MAXIMAL STRICTLY PARTIAL SPREADS

GARY L. EBERT

1. Introduction. Let $\Sigma=P G(3, q)$ denote 3 -dimensional projective space over $G F(q)$. A partial spread of Σ is a collection W of pairwise skew lines in Σ. W is said to be maximal if it is not properly contained in any other partial spread. If every point of Σ is contained in some line of W, then W is called a spread. Since every spread of $P G(3, q)$ consists of $q^{2}+1$ lines, the deficiency of a partial spread W is defined to be the number $d=q^{2}+1-|W|$. A maximal partial spread of Σ which is not a spread is called a maximal strictly partial spread (msp spread) of Σ.

In [3] Bruen showed that if W is an msp spread of $P G(3, q)$, then $q+$ $\sqrt{q}+1 \leqq|W| \leqq q^{2}-\sqrt{q}$. In the same paper Bruen also showed that if $q>2$, there exist msp spreads W of $P G(3, q)$ with $|W|=q^{2}-q+1$ and hence deficiency $d=q$. This shows that the upper bound for $|W|$ is reasonably good for large q, but very little is known about the existence of msp spreads with relatively "large" deficiency. The purpose of this paper is to construct such examples. In doing this a rather interesting connection between geometry and number theory is pointed out.

When $q \equiv 1(4)$, msp spreads in $P G(3, q)$ are constructed with deficiency $d \geqq(2 / 3)(q+1)\left[1 / 2\left(\sqrt{1+4 \log _{2}(q)}-1\right)\right]$. Moreover, if q is an odd prime raised to an even power, it is shown that Bruen's lower bound for $|W|$ is also reasonably good. Thanks are given to Marshall Hall, Jr. for bringing reference [8] to the author's attention. The author would also like to thank the referee for his many helpful suggestions.
2. The construction technique. The reader is referred to [2] for a complete explanation of spreads and reguli. In [3] Bruen constructed an msp spread W of $P G(3, q)$ with deficiency $d=q$ in the following way. Letting R_{1} and R_{2} denote two reguli of a regular spread S_{0} that have precisely one line m in common, the set of lines

$$
S=\left[S_{0} \backslash\left(R_{1} \cup R_{2}\right)\right] \cup\left(R_{1} \backslash m\right) \cup R_{2}^{\prime}
$$

can easily be shown to be a spread. Here $R_{2}{ }^{\prime}$ denotes the opposite regulus to R_{2}. If l is the unique line of $R_{1}{ }^{\prime}$ through any chosen point of m, then the set of lines A of S meeting l have exactly one transversal. It can then be shown that the set of lines $W=(S \backslash A) \cup l$ is an msp spread of deficiency q.

We now generalize the above construction. Let $q>2$ be a prime power and let t be a positive integer such that $t<(q+1) / 3$. If S_{0} is a regular spread of

Received December 20, 1976 and in revised form, October 8, 1977 and January 17, 1978.
$\Sigma=\operatorname{PG}(3, q)$, choose mutually disjoint reguli R_{1}, \ldots, R_{t} and distinct reguli T_{1}, \ldots, T_{t} of S_{0} such that

$$
\begin{aligned}
& R_{i} \cap T_{i}=\left\{l_{i}\right\} \text { for } i=1, \ldots, t \\
& R_{i} \cap T_{j}=\phi \text { for } i \neq j
\end{aligned}
$$

The question of existence for such reguli when $t>1$ will be discussed in the remaining sections. Letting B denote the set of lines in

$$
S_{0} \backslash\left(R_{1} \cup \ldots \cup R_{t} \cup T_{1} \cup \ldots \cup T_{t}\right)
$$

the set of lines

$$
S=B \cup\left(T_{1} \backslash l_{1}\right) \cup R_{1}{ }^{\prime} \cup \ldots \cup\left(T_{t} \backslash l_{t}\right) \cup R_{t}^{\prime}
$$

is easily seen to be a spread of Σ. Next choose lines $l_{i}{ }^{\prime} \in T_{i}{ }^{\prime}$ for $i=1, \ldots, t$ so that $l_{1}{ }^{\prime}, \ldots, l_{t}{ }^{\prime}$ are pairwise disjoint. Let A_{i} denote the set of lines in S meeting $l_{i}{ }^{\prime}$ for $i=1, \ldots, t$. Then the set of lines

$$
W=\left[S \backslash\left(\bigcup_{i=1}^{t} A_{i}\right)\right] \cup l_{1}^{\prime} \ldots \cup l_{t}^{\prime}
$$

can be shown to be an msp spread of Σ with deficiency
(1) $d \geqq t(q+1-t) \geqq(2 t / 3)(q+1)$.

