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Abstract. This paper is concerned with minimal foliations; these are foliations whose
leaves are extremals of a prescribed variational problem, as for example foliations
consisting of minimal surfaces. Such a minimal foliation is called stable if for any
small perturbation of the variational problem there exists a minimal foliation
conjugate under a smooth diffeomorphism to the original foliation. In this paper
the stability of special foliations of codimension 1 on a higher-dimensional torus
is established. This result requires small divisor assumptions similar to those encoun-
tered in dynamical systems. This theorem can be viewed as a generalization of the
perturbation theory of invariant tori for Hamiltonian systems to elliptic partial
differential equations for which one obtains quasi-periodic solutions.

1. Introduction

(a) In this paper we consider foliations of codimension 1 on a higher-dimensional
torus Td whose leaves are extremals of a variational problem. A special case is
given by a foliation whose leaves are minimal surfaces with respect to a given metric.
While one usually considers compact minimal surfaces, we will be led to foliations
with non-compact leaves. We will call such a foliation stable if under small perturba-
tions of the variational problem (resp. of the metric) there exists a new foliation
which is conjugate to the given one under a diffeomorphism close to the identity.
The purpose of this paper is to establish the stability of such foliations under certain
hypotheses. In particular, these assumptions require each leaf to be dense on the
torus. From an analytic point of view our result leads to the existence of quasi-
periodic solutions of non-linear partial differential equations generalizing such
statements for Hamiltonian systems.

Before formulating the result, we illustrate it with the example of foliations of
minimal surfaces on a flat torus. We consider the torus T</=Rd/Zd, denote the
coordinates on Ud by x,, x2,..., xd and the flat metric by

dsl= I dx\.

Then for any vector a =(a , , a 2 , . . . , ad)^0 we obtain a foliation of minimal
surfaces by the parallel hypersurfaces

d

£ = const.

Not every such foliation will be stable under perturbations of the metric. We have
to require that these leaves are dense on the torus. This is equivalent to the condition
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that the normal line {A<5}, A eR does not meet any lattice point of 7Ld except the
origin. Actually, we have to impose a stronger restriction; namely, that the distance
of this normal line from a lattice point j e Zd\(0) is 'not too small'. We assume that
there exist positive constants y, T for which

Z i^U-a^f^ylijl) (1.1)
/

for all j = (j'j ,j2, •• • ,jd)e 2rf\(0) holds. We shall show that under this Diophantine
condition (1.1) the above foliation is indeed stable under smooth perturbations of
the metric. On the other hand, under larger perturbations of the metric generally
no such minimal foliations exist, as was shown by Bangert [1]. As the perturbation
increases, the foliations lose their smoothness and disintegrate to 'laminations' [16].
Also, if the condition (1.1) is violated, such a foliation can disintegrate under
arbitrarily small perturbations; in other words, one may not have stability if the
condition (1.1) is violated. For d = 2 the necessity of (1.1) for stability follows from
[13].

(b) To describe the set-up more generally, we will describe the leaves of the foliation
in non-parametric form. With n = d-l we set x = (xlt x2,... ,xn) and write the
hypersurface of codimension 1 in the form

xn+l = u(x), d = n + l. (1.2)

In the following we will write x = (x , , . . . , xn+l) for (n + l)-vectors. The variational
problem will be written in the form

F(x, u, ux) dx, (1.3)

where dx = dx, dx2... dxn and F = F(x, p) is a smooth function of period 1 in the
first d = n +1 variables, while p varies in an open subset of R". Thus

where O is an open domain in r"+ 1xR° with the property that ir({l)= T"+l, n
being the projection ir(x, p) = x. We will require that F satisfies the Legendre
condition

X Fp^(x,p)M^*k\2 (1.4)
*\/A = I

for all £eR", (x, p)e£l. The positive constant A could be normalized to be I.
The functions u representing the leaves of the foliation are required to satisfy the

Euler equation

Z -r- (FPSx, u, ux)) = Fu(x, u, ux), (1.5)
i/=i dxv

which is a non-linear elliptic differential equation. The solutions of (1.5) will be
called extremals.

To define a minimal foliation on a torus, we consider its lift on Rn+l, taking
account of the Zn+l-action.
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Definition. For a given variational problem (1.3) and 0<r<oo we define a
Z"+1-invariant Cr-minimal foliation as a function u e C(R" xR, R), taking (x, A)-»
M = w(x, A) such that:

(i) For each fixed A eIR the function u(x, A) is an extremal of (1.5).
(ii) For fixed xeR" the mapping is a Cr-homeomorphism of R onto R with

u(x, \)< u(x, X.') for A < A', and dw/dA > 0 if r > l .
(iii) The foliation given by the leaves xn+1 = u(x, A), A e R"+1, is invariant under

the Z"+1-action.

We will be mainly concerned with C^-foliations, corresponding to the case r = oo.
However, we note that even for F e C00 a minimal foliation may not be differentiable
(see [17]).

The extremals representing the leaves of such a minimal foliation are special
solutions of the Euler equations. They minimize the functional (1.3) taken over any
large ball, compared to any other admissible functions with the same boundary
values. This follows from the fact that the leaves of such a foliation can be viewed
as a 'field of extremals' in the sense of calculus of variations. It is well known that
every extremal which can be embedded into such a field of extremals is minimal
provided (1.4) holds. In other words, a field of extremals is always a field of minimals.
Moreover, the leaves of a minimal foliation obviously have no self-intersections on
the torus T"+\ In other words, for the leaves of a minimal foliation (in non-
parametric form) only minimal solutions of (1.5) without self-intersections qualify.

These minimal solutions of (1.5) without self-intersections have been studied in
[16], [17] and [2] under additional growth condition of F. From the theory developed
there it follows that to a given Zn+1-invariant minimal foliation one can associate
a unique 'normal vector' d = ( a , , . . . , a n , - l ) such that for every leaf

sup|«(x) - (a, x)| < oo, a = ( a , , . . . , an).
X

Moreover, there exists a function U = U(x, 6)

U(x,6)-eeCr(Td), dsU(x,0)>0, i f r > l ,

such that the leaves of the foliation take the form

xn+l=U(x,(a,x) + p), P = const. (1.6)

In the following we will therefore consider only smooth foliations of this form.
Geometrically one can interpret the representation (1.6) as follows. The foliation

(1.6) is conjugate to the foliation of parallel hypersurfaces

xn+1 = (a,x) + j3, 0 = const,

under the Cr-homeomorphism

which induces a Cr-homeomorphism on the torus. In particular, two smooth foli-
ations belonging to the same vector a are conjugate.
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Thus a minimal foliation (1.6) is characterized by a vector a e W and a function
U = U(x) which has to satisfy the conditions

(i) fia(F, U)=l DvFpSx, U, DU)-Fu(x, U,DU) = 0, Dv = dXv + a^Xn+,,

(ii) (/-v,eC'(r+1), (1.7)

(iii) dx,i+1U>0.

Equation (1.7) (i) is no longer elliptic but degenerate. It is the Euler-Lagrange
equation to the degenerate variational problem

F(x,U,DU)dx, (1.8)

which depends implicitly on a. An important feature of this functional is its
invariance under the translation xn+1-»xn+1 +const.

The quest for minimal foliations of (1.3) is therefore reduced to solving the partial
differential equation (1.7). The condition (ii) can be viewed as a boundary condition.
The stability problem reduces to the perturbation problem for equation (1.7). Assume
that for a given a e W and a given integrand F* e C°°(fl) a smooth solution U = U*
of (1.7),

*, U*) = 0, U*-xn+leCx(T"+1), dXn+iU*>0,

is given such that (x, U*, DU*) belongs to il, the domain of definition of F*. If F
is in the Cr-topology close to F*, we ask for a solution of (1.7) for the same a and
with \U — U*\c' sufficiently small in order that dXn+1£/>0 and (x, U, DU) remains
in (I. Then the solution U represents via (1.6) a foliation belonging to the same
vector a and therefore is conjugate to the unperturbed foliation.

