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Abstract

Riesz polynomials are employed to give a sufficient condition for a non-abelian compact
;>roup G to have an infinite uniformly approximate Sidon set. This condition is satisfied if G
admits infinitely many pairwise inequivalent continuous irreducible unitary representations of the
same degree. Consequently a compact Lie group admits an infinite Sidon set if and only if it is not
iemi-simple.

1. Introduction

General properties of infinite Sidon sets for a compact group G are
well-known (see §37 of Hewitt and Ross (1970)), but the question of the
existence of such sets if G is not abelian has until now been rarely answered in
;he affirmative. The result enunciated in the title of this paper exhibits a wide
:lass of compact groups which admit infinite Sidon sets. It also answers a
question of Parker (1972).

Our proof, which uses Riesz polynomials, is modelled on the proofs of
similar results by Rider (1966) and Parker (1972). It yields Sidon sets which
;njoy the additional property of being uniformly approximable.

The main theorem is proved in §2 with the result of the title occurring as
Corollary 2.5. In §3 the implications of our result for compact Lie groups are
^resented and we conclude in §4 with two counter-examples to a partial
:onverse of Corollary 2.5.

This research was carried out under the supervision of J. R. McMuIlen.
*Ve also wish to thank A. H. Dooley for his contribution to the final form of
his paper.

NOTATION. Let G be a compact group. Normalized Haar measure on G
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is denoted by AG and the Banach space of all complex Radon measures on G
is denoted by M(G).

Let G be a maximal set of pairwise inequivalent continuous irreducible
unitary representations of G. For each a G G let Ha denote its corresponding
representation space of dimension d^ x° i t s trace and atj (i,j = 1, • • •, da) the
coordinate functions of a- with respect to a fixed orthonormal basis of Ha. For
any subset P of G the Banach spaces &P(P) ( l ^ p S * ) and their respective
norms are as defined in (28.24), (28.34), (D.36(e)) and (D.37) of Hewitt and
Ross (1970). The characteristic section of P is the section Ip G @L(G) defined
by

where la and 0CT denote the identity and zero transformations on Ha

respectively.
The Fourier-Stieltjes transform of /x G M(G) is the section jx G GL(G)

defined by

tl(a)= \ or(x')d^(x) (<r£G)
Jo

and the Fourier transform of / G L\G, AG) is the section /G 6«(G) defined by

f{*)= \ a(x')f(x)d\a(x) (aGG).
Ja

The closure in @L(G) of the set of Fourier-Stieltjes transforms is denoted by

A subset E of G is said to be a Sidon set if CE(G), the set of all
continuous functions on G whose Fourier transforms vanish off E, is
contained in the Fourier algebra of G (see §37 of Hewitt and Ross (1970)).
This is equivalent to saying that for each <f> G (£«(£) there exists fi G M(G)
such that JU.(<T) = <t>(cr) for all a G E. A Sidon set E is said to be uniformly
approximable if the characteristic section IE belongs to M(Gy~. Finite unions
of uniformly approximable Sidon sets are uniformly approximable Sidon, this
fact following most readily from the characterization of uniformly approxima-
ble Sidon sets as those sets E C G for which (£^(E) C M(G)*~ (see Dunkl and
Ramirez (1971a)).

Finally, we adopt the convention of McMullen and Price (1976) and say
that G is tall if for each positive integer n there are only finitely many
elements of G of degree n.
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2. The main theorem

Our use of Riesz polynomials in the proof of Theorem 2.4 requires that
the following numbers, first described for general compact groups by Parker
(1972), be defined.

DEFINITION 2.1. Let E = {a,, o-2, • • •} be a countable subset of G. For

a £ G and positive integers m, s, N let Rs(E,o-,N,m) be the number of
subsets {T! , - - - ,T S } of cardinality s of G satisfying rk equals o-nk or ant for
some o~nk in £ (fc = 1,2, • • •, s), n^ < n2 < • • • < n, s N, and

I = m.

Let

R,(E,<r,N)= 2 m.Rs(E,a,N,m)

and

Rs(E,cr)= lim Rs(£,cr,N).

We also require two simple lemmas.

LEMMA 2.2. Let A be a linear operator on a finite dimensional Hilbert
space H of dimension n. Then we have

\\A\\^^ n.max{|aj,- | : i,j = 1, • • •, n}

where the ay are the matrix coefficients of A with respect to any orthonormal
basis of H.

PROOF. Write A =\A\U where \A\ is positive definite and U is
unitary. Let {Ai, • • •, Xn} be the eigenvalues of | A |. Since 2T=i A? = S " ^ , ! ^ |2

we have that \\A \\^ = max Â  g n.

LEMMA 2.3. Let o-°\ ai2\ ••-, o- ( m )e G each have degree n and let T G G.

Then we have

\L SdT
lS(r)

(i,j = 1, • • •, n ; r, s = 1, • • •, dT) where S{T) is the multiplicity of r in the tensor
product representation a(1)(g) • • •££) o-(m).

PROOF. Observe that trj^-•-tr'™' is a coordinate function of
(j(1)(^) • • - 0 <r(m> with respect to the obvious orthonormal basis of
Ham (9) •• -<%)Ha<->. L e t
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T: ®5(T) .H,^H^ ' ' -^H,( .»
red

be a linear isometry intertwining 0 r e o S(r). T and cr(l) 0 • • • <
u,,, Wp, are the coordinate functions of ©T<E<5S(T).T and o-(

respectively, we have

(p, <7 = 1, • • •, wn). Since the entries of T are bounded in absolute value by 1,
the orthogonality relations for the coordinate functions on G give that

If
I Jc,

G = dT'S(T).