The restriction $3 t<(q+1)$ is used in several places, primarily to insure that any line extending W must meet at least three lines of $T_{i} \backslash l_{i}$ for some i.

The above bound is obtained as follows. For each i the lines of A_{i} are the q lines of $T_{i} \backslash l_{i}$ plus one line of $R_{i}{ }^{\prime}$. Since T_{i} and T_{j} have at most two lines in common for $i \neq j$,

$$
\left|\bigcup_{i=1}^{\iota}\left(T_{i} \backslash l_{i}\right)\right| \geqq q+(q-2)+\ldots+(q-2 t+\mathfrak{2})=t(q+1-t) .
$$

Hence

$$
\left|\bigcup_{i=1}^{\iota} A_{i}\right| \geqq t+t(q+1-t)=t(q+2-t)
$$

and

$$
|W| \leqq q^{2}+1-t(q+2-t)+t=q^{2}-t q+\left(t^{2}-t+1\right) .
$$

It should be noted that if the reguli T_{1}, \ldots, T_{1} are also chosen to be pairwise disjoint, then
(2) $d=q t$.
3. Inversive planes. We are now faced with the problem of finding the maximum t for a given prime power q (subject to the restriction $t<(q+1) / 3$) for which there exist reguli R_{1}, \ldots, R_{t} and T_{1}, \ldots, T_{t} in S_{0} satisfying the
above stated conditions. In [2, Theorem 4.5] R. H. Bruck showed that the search for reguli in a regular spread of $\operatorname{PG}(3, q)$ can be transformed into the search for circles in a miquelian inversive plane of order q, which we will denote by $I P(q)$. Thus we are concerned with the existence of certain configurations of circles in $I P(q)$.

The interested reader is referred to [6, Chapter 6] for a detailed discussion of $I P(q)$. As a point of notation, for any two distinct points P and Q of $I P(q)$, the set of all circles which pass through both P and Q will be called the bundle with carriers P and Q. A maximal set of mutually tangent circles at a point P will be called a pencil with carrier P. A flock K will be a set of pairwise disjoint circles such that, with the exception of precisely two points (called the carriers of K), every point of $I P(q)$ lies on precisely one circle of K.

Our problem is to find pairwise disjoint circles C_{1}, \ldots, C_{t} and distinct circles D_{1}, \ldots, D_{t} in $I P(q)$ such that C_{i} and D_{i} are tangent for $i=1, \ldots, t$ but C_{i} and D_{j} are disjoint for $i \neq j$. Of course we are trying to maximize t subject to these restrictions and the additional constraint $t<(q+1) / 3$. We first take a combinatorial approach and then an algebraic approach.
4. The combinatorial approach. Slightly different arguments must be used for the cases q even and q odd. Since the technique is essentially the same in both cases, we will assume throughout that q is an even prime power. Choose C_{1}, D_{1} to be two tangent circles of $I P(q)$, and we first answer the question of how many circles there are in $I P(q)$ that miss both C_{1} and D_{1}. To this end, let $s(i, j)$ denote the number of circles that meet C_{1} in i points and meet D_{1} in j points, where i and j are integers satisfying $0 \leqq i, j \leqq 2$. We would like to compute $s(0,0)$.

Lemma 1. (i) $s(1,0)=q(q-2) / 2=s(0,1)$.
(ii) $s(1,1)=q-2$.
(iii) $s(1,2)=q^{2} / 2=s(2,1)$.

Proof. Let P denote the point of intersection for the circles C_{1} and D_{1}. Choose Q to be any point of C_{1} other than P, and let $L\left(Q ; C_{1}\right)$ denote the pencil of q circles with carrier Q containing the circle C_{1}. Since q is even, it can be shown (see [6, page 265]) that a circle not incident with the carrier of a pencil is tangent to precisely one circle of the pencil. Thus the $q-1$ circles of $L\left(Q ; C_{1}\right) \backslash\left\{C_{1}\right\}$ are either disjoint or secant to D_{1}. Since the $q+1$ points of D_{1} are covered by the circles of $L\left(Q ; C_{1}\right), D_{1}$ is disjoint from $(q-2) / 2$ circles of $L\left(Q ; C_{1}\right)$. Allowing Q to vary and using symmetry, (i) now follows,

Since the only circles tangent to both C_{1} and D_{1} are those of the common pencil $L\left(P ; C_{1}\right)$, (ii) follows immediately. Using the fact that the total number of circles tangent to D_{1} is $q^{2}-1$, a little arithmetic and symmetry together give us (iii).