(c) To formulate our main result, we impose a Diophantine condition on the vector
a. We require that there exist positive constants T, y such that

£ (cJn+l+j,)2^y(l+j2n + l)'T (1.9)
v=\

holds for all ]=(j\,... ,jn,jn+l)eZn+\(0). This condition looks similar to (1.1);
in fact, both conditions are for an+I = —1 and | a |<c equivalent with different
constants y (see [17]). For T > \/n and for almost all a there exists a constant y
such that (1.9) holds (see e.g. [22]). For simplicity we will choose T as an integer.

The following theorem asserts the existence of a solution of (1.7) if an approximate
solution U* is known. For such an approximate solution U* we will require that
with some positive integer a and some positive constant M

U*(x)-xn+1eC"(Tn+l),

\U*-xn+l\c-^M, dXn+lU*>M-\ (1.10)

(x,U*(x),DU*(x))en forallx£T"+1

holds and that \ii(F, U*)\c* is small.

THEOREM 1. Let F e C°°(Cl) and aeR" satisfying (1.9) be given. We will determine
positive integers a = a(n,r), b = b(n,r) with the following property. For any e > 0,
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M > 0 there exists S depending on n, r, y, e, M and upper bounds for \a\ and \F\c
hMi)

such that, ifU* satisfies (1.10) and

\Z(F,U*)\c<8, (1.11)

then there exists an exact solution U of (1.7) with

\U-U*y<e, t/*-xn+1eC°°(ri+1). (1.12)
The above formulation shows that it is not necessary to assume that U* is the

solution of an equation £(F*, U*) = 0 for some F*, but it is only required that U*
is an 'approximate solution' of (1.7). Moreover, it is not necessary to assume that
U* is in C°°. We point out also that the smallness condition (1.11) depends only
on a finite number of derivatives of F, U*, and still we can guarantee that U e C°°.
With a uniqueness theorem (see § 5) this can be used to establish a regularity theorem
for (1.7) by taking for U* the solution itself.

We postpone specifying the values of a, b to a later theorem, where the correspond-
ing conditions are expressed in terms of Sobolev norms. As far as the differentiability
class is concerned our results are very crude. To obtain optimal results would require
a refined choice of norms which would become rather involved. It is also not
necessary to assume that F e C°°(£l) and it would suffice to require F e C'(Cl) for
some large /.

(d) As typical application we mention:

Example 1.1. For the integrand

F(x,p)=\\p\2 + \V(x), VeC°°(T"+1),

the Euler equation becomes the periodic partial differential equation

Au = \Vu(x, u).

Then theorem 1 guarantees the existence of quasi-periodic solutions

u(x)=U(x,(a,x) + p)

for any a satisfying (1.9) and |A| sufficiently small. Indeed, as an approximate
solution we choose U*(x) = xn+l, which is the exact solution of (1.7) for A =0, so
that

can be made small by choice of A. One has to keep in mind that in the above
formulation of the smallness condition, | A | < A*, A* depends on an upper bound
for \a\. However, in this special case one finds quasi-periodic solutions also for
large \a\.

Example 1.2. We mention that our proof below also gives quasi-periodic solutions
of the type (1.6) without any smallness condition on the potential. We assume again
that

F(x,p) = \\p\2+V(x), (1.13)
where Ve C^T""1"1). Then for any a satisfying (1.9) and \a\ sufficiently large there
exists a solution U of (1.7).

The point is that for integrands of the type (1.13) the constant S can be chosen
independently of an upper bound on \a\ since DU does not enter in the non-linearity
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V= V(x, U). The proof of this extension of theorem 1 will not be carried out but
is straightforward.

To obtain an approximate solution for 2(F, t /*)~0 in this case, we replace
equation (1.7) by

\a\2dl^U*=Vu(X).
We may without change of the Euler equation add a function of x alone to V and
achieve the result V = dXn+lZ(x), ZeC°°(T"+1). Then

t/* = xn+l + |a|"2Z(x)

clearly satisfies

Extended to this situation, the theorem yields a solution U with

|l/-x«+1|c
J=O(|ar).

Example 1.3. Foliations whose leaves are minimal hypersurfaces with respect to a
metric g = (g^(x)) e C°° near a flat metric g*. In this case we set

I g"»{x)pvPA (detg)1/2, />„+, = - 1 ,
",M = 1 /

For a flat metric g* independent of x we can choose U* = xn+1 for any a. Thus our
theorem guarantees a smooth minimal foliation for any a satisfying (1.9) and a
C°°-metric sufficiently close to the flat metric g*. Since the condition (1.9), for
|a |< const, is equivalent with (1.1), this proves the stability statement given at the
beginning of the Introduction, say for |a |< 1. But by change of coordinates we can
always reduce ourselves to this situation.

We point out that this integrand does not have quadratic growth for \p\ -» oo which
is relevant for the global theory [16]. However, for our theorem no growth conditions
are required, since F has to be known only in a domain

(l=T"+lxBr(a),

where Br(a) is the ball in R" of radius r > 0 about a, so that

(x,U*,DU*) = (x,a)

belongs to ft.
(e) There is an extensive literature on the theory of foliations and we wish to relate
our result to the problems developed there. One of the central questions has been
to decide when a foliation is 'taut'; that is, for which foliations a Riemannian metric
can be found such that all leaves of the foliations are minimal. Basic contributions
to this problem are due to Rummler [20] and Sullivan [23], in particular for the
case of compact foliations. These authors also derived a criterion by which a metric
given on the leaves of a foliation can be extended to the ambient space in such a
way that the leaves are minimal submanifolds. Haefliger [5] cast their criterion into
a different form which involves the transverse holonomy group only, which in our
case is a finitely generated group of commuting circle diffeomorphisms. In fact, for
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the codimension 1 foliation given by parallel hypersurfaces on Td at the beginning
of this paper the criterion assures that any C°°-metric given on the leaves can be
extended to a metric on Td such that the leaves are minimal hypersurfaces precisely
if the Diophantine condition (1.1) holds. In [6] other circle actions have also been
studied.

In those studies the foliation is prescribed and a metric is sought such that the
leaves are minimal with respect to this metric. In this paper, however, we are
concerned with the converse question: to determine a minimal foliation in a certain
conjugacy class for a given metric. In contrast to those studies which deal with
foliations of arbitrary codimension q and arbitrary manifolds M, we restrict ourselves
to a very special situation, namely q = \, M = Td, and, moreover, consider only the
perturbation problem for small perturbations of the metric. From an analytic point
of view our problem is a non-linear one, while the above extension problem is a
linear one. But it should be pointed out that there is a close connection between
these problems since the solvability of the linearized equation of our problem is
closely related to the extension problem of a metric given on the leaves. One can
expect that a codimension 1 minimal foliation on a compact manifold M is stable
whenever it is has the extension property that any metric on the leaves admits an
extension to M such that the leaves are minimal. For the case of the torus Td this
is indeed the case; we hope to return to this question in the future.

It is unfortunate that the term 'stability of a foliation' may lead to confusion since
it was used by Rummler [20] in a different sense, where it refers, however, only to
compact foliations. We were guided by the concepts of structural stability for
dynamical systems, i.e. stability of a minimal foliation means here that under a
small perturbation of the metric one has conservation of a foliation in the same
equivalence class.

(f) Theorem 1 can be seen in the context of the previous paper [16], where generalized
solutions of the degenerate elliptic partial differential equation were constructed
under certain quadratic growth restrictions on the function F. These generalized
solutions are usually discontinuous; Bangert [1] constructed explicit examples
illustrating this discontinuous behaviour. In this context the above result can be
viewed as a regularity theorem for these solutions under additional assumptions,
namely the Diophantine condition (1.9) and the smallness condition (1.11). For a
survey of this circle of problems and its connections with Hamiltonian mechanics,
in particular the theory of Aubry and Mather, we refer to [3], [17] and [12].

