequence) that, conditionally on simple, G is a uniform simple d-regular graph, and also that

P(simple) → � := e(1−d2)/4 as n → ∞. (4.1)

Fix k ≥ 2 and a continuous bounded function ψ : R
k(k−1)/2 → R. Writing 
n = {Di,j −

log n/(d − 2) : 1 ≤ i < j ≤ k} and 
∗ = {Wi,j : 1 ≤ i < j ≤ k}, we want to show that

E[ψ(
n) | simple] → µ := E[ψ(
∗)] as n → ∞. (4.2)

In order to do so, let us fix an integer m ≥ 1 and introduce, for each 1 ≤ � ≤ m, the ‘shifted
replica’


�n :=
{
Di,j − log n

d − 2
: (�− 1)k + 1 ≤ i < j ≤ �k

}
.

Since km is fixed, we may use our Theorem 1.1 and the independence of disjoint diagonal
blocks in the limiting random array W to deduce that

{
�n : 1 ≤ � ≤ m} d−→ {
�∗ : 1 ≤ � ≤ m} as n → ∞, (4.3)

where {
�∗ : 1 ≤ � ≤ m} are independent and identically distributed copies of 
∗. Now, for
each n ≥ km, the sequence {
�n : 1 ≤ � ≤ m} is exchangeable and, thus,

|E[ψ(
n) | simple] − µ| ≤ 1

P(simple)
E

[∣∣∣∣ 1

m

m∑
�=1

ψ(
�n)− µ

∣∣∣∣
]
.

Letting n → ∞ and using (4.1) and (4.3), we obtain

lim sup
n→∞

|E[ψ(
n) | simple] − µ| ≤ 1

�
E

[∣∣∣∣ 1

m

m∑
�=1

ψ(
�∗)− µ

∣∣∣∣
]
.

Since this holds for each m ≥ 1 and since the {
�∗ : 1 ≤ � ≤ m} are independent copies of 
∗,
we may finally let m → ∞ to obtain (4.2).
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