Lemma 2. (i) $s(2,0)=q^{2}(q-2) / 4=s(0,2)$.
(ii) $s(2,2)=q^{2}(q+2) / 4$.
(iii) $s(0,0)=q(q-2)(q-4) / 4$.

Proof. Once again let P denote the point of intersection for C_{1} and D_{1}. Choose R, S to be two points of C_{1} other than P such that R, S are not conjugate with respect to D_{1}. Let $J(R, S)$ denote the bundle of $q+1$ circles with carriers R and S. Then every circle of $J(R, S) \backslash\left\{C_{1}\right\}$ is either secant to or disjoint from D_{1} since q is even. The $q+1$ points of D_{1} are covered by the bundle $J(R, S)$ and therefore $q / 2$ circles in $J(R, \mathrm{~S}) \backslash\left\{C_{1}\right\}$ are disjoint from D_{1}. Allowing R, S to vary, we obtain $q^{2}(q-2) / 4$ distinct circles secant to C_{1} and disjoint from D_{1}. All such circles are counted in this fashion, yielding (i) by symmetry. The rest of the lemma now follows from lemma (1) by simple counting arguments.

Next we would like to find tangent circles C_{2} and D_{2} that are disjoint from both C_{1} and D_{1}. This would yield a desirable configuration as discussed in sections 2 and 3 with $t=2$ and having the additional property that D_{1} is disjoint from D_{2}.

Theorem 1. Let q be an even prime power such that $q \geqq 16$. Then there exist circles $C_{1}, C_{2}, D_{1}, D_{2}$ in $I P(q)$ such that C_{1} is tangent to $D_{1} ; C_{2}$ is tungent to D_{2}, und each of C_{1}, D_{1} is disjoint from boih C_{2}, D_{2}.

Proof. Choose C_{1}, D_{1} to be tangent circles in $I P(q)$. Let Ω denote the collection of circles in $I P(q)$ that are disjoint from both C_{1} and D_{1} and assume that no two circles in Ω are tangent by way of contradiction. Then there are at most $q+1$ circles in Ω that are tangent to any circle not in Ω. Lemma (2) (iii) now gives us at least $q(q-1)(q-2)(q-4) / 4$ distinct circles that are tangent to at least one circle in Ω and hence are not in Ω. This is in contradiction to the total number of circles in $I P(q)$ when $q \geqq 16$, proving the theorem.

Remurks. A slight modification of the above counting techniques yields the odd order analogue of Theorem 1 when $q \geqq 11$. Direct computation shows that the theorem is also true for $q=5,7,8,9$. Such a configuration is impossible in $I P(4)$ since there are not enough points.

Corollars. Let q be any prime power such that $q \geqq 7$. Then there exist msp spreads W of $P G(3, q)$ with deficiency $d=2 q$ and $|W|=q^{2}-2 q+1$.

Proof. Since $t<(q+1) / 3$ when $t=2$ and $q \geqq 7$, the result follows immediately from the construction and equation (2) given in Section ?2.

Unfortunately, this combinatorial approach cannot be easily (if at all) extended to yield msp spreads of deficiency greater than $2 q$. I Ience we take a new approach.
5. The algebraic approach. We now give a model for $I P(q)$ that was discussed by W. F. Orr in [7]. Most of the tools we will be using are only valid
when q is odd, and hence we assume throughout this section that q is an odd prime power. The elements of $G F\left(q^{2}\right) \cup\{\infty\}$ will be regarded as the points of $\operatorname{IP}(q)$, and a circle of $I P(q)$ will be represented as a one-dimensional vector space over $G F(q)$ with basis element a 2 by 2 matrix of the form

$$
\left[\begin{array}{cc}
x & a \\
b & -x^{q}
\end{array}\right]
$$

where $x \in G F\left(q^{2}\right) ; u, b \in G F(q)$; and $x^{q+1}+a b \neq 0$. Such a circle will have as its inversion the mapping

$$
z \rightarrow \frac{x z^{q}+a}{b z^{q}-x^{q}} \text { for all } z \text { in } G F\left(q^{2}\right) \cup\{\infty\} .
$$

For the remainder of this paper we will represent circles by matrices of the above form with the understanding that the circle is really a one-dimensional vector space over $G F(q)$.