This theorem is a genuine generalization of the perturbation theory of invariant
tori for Hamiltonian systems to elliptic partial differential equations. Indeed, for
n = 1 it agrees with the theorem of preservation of invariant tori on a fixed energy
surface for systems with two degrees of freedom, the foliation corresponding to the
two-dimensional torus , „. , , . . . . „ , . ,

(x, 6) -> (x, U(x, d), DU(x, 0))
in the three-dimensional phase space.

We want to point out that the traditional proof of these results is based on
transformation theory, i.e. on the use of canonical transformations. Since for partial
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differential equations canonical transformations are essentially given by extension
of point transformations [19], one is forced to avoid this technique. This is indeed
possible and the following proof, which depends on studying the Euler equations
in the configuration space (instead of the Hamiltonian equations in the phase space),
is in a way considerably simpler than the earlier proofs, at least if applied to ordinary
differential equations. The basic ideas of applying rapid convergent iteration tech-
niques is, however, the same. For Hamiltonian systems of more than two degrees
of freedom one encounters an additional difficulty due to the non-commutativity
of matrices. Recently, Salamon and Zehnder [21] found an elegant way to circumvent
this difficulty and thus to obtain a simple proof of the theorem on invariant tori for
Hamiltonian systems of n degrees of freedom.

For partial differential equations one also reduces the problem to solving linear
but degenerate differential equations. The difficulty one encounters in solving such
equations involving small denominators can be overcome with a trick employed by
S. M. Kozlov in his study of a linear eigenvalue problem [10]. It allows the differential
equations to be put into a form in which they contain only the differential operators
D,, D2,... ,Dn of (1.7), leading to rather simple a priori L2-estimates. In short,
after these preparations one can establish the proof of theorem 1 by a familiar
iteration technique by operating with Sobolev norms including negative norms,
rather than with Holder norms. Then we follow the approach developed in [15]
even though it yields rather crude results. In [15] Sobolev estimates are also employed
and the necessary estimates for the norms presented. However, one can see from
our exposition that the result could be derived from an abstract implicit function
theorem, as it was derived by Zehnder [24].

In the next section we will describe a regularized version of (1.7) and formulate
a generalization of theorem 1 to that case. In § 3 we derive the estimates for the
linearized equation. For the reader familiar with these methods it will be clear how
to proceed from the results of § 3. For completeness we carry out the details of the
proofs in § 4.

2. The regularized variational problem

(a) The variational problem (1.8) is, as mentioned before, degenerate and it is
convenient to replace it by a non-degenerate problem

G(x,U,DU)dx, (2.1)

where

x,p 2va0 x pn+l x,p , ( 2 2 )

If v>0 and a o (* ) - 1, then the Legendre condition

is satisfied. The variational problem can be used for the constructions of minimals
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U = U(x, v) which depend on v. Our goal is to establish estimates for the solutions
of the Euler equations

vDn+l(a0(x, U)Dn+]U)-(r>/2)ao,XfiJDn+,U)2 + Xa(F, U) = 0 (2.4)

which are independent of j>e(0,1]. Although this regularization is not really
necessary for the following proof, it is convenient and, moreover, gives a stronger
result. But mainly this approach reduces the problem to establishing ^-independent
estimates and separates it from the existence question.

We point out that the variational problem (2.1) is also invariant under the
translation xn+1 -*• xn+1 + const, so that as well as U(x), U(x + Aen+1) is also a solution
of (2.4). On the other hand, up to this translation the solution of (2.4) with the
condition that U-xn+l has period 1 in all variables is unique:

THEOREM 2. If Uu U2 are two solutions of (2.4) with v>0, satisfying

U, (x ) -x n + 1 €C 2 ( r + 1 ) , i = l,2,

then there exists a A * € R with

Proof. This result follows from the maximum principle for elliptic equations. Since

l/,(x + Aen+1)= l/,(x) + A if A integer,

it is clear that the continuous function

/(A)= min {

i *satisfies /(+<») = +°o, /(-°o) = -°o and therefore we can find a A* with /(A*) = 0.
The function

takes on the value 0 and is the solution of an elliptic differential equation obtained
from (2.4) by taking the difference for U= [/,(x + \*en+]) and U= U2(x). Since
Z(x)>0 takes on its minimum 0 in the interior, it follows that Z = 0.

(b) Transformation property. As indicated in § 1, a function V, V(x)-xn+le
C\Tn+i) with <9Xri+, V>0, gives rise to a diffeomorphism

x-»(x, V(x))

of the torus T"+l onto itself. We use this remark to transform U= U(x) into
V(x, U(x)) (rather than transforming the independent variables). Then the func-
tional J"a is mapped into another one with the integrand G°<j>v , where

tf>v: (x,xn+l,p,pn+1)^(x, V(x), Vx+VXn+xp, Vx.+1pB+1) (2.5)

is the prolonged mapping. These mappings clearly form a group with

0w»0v = *w.v, W*V=W(x,V(x)).

The unit element corresponds to the function V(x) = *„+,.
The Euler-Lagrange expression for Jv

o will be denoted by

Za(G, U) = " f D^G^ix, U, DU) - Gu(x, U, DU)

= pDn+t(a0(x, U)Dn+lU)-(v/2)a0.Xii+,(Dn+iU)2 + ila(F, U). (2.6)
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Then the transformation (2.5) maps the Euler-Lagrange expression

fia(G, U) + Za(G, V* (/)Kn+, = i ( G o ^ V ) u).
This follows readily by considering £(G, U) as the first variation of (2.1). This
transformation preserves the class of integrands (2.2) taking G = G(x, p) into

G(x, p) = G°4>v = ivao(x)p2
n+l + F°<t>v,

a0(x) = a0(x,V(x))V2
Xii+l, (2.7)

This transformation can be used to replace the approximate solution U* of
2O(G, U*)~0 by U* = xn+l by setting V= U*. This reduction is not essential for
the following proof, but the above transformation property will be helpful for the
understanding of the construction in the next section, in particular for the identity
(3.2).

(c) The fact that functional J"a is invariant under the translation xn+l -* xn+l + e has
the consequence that for any U with U-xn+l& Cl(T"+x) one has the identity

L (2.8)

This follows by differentiation of J"a with respect to e. It can also be derived from
the identity

&a(G,U)UXn+l= Y. D^G^ix, U,DU)UXn+l)-Dn+lG(x, U, DU),

which shows that the right-hand side is a divergence expression. Therefore one
obtains (2.8) by integration, using the periodicity condition U-xn+le Cl(,Tn+x).

(d) To formulate the generalized version of theorem 1 for the regularized variational
problem, we make use of Sobolev spaces Hs(Td). For a smooth function <\> on the
torus Td =Ud/~Zd (d = n + l) we define the Sobolev norm ||*||r with the help of the
Fourier representation

by
A d

for any real r. The closure of C°°( Td) under this norm defines the Sobolev space
Hr(Td), where also negative norms, as they were considered by P. D. Lax, are
admitted. With Ho we denote the subspace of those <j>e Hr for which

JTd

We will use the standard results about these spaces, in particular that for s > t we
have Hs a H' and

for all

Moreover, the embedding HS-*H' is compact.
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Single bars will be reserved for uniform norms, i.e. for integers r > 0 we abbreviate

|*|r = |0|c ' for <f> e Cr(Td). (2.9)
Then one has for <f>e Cr(Td)

In the opposite direction one has for any r and t>d/2

|<£|r<cr,,||<£|U for<£€Hr+', (2.10)

which is the simplest Sobolev inequality.

(e) To formulate our result about the solution of (2.4), we consider a function
G = G(x,p, v) of the form (2.2), where F e C°°(ft) satisfies the Legendre condition
(1.4) with A = 1. Moreover, we assume

aoeC~(Tn+i), a o > l ,

so that G satisfies the Legendre condition

"f G W ^ A > ^ + 1 + i & (2.11)

for v>0.
Our aim is to solve the Euler equation for (2.1). We will consider the function

G fixed and introduce the functional (2.6):

E(U) = Za(G, U)=vDn+1{a0(x, U)Dn+lU)-^a»,Xn+tU
2

Xn+i

+ £ * W * > U, DU) - Fu(x, U, DU). (2.12)

Similarly, as in theorem 1, we assume that U* is an approximate solution of
E(U) = 0 for a fixed *>s(0,1] in the following sense. With some positive integer
a = a(T, n)> d/2+1 and some constant M we require that

U*(x)-xn+leH°(T"+1),

| |£/*-xn +, | |o<M, dx,i+lU*>M-\ (2.13)

(x, U*(x), DU*(x)) e Q. forall JC€T"+1,

and that for some fixed pe(0,1] the expression ||£(t/*)||T is small.

THEOREM 3. Let Fe C°°(ft), aoe C°°(rn+1), ao> 1, and assume that aeW satisfies
(1.9). Let T be an integer >^(n +1) and set

a=9r+10, fc = 17r+19.

Then, given e > 0, M > 0, there exists a positive number 8 depending on n, r, y, e, M
and upper bounds for \a\ and |F|c»(n), |aolc6 with the property: if for some ve(0,1]
there exists an approximate solution satisfying (2.13) and

\\E(U*)\\T<8, (2.14)

then there exists an exact solution U of £( L/) = 0 with U — xn+l € C°°,

| | l / - t /* | | 5 T + 6 < e , | |L/-xn + 1 | | r<Cr (2.15)

for all integers r > l , where the constants Cr depend on F, a0 but not on v.
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For v>0 the equation £(L/) = 0 is an elliptic partial differential equation for
which even a global existence theory is available. The point of this theorem is that
the estimates (2.14), (2.15) are independent of the choice of v and therefore give
rise to a solution of the degenerate equation for v = 0. In fact, in this way we derive
theorem 1 as a consequence of theorem 3.

Let U* be an approximate solution in the sense of (1.10), (1.11). Then the
conditions (2.13) are satisfied and

\\E(U*)\\T^8+Vc

with a constant c depending on M, since T + 2 < a. Thus we have

||£(t/*)||T<25 forO<^<c- 'S,

i.e. an approximate solution with 8 replaced by 25. By theorem 3 there exists an
exact solution U = U(x, v) of E(U) = 0 for all re(0, c~'S) satisfying (2.15). By
theorem 2 these solutions are unique up to a phase shift which can be normalized
by the condition »

| (U(x)-xn+l)dx = 0.Jr,,+,
For c-»0we obtain a solution of the equation i*(F, U) = 0 with U - xn+l e C°°( 7n + 1).
Moreover, because 5r + 6 > d / 2 + 2, we conclude from (2.15) and (2.10) that \U-
U*\C*<CE. We can assume that e is chosen so small that (x, U(x), DU(x))eil.
Thus, replacing ce by e, we see that theorem 1 is a consequence of theorem 3.

(f) Before turning to the proof of theorem 3 in the next two sections, we collect
some standard estimates for Sobolev norms, which are needed below.

The Sobolev norm || <f> || r denned above is a logarithmically convex function of r.
For each <f>e Hm and r<s<m one has

ll</>||Ar+(i-A),^||^||A||</>||'"A for A e (0,1). (2.16)

Sometimes it is preferable to write this non-linear inequality in an equivalent linear
form. Since for any positive numbers e, u, v one has

(2.16) implies

H0lUr+(i-A)s— £~(l~A)/A||<£l|r + e||</>||s (2.17)

for all e > 0 . Actually, this relation is up to a constant equivalent to (2.16). If we
set t — Ar + ( 1 - A ) s e (r, s), this inequality takes the form

||<£||, ̂  e <'~r)/<*~')||<^||r + e| |0| | s , r<t<s

for all e > 0, <j> e Hs.
For the non-linear operations we need the following estimates. If <}>, i}i e H' n C°,

where r is a positive integer, then there exists a constant cr such that

holds. This inequality can be derived from the estimates

(2.19)
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for all derivatives d" of order |p |^r. This is a special case of an inequality by
Gagliardo and Nirenberg (see [4] and [18]).

Combining (2.18) with (2.10), we obtain for t>d/2

and for r = t>d/2

||4>*||,<c,||tf.||,||*||,, <f>,<l>eH'. (2.20)

Therefore for t> d/2 the space H' is a Banach algebra, sometimes referred to as
a Schauder ring.

Incidentally, applying (2.20) to powers <f>p with p = 2J, we conclude that

showing that for t > d/2

which gives us back (2.10).

For negative norms one has for <j> e H~\ ij/e H' with t> d/2

HWlUrsclMUWI,. (2.21)
This follows from the characterization of the negative norm

11411-,= sup (<f>,n,

where (,) denotes the extension of the inner product in H°. Indeed, by (2.20) we
have for all £ e H '

| ( 0 * . ()\ = \{<t>, *£) |=£ | | 4 l l - , | | * f II. ̂  UW-A||*||,UII..
proving (2.21).

Finally, we need an estimate for the composition of functions. Assume that

feCr(Tdx£l), 0eC°(T",n)nHr(T") ,

where ft is bounded. Then the composition/(x, <f>(x)) belong to Hr and for integers
r > 0 one has

| | /(x,0)| | r£cr | / |C '(l + ||0||r), (2.22)

where the constant cr depends on r and the diameter of ft. Notice that it is implicit
that |*|0 is bounded by the diameter of ft. This inequality follows from (2.19) (see
[15]).

For t > d/2, <t>,ipeH' and f=f{x, y) e C"+l we have the inequality

| | / (x,4)-/(x,*) | | fsC / | / | c .+ .( l + ||0||, + | |*| | l ) | |0-0| | , . (2.23)

This follows from
f d f1

/(x, * ) - / (* ,* )= -r-/(*,0 + A(*-4))«/A= /v(x,
Jo d\ Jo

and from (2.20):

||/U*)

Using (2.22), we obtain (2.23).

T< sup
Ae[0,l]
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We also need the simple approximation properties of <f> by trigonometrical
polynomials. For N > 0 and <f>e[JrH

r we set

SN<I>= I $je2™ax)enHr=Hx.

Then one has obviously

= max(s-r,0),

forr<5

for all <j) e Hx(Td) = Ccc{Td).

3. H'-estimates for the linearized equation

(a) The proof of theorem 3 is based on an iterative construction of the solution
providing at the same time ^-independent estimates for them. Since the problem
has been cast in the form of an implicit function theorem, the work of Zehnder [24]
is most appropriate for such a construction. We also refer to the elegant presentations
of Hormander ([7], [8]) based on Nash's approach. However, these papers do not
seem to be directly applicable since the estimates for the linearized equations are
somewhat weaker than required there. We also refer to a formulation (without
proof) of an implicit function theorem, based on Hormander's work, in Iwasaki's
paper [9], in which only an approximate solution of the linearized equation is
postulated. In the following we adapt the method developed in [15], which consists
in applying alternatingly Newton's method and a smoothing process.

All these approaches are based on finding an approximate solution of the linear
equation

E'(U) V+E(U) = 0, (3.1)

where E'(U) is the Frechet derivative of the functional E(U) defined in (2.12). We
want to point out that it is not necessary and not possible to find such an approximate
solution for the equation E'( U) V+g = 0 for an arbitrary function g. This is due to
the fact that, if U is a solution of E(U) = 0, then differentiation with respect to
*„+, yields V= UXn+t as a solution of the homogeneous equation

E'(U)V = 0.

Therefore the solvability of the inhomogeneous equation requires a compatibility
condition for g.