Letting C, D be matrices representing circles of $I P(q)$ and letting $\|C\|$ denote the determinant of C, we define

$$
\begin{aligned}
& h(C, D)=\|C+D\|-\|C\|-\|D\| \\
& C \cdot D=h(C, D) / 2 \\
& C \times D=(C \cdot D)^{2}-\|C\|\|D\|
\end{aligned}
$$

Orr has shown (see [7, Lemma 2.1]) that C and D are disjoint, tangent, or secant accordingly as $C \times D$ is a non-zero square, zero, or non-square in $G F(q)$.

Choose $P=0$ and $Q=\infty$ as two distinct points of $\operatorname{IP}(q)$, and let $K(0, \infty)$ denote the linear flock of $q-1$ circles with carriers 0 and ∞. Pick C_{1}, \ldots, C_{t} to be circles represented by matrices of the form

$$
C_{i}=\left[\begin{array}{cc}
0 & a_{i} \\
1 & 0
\end{array}\right]
$$

where a_{1}, \ldots, a_{t} are distinct non-zero elements of $G F(q)$. These circles are all in $K(0, \infty)$ and hence are pairwise disjoint. Choose D_{1}, \ldots, D_{t} to be circles represented by matrices of the form

$$
D_{i}=\left[\begin{array}{cc}
x_{i} & 0 \\
1 & -x_{i}{ }^{q}
\end{array}\right],
$$

where x_{1}, \ldots, x_{t} are elements of $G F\left(q^{2}\right)$ such that $x_{i}{ }^{q+1}=u_{i} / 4$. Since $C_{i} \times D_{i}$ $=0, D_{i}$ is tangent to C_{i} for each i. It should be also noted that each D_{1} passes through the point 0 and

$$
C_{i} \times D_{j}=a_{i}\left(a_{i}-a_{j}\right) / 4
$$

According to the msp spread construction given in sections 2 and 3 , we would like C_{i} and D_{j} to be disjoint for $i \neq j$ and therefore want $C_{i} \times D_{j}$ to be a non-zero square in $G F(q)$ for $i \neq j$. Hence we would like to find a collection
of distinct non-zero squares a_{1}, \ldots, a_{t} in $G F(q)$ such that the difference of any two is a square. The problem of finding the largest possible collection of this type is old and difficult. Of course $\left(a_{1}-a_{2}\right) /\left(a_{2}-a_{1}\right)=-1$ is required to be a non-zero square in $\operatorname{GF}(q)$, and hence we must assume that $q \equiv 1$ (4). Some partial results and their consequences are now given.

Theorem 2. Let p be an odd prime and let $q=p^{2 n}$ for some positive integer n. Then there exist msp spreads W of $P G\left(3, p^{2 n}\right)$ with deficiency $d \geqq(2 / 3)\left(p^{n}-1\right)$ ($p^{2 n}+1$).

Proof. Every element of $G F\left(p^{n}\right)$ is a square in $G F\left(p^{2 n}\right)$. Thus we can choose $t=p^{n}-1$ non-zero squares in $G F\left(p^{2 n}\right)$ such that the difference of any two is a square in $G F\left(p^{2 n}\right)$; namely, choose the non-zero elements of $G F\left(p^{n}\right)$. The reader should note that $q \equiv 1$ (4) since $q=p^{2 n}$ where p is odd. (learly $t<(q+1) / 3$. The result now follows from the construction and equation (1) given in Section 2.

It should be noted that the deficiency guaranteed by Theorem 2 is of the order $q^{3 / 2}$ while the maximum possible deficiency from Bruen's result is of the order q^{2}. Hence, in this case, Bruen's lower bound for $|W|$ is reasonably good for large q.

Theorem 3. Let $p \geqq 29$ be a prime such that $p \equiv 1$ (4). Then there exist msp spreads W of $P G(3, p)$ with deficiency $d \geqq 2(p+1)$.

Proof. As shown in [1, Theorem 10-4], $G F(p)$ has at least one triple of consecutive non-zero squares so long as $p \geqq 29$. Let $a-1, a, a+1$ denote nonzero squares of $G F(p)$. Clearly $a \neq \pm 1$. Since -1 is a square in $G F(p)$, it is easy to see that $1, a, a^{-1}$ denote three distinct non-zero squares such that the difference of any two is a square. With $t=3$ and $p \geqq 29$, clearly $t<(p+1) / 3$. The result now follows as in Theorem 2 .