To describe this compatibility condition, we introduce, following Kozlov [10],
the function W= V- U~*+l, using that UXn+i > 0. Then by this transformation V= C/Xn+1

is transformed into W=\.
This situation is expressed by the following identity:

U'{E'(U)(U'W)-Wdx^E(U)}= "l D.(U'2GP^D,W) = -L(W), (3.2)

where U' = dXii+1 U and the differential operator L is defined by this formula. We
will verify it presently by a direct calculation; it follows also from the transformation
formula (2.7) of the last section. If E(U) = 0, one sees that (3.2) represents a

https://doi.org/10.1017/S0143385700009457 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700009457


Minimal foliations on a torus 265

transformation of the differential operator E'(U) into the operator L, possessing
the constant as null solution; however, the identity is valid generally, i.e. even if
E{U) does not vanish.

To prove (3.2), we write

where

Setting V = U'

c

W,

E'(U)V= I DM(,

E'(U)U'= "£ D^o

U = <W*, U, DU), i

we find

a.KDkV)-bV,

i^D,U')-bU'

-Guu.

M,A

Note that this expression agrees with

(U')-1lDlt(allXU'2DxW),

which proves (3.2).
In trying to find an approximate solution for (3.1) we can, with the help of this

formula and by dropping the quadratically small term Wdx +|£, replace equation
(3.1) by

LW=U'E(U), V=U'W, U' = dXn+lU. (3.3)

This inhomogeneous equation automatically satisfies the compatibility condition.
Indeed, by (2.8) we have

IIT"

which allows us to solve (3.3) for a function W of period 1 in all variables.
For the following it will be important to derive ^-independent estimates for the

solutions of the equation

L<t> = g, (3.4)
where

(3.5)
' ,A = 1

In our application we will use (with a change of notation)

a^(x)=U'2Gp^Px, an+l=U'2a0, (3.6)

but for the moment we consider the coefficients as known functions in C^iT1)
which satisfy

n n
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Such an estimate with a factor, say, | follows from (2.11) if U'2>\. In the following
we will ignore such a factor, e.g. by replacing G by 2G.

(b) For v>0 the operator L of (3.5) is elliptic and maps the Sobolev space

\<f>€Hr

I j
Hr

0=\<t>eHr

one-to-one onto Hr
0~

2 if r > 2. In order to obtain estimates which are independent
of v, we need the following:

LEMMA 3.1. For <f>eCcc(Td) we have

M ) . (3.8)

Moreover, if a satisfies (1.9), one was

I ||DM0||?>r||^||2_T+r if (0, l) = 0 (3.9)
M = l

/or a// rea/ r; /iere (,) denotes the inner product

4IT"

The proof of (3.8) is a straightforward consequence of the definitions of (3.5)
and (3.7). The inequality (3.9) follows directly by the Fourier representation of <j>
from (1.9). This inequality reflects the loss of T derivatives due to the 'small divisors';
actually, according to (1.9), one has only a loss of T derivatives in the xn+rdirections.
By replacing j2

n+l by \j |2, we do not take account of this fact, which would have to
be considered if one wanted to get better differentiability results.

COROLLARY 3.2. (of lemma 3.1). For v>0 the mapping

L: Ho-* HO

has a bounded inverse. Moreover, ifg e H^ = (~)r H
r
0, then the unique solution </> e Hi

of L<j> = g belongs to H^.

Indeed, the first statement follows from (3.8) since for <f>e Hl
0 the left-hand side

dominates \\<f>\\i, hence

From this the existence and boundedness of L"1 follows; the second statement is
also standard since L is an elliptic operator for v>Q with smooth coefficients.
However, the norm ||L~'|| is dependent on v. To obtain ^-independent estimates,
we show that L~x when viewed as a mapping from HJ, to HQT has a norm bounded
by y~\

COROLLARY 3.3. For 0< v< 1 and <f> e H% one has the inequality

y||*||_Tss||L*||T. (3.10)

This follows from (3.9) for r = 0 and (3.8):
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(c) We need similar estimates for | |0 | |_T + r for large positive r. For this purpose it
is important to control the constants in their dependence on the coefficients a^A.
We assume that A > 1 is chosen so that for a given positive integer r

£ IK A | | r + | | a n + 1 | | r f iA (3.11)

In addition, we require that with a constant c0

n

I \a^\c' + \an+i\c'SCo. (3.12)

LEMMA 3.4. Under the assumptions (3.11), (3.12) one has for all <f> e H% the estimate

£ | |D> | | 2 + v\\dXn+t<t>\\2
r<cA(L<t>, <f>)r + A2(i \D^\l+v\dx^<t>\i)\, (3.13)

where cr is a constant depending on c0 and r but not on v or A, and ( , ) r denotes the

inner product in Hr
0.

The proof of (3.13) uses the representation

and requires the estimate of commutators of differential operators of order 2r and
L. We forego the calculation, since this has been carried out, though less explicitly,
by Kozlov [10]. It is essential for the following to control the dependence on the
coefficients of L via the constant A.

(d) We put the estimate (3.13) into more explicit form. Using (2.10) and (2.17), we
have for r> t>(n + l)/2

i ID^+Ha*,,^!^ £ ||D^||?+HK+,4>II?

Setting e = (2crA
2)~l, we can rewrite equation (3.13) as

Finally, using (3.8), we can replace the last term on the right by A2r/ir~n{L(f>, </>)0
and obtain for r > / > ( n + l ) /2

£ | | D ^ ||] + ,

By (3.9) the left-hand side is larger than y||<^)||2T+r and, since

we find
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Finally, with (3.10) one has

Therefore we have for all <f> e H™, v e (0,1) and any positive integer r the inequalities

U\\.T^y-'\\L<f>\\T, | |^| |_T+r-cr{| |L^| |T+r + Ar/<f-') | |L^||T}) (3.14)

where cr is a constant depending on % c0 but not on v or A.

LEMMA 3.5. Let L be the operator given by (3.5) and assume that (3.7), (3.11), (3.12)
hold. Then for v e (0,1) and g e H™( Td) the equation

L<f> = g

has a unique solution <j> e H™{ Td) which satisfies the v-independent estimates

(e) With the help of this lemma we can prove theorem 3 by constructing a solution
of £ ( ( / ) = 0 from an approximate solution in a ^-independent neighbourhood. The
basic step is to construct from an approximate solution UeC00, with | |£(t/)| |T

small, an improved approximate solution U+V, where V is defined as follows. Let
W e H™( Td) be the unique solution of

LW=UXn+lE(U) (3.15)

with L as defined in (3.2), and set

V=SN(t4,,+1U0, (3.16)

where SN is the truncation described at the end of § 2 with an appropriately chosen
large N.

To see that U+ V is an improved approximation, one has to show that E(U+ V)
is smaller than E(U) in appropriate norms. This will be done in detail in § 4, but
we give the underlying reasoning. The expression

E(U+V)-E(U)-E'(U)V

is quadratically small in V, hence in E(U), and we have to show that

is small. For this purpose we use the identity (3.2) and (3.15) to get

E'{U)(UXi^ W)= W(dXn+,E)- UZlxLW= W(dXn+iE)-E(U)

so that

E(U) + E'(U)V= W(dXn+lE) + E'(U)(I-SN)(Ux,,+lW). (3.17)

The first term on the right-hand side depends quadratically on E since W can be
estimated linearly by E. The second term will be made small by the choice of N.

The smoothing operator SN is needed because of the loss of differentiability in
this process. If /, T are integers, / sufficiently large, then

E:H'-T^HlT-2 (3.18)

since £ is a differential operator of order 2. Next we consider L"1 as an operator
from HT

0
+r to HQ T+r since it is bounded independently of v e (0,1) (see lemma 3.5);

hence with r=l — 2T — 2

Ll UX^,E(U): HlT^H'-q-r, (3.19)
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where q = 2T + 2 represents the loss of derivatives from U to (UXn+1 W). By inserting
SN and denning V by (3.16), we recover that Ve H°°(Td) but have to estimate the
error. This will be done in the next section.

4. Proof of theorem 3

(a) For the proof of theorem 3 we use the construction and the estimates of the
previous section. First we replace the given approximation U* with £/*-xn+,e
H°(Td) by the smooth function U° denned by

t/°-xn + 1 = SN(t/*-xn + 1)£H0 O(rd) , (4.1)

where N will be chosen appropriately. Then we construct a sequence Us (s> 1) of
improved approximate solutions by the recursion formula

U'+1-U' = SNi((dx.+lU')W), W=L7\dXn+lU*)E(Us), (4.2)

where Ns will be chosen later (see (4.7)) and Ls is the differential operator of (3.2)
for U = Us. In the following we will show that

(x, Us(x), DUs(x)) e ft for all x e Td, (4.3)

so that F(x, Us, DUS) is defined and the sequence Us converges to an exact solution
U of E( U) = 0 for which the claimed ^-independent estimates hold and for which
U-xn+leC°°(Td).

For the first step we recall that

(x, U*(x), DU*(x)) e ft for all x e Td

and that ft was assumed to be open. Therefore there exists a number R > 0 such
that the ball of radius R

BR(x, U*(x), DU*(x)) € ft for all x e Td.

To prove (4.3), it suffices to check that

\U*-US\O+\DU*-DUS\O<R.

Similarly, to verify that dXn+1 U
s > (2M)~\ it suffices to check that |dXn+1( U* - Us)\ <

(2M)~\ In other words, with a positive number 0< -q<min ((2M)"1, c~*R) it is
sufficient to verify

\U*-U\c><r) for U = U*. (4.4)

We will also require 7)Se, where e is the given number in theorem 3.

(b) To facilitate the estimates, we fix the norms. For simplicity we require T to be
an integer with

r > ( n + l)/2 (4.5)

so that || ||T dominates the uniform norm. The quantity | |£(t/s)| |T will be estimated
by es > 0, a sequence tending to zero rapidly. Because of the form of the estimates
(3.14) for Ls, we measure E = E(U) in the scale of the norm of HT+r (r = 0,1,...),
but Us+l - Us in the norms of H~T+r. The loss of differentiability is given by
<? = 2T + 2; namely, for r>0, E takes H-T+r+q into //-T+r+<?-2 = HT+r

 s i n c e E j s a

differential operator of second order, and L~x, considered as operator from Hr+r'-*
H~r+r, has according to (3.14) a bound independent of v. Thus from Us -x n + 1 e

https://doi.org/10.1017/S0143385700009457 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700009457


270 / Moser

jj-r+r+q w e o b t a j n ^.independent bounds only for || t / s + 1- t / s | |_T + r , illustrating

the loss of q derivatives.
For the following we fix the sequence e, by

(although we could take any number K € (1,2)), and reserve the freedom to choose
eo>0 sufficiently small. We set

m=4q, q = 2r + 2 (4.6)

and

Ns = c-ls;l{m, N = Ciee0'
/m (4.7)

with a large constant c* > 1. Finally we fix an integer k with

k = 2m + l, l=k + q. (4.8)

In the following we will denote by c positive constants which depend on y, T, r, M
and \G\C" but not on v or e0.

(c) LEMMA 4.1. Let U* be a function satisfying the conditions (2.13) with a =
-T+m + q = 9T+lO. Then there exists a constant c^X) such that the function U°,
defined by (4.1), (4.7), has, for sufficiently small e0, the following properties:

(i) U°-xn+,eCx(T"),

(ii) |t/0-(/*|c.<c|H/°
(iii) o

(iv)

Here p > 0 and c is an appropriate constant.

LEMMA 4.2. Let U" be the sequence defined by the recursion (4.2) and by (4.1).
Assume further that ||£'([/0)||T< e0. Then Us remains in the domain of definition of
G and satisfies the estimates

(a) | | ( / s - [ / s - 1 | | _ T <c ' e s _ 1 ,

(b) \\US-Us-X\\.T+I<e:\ \ = k/m-l,

(c) \\E(Us)\\r<es

for all s > 1 with some constant c', provided e0 is chosen small enough.

From lemma 4.1 and lemma 4.2 we will conclude readily that Us converges in
Hm to the desired solution U of E(U) = 0. Actually, this sequence converges in
Hr for any r, as will be shown at the end of this section, but first we give the proofs
of these two lemmas.

(d) Proof of lemma 4.12. Clearly, by definition of SN, U°-xn+, e C°°(Td) and by
(2.24)

| | t / ° - t / *Lsc 1 N T - " | | t / * -x n + 1 | | a <c 2 N- ( T + 2 ) = O(eJ)
T+2)/m)^0

and (i), (ii) are proven with p = (r + 2)/m and for e0 sufficiently small.
To verify (iv), we estimate

\\U0-xn+^T+l^c3N
l^-a\\U*-xn+l\\a^c4N

k-m^c4cl-'"B-0" (4.9)
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since I — r — a = l~q — m = k — m; here we used (2.24). By (2.22) we obtain

Since r + k + 2 = -T + q + k = -T + l, we conclude
||£(l/0)| |T+fc<c6eo\

Note that b—T+k+2= 17r+19, where b is the constant of theorem 3.
To verify (iii), we show first that

||E(L/0)-E(L/*)||T<c7||l/°-t/*||T+2 (4.10)

and then use (2.24) to get with (4.7)

| | t /o-t/*| |T + 2=| |[/o-l/*| |_T + <,<c8N-m| |L7*-xn + 1 | | a<c8c^e oM.

Hence if we choose c* so that c£ > 2c7c8M, then (iii) follows.
To verify (4.10), we use (2.23), where/ involves a first or second derivative of G

in the Euler-Lagrange expression E, <j> represents (U°-xn+l, DU°, D2U°), and t/>
represents (U*-xn+i, DU*, D2U*). From (ii) we conclude that || l /°-xn + 1 | |m<
M + 3T/S c; hence, since m> T + 2,

so that (2.23) yields

\\E(U0)-E(U*)\\r^c\G\c^\\U0- U *\\
T+2.

This proves (4.10) with a constant depending on |G|C'+a, T + 3<b. This completes
the proof of lemma 4.1.

(e) The proof of lemma 4.2 will be carried out by induction. We begin with s = 0,
when (a), (b) are meaningless and (c) is satisfied by assumption. We assume now
that (a), (b), (c) hold for all 0 , 1 , . . . , s and prove it for s replaced by s + l.

Step 1. To show that U = Us remains in the domain of definition, i.e. satisfies (4.4),
we conclude from (a), (b) and (2.16) that for 0< r< /

lli/ i-i/ '-1ll_T+r=£(c'e i_I)
l- r / ' e:Ar / 'se i_ie7(A+i>'/1, (4.ii)

where we have absorbed the constant c' by choosing e0, hence es, small enough. If
we take r = 3q, it follows from k = l-q<l, A +1 = k/m that

. r k r r 3o 3 ,
/ m I m m 4

i.e.

| | l / ' - t / ' - ' IU^,fief , p>0, (4.12')

and hence by (2.10)

\US-Us-X\2q^ce"s

since -r + 3q-T = 2q + 2>2q. Therefore

\us-u*\2q^\u°-u*\2q+ i |ir-ir-'|2( )<J+c £ e p s 3 + & g < ^

(4.12")

if e0 is small enough. Since 2q > 2, it is clear that (4.4) is satisfied for U = U\
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From (b) and (4.9) we find

||[/s-xn+1|U+,<||l/°-xn+1||_T+,+ t \\ir-U"-l\\-T+l<ceo*+ £

which with (2.22) implies

We combine this inequality with (c). Introducing

h, = el'm

and using the interpolation estimates (2.16), we get

\\E(V)\\T+r^ce,/h: forO<r<fc. (4.13)

For later purposes we show that

\\Us-xn+}\\k+^ch7(k-*\ (4.14)

This follows from (4.11) for r= k+l + r<l, where we use that

r k
(A + 1 ) - < A + 1 = — ,

/ m

hence
5

II IT* — TT°\\ < V o _-*/>"< _-*/">+3/4^ t-(*-T)

since OT>|T. TO obtain the desired estimate (4.14), we need an appraisal of
||[/°-xn+1||fc+1 which is obtained by interpolating between (4.9) and the assumed
estimate (2.13):

With A =(k-m)/m this leads to
\\IT°--r II < / . _ - A ( * + l - a ) / ( k - m ) _ . - ( f c + l - a ) , , . - ( ( C - T )

IIL' — xn+i||fc+iS ce0 — cn0 s cn0

since O > T + 1 . Combining this with the previous estimate yields indeed (4.14).