Theorem 4. Let pbe a prime such that $p \equiv 1$ (4). Then there exist msp spreads W of $P G(3, p)$ with deficiency $d \geqq[(1 / 3) \ln (p)](p+1)$, where $\lfloor r]$ denotes the greatest integer less than or equal to r.

Proof. As shown in [5], for any prime $p \equiv 1$ (4), the largest collection of non-zero squares in $G F(p)$ such that the difference of any two is a square always has cardinality at least $(1 / 2) \ln (p)$. The result now follows as in Theorem 2.

Theorem 5. Let q be a prime power such that $q \equiv 1$ (4). Then there exist msp spreads W of $P G(3, q)$ with deficiency

$$
d \geqq(2 / 3)(q+1)\left[1 / 2\left(\sqrt{1+4 \log _{2}(q)}-1\right)\right]
$$

Proof. As shown in [8, Theorem 3], so long as $q \equiv 1$ (2) and $q>2^{r(r+1)}$, there exists an $(r+1)$-tuple a_{1}, \ldots, a_{r+1} of elements in $\operatorname{GF}(q)$ such that $a_{j}-a_{i}$ is a non-zero square for $1 \leqq i<j \leqq r+1$. Setting

$$
t=\left[1 / 2\left(\sqrt{1+4 \log _{2}(q)}-1\right)\right]
$$

it is easy to see that $q>2^{t(t+1)}$. Hence we can choose elements a_{1}, \ldots, a_{t+1} in $G F(q)$ satisfying the above condition. Setting $b_{i}=a_{i+1}-a_{1}$ for $i=1, \ldots, t$ and using the fact that -1 is a square in $G F(q)$, we obtain a set of t non-zero squares in $G F(q)$ such that the difference of any two is a square. The result now follows as in Theorem 2.
Among other things, Theorem 5 shows that for any constant c, msp spreads of deficiency $d \geqq c q$ exist whenever q is a sufficiently large prime power such that $q \equiv 1$ (4). Thus our construction technique does produce msp spreads of $P G(3, q)$ with reasonably large deficiency; in fact, with deficiency of the order $q \sqrt{ } \log _{2}(q)$.
6. Concluding remarks. To obtain maximum mileage from our construction technique for msp spreads of large deficiency, a complete solution to the non-zero squares problem should first be found. This has not yet been accomplished.

In the search for circles C_{1}, \ldots, C_{t} and D_{1}, \ldots, D_{t} of $I P(q)$ satisfying the conditions stated at the end of Section 3, the case when C_{1}, \ldots, C_{t} do not form a linear set has not yet been studied. On the other hand, if C_{1}, \ldots, C_{t} do form a linear set, it might be profitable to consider circles D_{i} that do not pass through one of the carriers for this linear set. In any case, when q is even, it seems apparent that some new approach must be found to produce msp spreads of deficiency greater than $2 q$.

It should also be pointed out that in a recent paper $[\mathbf{4}]$, Bruen and II irschfeld use a twisted cubic to construct a msp spread of size $\frac{1}{2}\left(q^{2}+q+2\right)$ whenever 3 does not divide $q+1$.

References

1. G. E. Andrews, Number theory (IV: B. Saunders, Philadelphia, London, Toronto, 1971)
2. R. H. Bruck, Construction problems of finite projectice planes, Combinatorial Mathematics and Its Applications, ed. R. C. Bose and T. A. Dowling, The University of North Carolina Press, Chapel Hill (1969), 426-.is 14.
3. A. Bruen, Partial spreads and replaceable nets, Can. J. Math. 2.) (1971), 381-391.
4. A. A. Bruen and J. W. P'. Hirschfeld, Applications of line geometry oier finite fields I. The twisted cubic, Geometriae Dedicata, to appear.
5. D. A. Buell and K. S. Williams, Maximal residue difference sets modulo p, Proc. Amer. Math. Soc., to appear.
6. P. Dembowski, Finite geometries (Springer-Verlag, Berlin, 1968).
7. W. F. Orr, The miquelian inversice plane $I P(q)$ and the associated projectice planes, Dissertation, University of Wisconsin, Madison, Wisconsin, 1973.
8. R. M. Wilson, Cyclotomy and difference families in elementary abelian groups, J. Number Theory 4 (1972), 17-47.

Texas Tech University, Lubbock, Texas;
University of Delaware, Newark, Delaware