Step 2. Next we verify (a), (b) for s replaced by s +1 using (4.2). We claim that W
satisfies

\\W\\_r+r^ces/h: forO<r<fc. (4.15)

It suffices to check this for r = 0 and r = k. From the inequality (3.14) we find

since by (4.12") the first factor is bounded. By the second inequality of (3.14) for
t = r, r= k we find

where A is a bound for the coefficients (see (3.11)). Using (2.22) and (4.14), we can
estimate A by

A<c\G\k+2(l + \\ Us-xn+l\\k+l)^ch;ik-r\

Therefore we obtain with (4.13)

https://doi.org/10.1017/S0143385700009457 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700009457


Minimal foliations on a torus 273

Here we have used that for U = Us

||aXi,+1t/||T+t = | | i+a x . + 1 ( t / -x 1 1 + I ) | | T + t £ i + | | [ / -x l l + 1 | | T + t + 1 <c/ fcJ .

This proves (4.15). Similarly we find

UdXn+1U
s)W\\.r+k^ces/h

k
s, (4.16)

and therefore from (4.2) and (2.24)

since Ns < /ij+i by (4.7). The right-hand side can be estimated by
- \ _ K-k

Es+l ~ Es + l"s+l

since

^k = hrk<K+T" = ̂ -q, k>2m = m+4q.

This establishes (b). To prove (a), we use (2.21) for t = r to get

where we have used (4.15) with r = 0.

Step 3. It remains to prove (c) for 5 +1 in place of s. We write V = Us+I - Us and
use that

Now

Since

4m=4q=q,
2-K

we have

V"s+les) = es + l>

and, by taking c^ large enough, we obtain

\\E(Us+t)-E(Us)-E'(Us)V\\T^c\\V\\2
r+2<^+l.

To estimate the remaining terms, we use the identity (3.17) to get

The first term is estimated using (4.13) for r= 1 and (4.15) for r = 2r:

\\WBx^E(U')\\T*\\W\\T\\E(U')\\T+l*ce
2,/h2

s
r+l.

This term is dominated by e2jh2
s
q<es+, since 2q>2r+l, and therefore can be

made less than | e s + 1 . For the last term we find
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where we have used (4.16). Since by (4.6) and (4.8)

K

k> m-\ q = m+4q = .

or (k-m)(K - 1 ) > Kq, we find that

as

and we can make the last term< es+1/4 so that

which completes the induction.
(f) To prove theorem 3, we assume e0 is chosen so small that the lemmas 4.1 and
4.2 hold. If we set 8 = eo/2 in theorem 3, it follows from (2.14) and lemma 4.1(iii)
that

so that the assumption of lemma 4.2 holds. Thus we obtain a sequence Us which
by (4.12') converges in H~T+3qc C2 to an element U. Since E{US)^E(U), we find
from lemma 4.2(c) that E{ U) = 0, i.e. U is the desired solution. Finally, from (4.12')
and lemma 4.1(ii) we find

\U-U*\c'SC\\U-U*\\_r+3q<V<e,

where e is the preassigned number of theorem 3. This proves (2.15). The smallness
condition on eo = 2S depends on |G|c

h, where b = r+k + 2, i.e. b = r + 2m+3 =
17T+19.

(g) Thus the proof of theorem 3 is established except for the smoothness proof and
the estimates of the higher derivatives. Here the point is that we do not want
to impose further smallness restrictions on ||£(L/*)||T but find estimates for
| |t/-xn+1| |_T+r which are independent of ve(0,1). We make use of the above
sequence Us and show that it converges in H~T+r for any r. Here we follow the
approach given in [24].

For the following we fix e0 and use the sequence es = ef," ', K =j, as before and
define Ns, N by (4.7). With C we denote constants depending on the previous
constants, on F and r but not on v or s. However, k and l = k + q will have a
different meaning from before, and k will be chosen so large that

k 16 4
* " S l 5 < K = J - (4-1?)

LEMMA 4.3. If Vs is the sequence constructed above and 1= k + q, where k satisfies
(4.17), then there exists a constant C such that

| | i/s-xn+1|U+,<ce;4/3.
Here C depends on I but not on v e (0,1) or s.
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Before proving this lemma, we will show that it implies that U = lim^oc Us belongs
to C°° by proving that Us converges in H~T+r for any r. We set l = 3r and pick r
so large that k = 3r-q satisfies (4.17). Then

On the other hand, by lemma 4.2(a) we have

\\U'+1-U'\\

and therefore by interpolation

which proves that Vs converges in H~T+r to U and that
oo

| |7/_7/°| | < C' T Fp — C"

Since also
| | 7 / 0 _ Y II < Nr~m~q\\II*— Y II < r"" C4 181
|| *-' ^ n + l | | - T + r — J " II*-7 * n + l | | a — *- > ^ • * 8 /

we conclude that

| |£/-xB+1||_r+r<Cr

with some constant C = Cr and t 7 - x n + i e C ° ° . This proves (2.15) and theorem 3
completely.

It remains to prove lemma 4.3. We set

Ms = | | l / s -x n + 1 | | _ T + ,

and derive a recursive estimate from (4.2):

Ms+I< Ms + \\Us+i - Us\\-r+l< Ms + N«s\\(dXn+lU
s)W\\-T+k.

Applying the basic inequality (3.14) for 4> = W and LW = (dXn+l U
S)E(US), we obtain

Now we use that

K+1[/s||T+^i + l|t/s-xn

A< C(1 + \\US-xn+l|U+2

so that with o- as defined in (4.17)

M,+] < Ms + CNq
s{(l + Ms

We may assume that M S > 1 and can simplify this inequality to

MS + Mf e s ) . (4.19)

The statement of lemma 4.3 is obtained by analysing this inequality. Using e, ̂  1,
we obtain

If A is any number >q/(K — o-), then there exists a C = CA such that
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Since q/(K-<r)^*£q = \im, the exponent \/m>u, and if we choose Ae(f|m, m)
we have

Ms<Ce;U = Ce:*>\ (4.20)

5. A uniqueness theorem

(a) In this section we establish a local uniqueness property for the solutions of
E(U) = 0 also for J> = 0. For v>0 this followed from the elliptic character of the
equations and their invariance under the translation xn+, -* xn+1 + A (see theorem 2
in § 2).

In the following we assume that the solution U satisfies U -xn + 1 e f{'T+2"+' and

||(/-xn+1| |_T+2,+1<M, ax.+1l/>M-1 (5.1)

for some positive constant M, where again T > j( n +1) and q = 2 r + 2. Then we have
the following local uniqueness result:

THEOREM 4. Let a satisfy (1.9). Then there exists a positive constant e* depending
on M and the bounds for \a\, |F|C2, y, r with the property, if U satisfies (5.1), and if
the functions U and Ue f{~T+2q are solutions of

E(U) = 0, E(U) = O foTv = 0

and satisfy

||tf-I/||_T+2,<e*, ;
then \

U(x,xn+l + X)=U(x) I

for some AeR. j

This theorem has several implications for the solution U = U(x, v) of the equation \
Ev(U) = 0. Since also U(x + \en+1, v) is a solution, it is convenient to normalize
the solution by requiring that

[L/-xn+1] = 0. (5.2)

If U = U(x, v) is the solution constructed in theorem 3 for v e [0, v*] and normalized
by (5.2), then it is unique if the number e in (2.15) is chosen small enough. For
v > 0 this follows from theorem 2, and for v = 0 from theorem 4. From the uniqueness
and boundedness of

U = U(x, v) € H~r+q

we conclude that U is a continuous function of v, i.e.

Finally, we obtain a regularity result. If the approximate solution U* of theorem
1 is actually a solution of

= 0 forf = 0,

then we conclude from the uniqueness theorem that the solution U with U -xn+l e
C°° constructed in theorem 3 agrees, for to = 0, with U*. Hence we see that a solution
satisfying (2.13) is necessarily in C°°.
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It would be desirable and more natural to derive this regularity result, as well as
the ^-independent estimates of theorem 3, directly from the basic estimates (3.10)
and (3.13) applied to the solutions U — U(x, v) without the detour constructing the
approximations Us. However, we did not succeed in carrying this out.

(b) The proof of theorem 4 is based on the following simple lemma:

LEMMA 5.1. Let r<s<t be real numbers and let cf> e H' and

UW^cUWi U\\,<a
for some constant c. If also t > t* = 2s - r, a<a* = c~\ then <f>=0. The constants t*,
a* are optimal.

Proof. Since by assumption s s \ ( t + r), it follows for <j> ^ 0 from (2.16) that

hence

U\\r<ac\\<f>\\r,

which gives a contradiction for ac ̂  1.
One sees that the parameters t*, a* are optimal by taking d = l, and with a large

positive integer j ,

<t, = c-l(l+j2)-'V2e27"Jx.

If either t < t* or t = t*, a > c~\ this function satisfies both hypotheses, but <£ 5* 0.

Proof of theorem 4. We set

V(x,\)=U(x + \en+l)-U(x), W(x,\) = (dXn+lU
1

and determine A = A * so that the mean value

JT
= I W{x,\)dx

vanishes for A = A*. To show the existence of A* and to find an estimate for it, we
note that

J f = [(**„, U)-\dx,,+l U{x + \en+im > C71 > 0

with some constant c, depending on M. Indeed, since

0< dx,,+1 L/< 1 +1| 1 / - xn+1 ||T+1 < c2

is bounded by such a constant and if e* is small enough, we conclude from the
assumption of theorem 4 that

hence dXn+l0>(2M)'1 and

This ensures the existence of a unique zero A* of / satisfying
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From this we derive for V= V(x, A*) the estimate

||V||_T+2,<c3e*. (5.3)

This follows from

The first term is <c'e* by the assumption and by the observation that

where we have used (2.22) with f(<f>) = </>~1. The second term can with (5.1) be
estimated by

IP* II
dx , U(x + \en+1) dX.\\

Uo II
c

1 • "fi-t-i • . . . . . ,

\-T+2q

which gives (5.3).
Thus the function W— W(x, A*) has mean value zero, and we have to show that

V= V(x, A*), or equivalently W, vanishes if e* is chosen small enough. For this
purpose we use that

\\E'(U)V\\T = \\E(U+V)-E(U)-E'(U)V\\T^c4\\V\\2
T+2

since E(U) = 0 and E(U+V) = 0. On the other hand, the identity (3.2) gives

U'E'(U)V=-LW, where U' = dXn+lU,

so that

c^LW\\T^\\{UrlLW\\T=\\E'(U)V\\T^c4\\V\\2
T+2.

Finally, the basic estimate (3.14), which holds also for ^ = 0, yields

||V||_T<c6||W||_T<c7||LVy||T<c4c5C7||V||2
T+2,

where we have used that the mean value of W is zero. Now we can apply lemma
5.1 with r = —T,s = T + 2 = —T + q, t = —T + 2qto conclude that V = 0if only || V||_T+2(J

is small enough, which proves theorem 4.

6. The quasi-periodic case

(a) We conclude with a simple generalization of the above results to integrands
F = F(x, u, p) which depend only quasi-periodically on x but still periodically on
M. We illustrate the statement with the example

Au-\f(x,u), A= £ a2 (6.1)

where f=f(x, u) is given in terms of a periodic function 4> = <i>(^,..., £K, u) by

f(x, u) = * ( ( w , , x), (w2, x),..., (u)K, x), u),

<DeC°°(7 K + l ) , (o>k,x)= I o>k.xu, k = l,2,...,K.
M = >

This means that / is quasi-periodic in xM with a frequency basis

o>kfl(k=l,2,...,K)

https://doi.org/10.1017/S0143385700009457 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700009457


Minimal foliations on a torus 279

and of period 1 in u. We seek solutions u = u(x) of (6.1) for which e2mu is
quasi-periodic in x and for which u-(a,x) is bounded for some given a eW. We
will simply call such solutions quasi-periodic even though they grow linearly.

More specifically, we require that these solutions u admit a representation in
terms of a function U = [/(#), 1= (f,, £ , , . . . , &+,) € UK+1, so that

U(£)-£K + 1eCx(TK+l), d(K+lU>0, (6.2)

in the form

«(x)=[ /° f t (x) , (6.3)

where ft:Rn-»RK+l is a linear mapping given by

k=l,2,.-.,K + l, (6.4)

so that €K+I — (a, x)- Thus

is quasi-periodic in the sense required.
We claim that such quasi-periodic solutions of (6.1) also exist if |A| is sufficiently

small, provided ft satisfies the Diophantine condition

n / K + \ \2 / K + l \ - T

I I <okjk) >y I d) (6.5)

for all integers ji,... ,JK+\, which are not all zero. This is a direct generalization
of example 1 in § 1, which corresponds to

K = n, (ok^ = 8kli for k = 1, 2 , . . . , K = n.

(b) We formulate this statement for a general integrand F = F{x, u, p). We assume
that <D:IR"+1->IRK+1 is a linear map given by

and that

<I>eCOD(TK+1xR"), £ *PJ,M(£p)A1A(l> I A2, (6.6)

for all real A,, A 2 , . . . , An. The integrand F = F(x, p) is given by

F(x, p) = <t>(a>(x), p).

For a given vector aeU" we seek quasi-periodic solutions u of the Euler equation
n

I 5XMFPM(X, u, ux) - Fu(x, u,ux) = 0,

where we require that u = u(x) can be represented in the form (6.3), ft being defined
by (6.4).
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This gives rise to the differential equation

E(U)= i DM*p(£t;,Dt/)-<*>„(£ U,DU) = 0, DM = " f «^a& (6.7)

for t/ with the periodicity and monotonicity condition (6.2).
For this equation we have a straightforward generalization of theorem 1. If fl

satisfies the Diophantine condition (6.5), and ifU* satisfies (6.2) and is an approximate
solution of (6.7), i.e. if \\E(U*)\\T<8, then for a sufficiently small S there exists an
exact solution Uof E(U) = 0 satisfying (6.2).

The quantitative formulation is precisely the same as given in theorem 1 and we
do not repeat it. Also the proof is the same, and one may think that equation (6.7)
can be viewed as a special case of the Euler equation of § 1 with n replaced by K.
For K> n this is actually not the case since the Legendre condition (6.6) is expressed
in terms of the n variables peW and not in terms of the K variables nk, where

K + l

Pu.= £ «V7Tk.
k = \

In other words, the corresponding variational problem on the torus TK+1 is degener-
ate. For this reason a global theory (as developed in [16]) is not avaiable for the
quasi-periodic case. Even for n = 1 an analogue of Mather's theory for generalized
quasi-periodic solutions of the ordinary differential equations

d2x/dt2 = \f(t,x), f(t,x) = et>(<olt,a>2t,...,a>Kt,x), </> e C°O(TK+1),
(6.8)

is not available.
However, the local theory of this paper is not so sensitive. It provides quasi-

periodic solutions of (6.8) with a frequency basis w,, «2, • • •, <°K and a if |A| is
sufficiently small and if

\o>d\ + <»2J2 + - • • + <o,JK + ajK+1\> y'\j\~T

for all j e ZK + l\(0). This is a special case of a result in [14] which is here generalized
to partial differential equations.
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