THEOREM 2.4. Let E = {cr,, a2, • • •} fee a countable subset of G such that
d,, = n for all cr G E and let B be a positive integer such that RS(E, 1 ) § B "
(s = 1,2, • • •). Then £ is a uniformly approximable Sidon set.

PROOF. We verify that £ is a uniformly approximable Sidon set by
showing that for each e > 0 and each <PG &*,(E) with

sup{|4>(cr)j;|: o-EE, i,j = 1,- • - ,n}g 1

there exists y, G M{G) with ||<i> - (L ||« < e (see (37.2(viii)) of Hewitt and Ross
(1970)-). We may suppose that, with respect to our fixed basis ^(cr) has real
coefficients for all cr G E, that 1 £ E and that G is countable.

We may also assume that if cr G E, a^ cr then cr ̂  £ since we can always
express E as the union of two sets satisfying this additional requirement.
Therefore,by Lemma 3.1 of Parker(1972)we may suppose that B^n and
that Rs (E, cr) s Bs for all cr G G.

Choose a positive integer m such that 1/m < e/(2n) and a positive
integer q S 2 such that l/(q - 1)< e/(8mn3). Let j8 = l/{qB2).

Partition the closed interval [—1,1] into 2m disjoint intervals
A-m-n, A-m+2, • • •, Am by setting

For each positive integer JV let EN = {a-u • • • •, crN} and then set

£Ni/t ={crGEN:<t>(o-)i,GAk}

(i,/ = 1, • • •, n; k = — m + 1, • • •, m). For fixed N, i and /', {Ejvi,n}r=-m+i is a

partition of £N.
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For each N, i,;', k define a non-negative trigonometric polynomial fNiik on
G by

/ V = I ! (l + P® (°i«)) = 1 + P 2 » K ) + 2 C (T, W '- y, * )rrs
E E

where $1(0^ denotes the real part of a,, and the second sum runs over all
T E G, r, s = 1, • • •. dr. Using Lemma 2.3 we see that

2
p-2

Similarly let

gN,,k = 11 (1 + W(*••)) = 1 + P S •*(o)') + S Dr,(T, N, i,y, fc )r,

where ^(o/i) denotes the imaginary part of cr,, and

|Dr,(T,N,j,y,fe)|</3f/(8wi«-1).

Now set

ij" - I k - m + I

where |K r , (x) |<e/2 and fes is the integer fe such that <t(o-)v G Ak.
Define /xN G Af(G) by d/u.N = hNd\G. Then for all N we have

ij-l k--m*l

2
i.j = 1 k = m + 1

and for each cr G EN we have

), - f

S 1/w +|X,,(cr)|/n <e/(2n)+e/(2n)= e/n.
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For each a-0. EN, a/ 1 we have

Since {fj. G M(G): ||M II = 2n*m@ ' + e/4} is sequentially weak-*compact, we
may choose a subsequence of {fiN}7i.\ which converges in the weak-"topology
to some fj. G M(G). Then, by Lemma 2.2, we have

||<I>(o-)-/2(o-)|k<e for all cr/1.

Now choose a multiple a of the trigonometric polynomial 1 so that
(fi +al)"(l) = 0. Then ||(/x + al)A - 4>||« < e as required.

COROLLARY 2.5. Let G be non-tall compact group. Then G admits an
infinite uniformly approximable Sidon set.

PROOF. By definition, for some positive integer n there is an infinite
subset E of G with d,r = n for all <x G E. As in Corollary 3.4 of Parker (1972)
we may construct by induction a sequence of subsets {Fm} of E such that for
each m, the cardinality of Fra is m, Fm C F m i | and Rs(Fm, 1) = 0 (s = 1,2, • • •)•
For we may choose any element of E to obtain F, and then, for each m,
construct Fm + , by adjoining to Fm any element of E not occurring as a
constituent of a tensor product of s distinct elements of Fm UFm (s =
1, • • •, m). This is possible because there are only finitely many such tensor
products and each tensor product, being finite dimensional, has only finitely
many constituents in E. Now let F= U^, = ,Fm. Then F CE and RS(F, l) = 0
(s = 1,2, •••) so F is an infinite uniformly approximable Sidon set.

COROLLARY 2.6. Let G be the direct product of a countable family of
compact groups Gn (n = 1,2, • • •) and let B be fixed positive integer. For each n
let an ?£ 1 be an irreducible unitary representation of Gn of degree no greater than
B. Then E = {cr,, a2, • • •} regarded as a subset of G is a uniformly approximable
Sidon set.

PROOF. Write £ = U f . , E k where Ek = {a G E: d« = k}. Clearly
Rs(Ek, 1) = 0 (s = 1,2, • • •) so E is a finite union of the uniformly approxima-
ble Sidon sets Ek (k = 1, • • •, B).

REMARKS. (1). Dunkl and Ramirez (1971b) have shown that central
Sidon sets of bounded representation type are uniformly approximable so the
fact that the Sidon sets which we produce are uniformly approximable follows
from the fact that they are Sidon.
(2). The example given in §3 of Figa-Talamanca (1967) (see also (37.23) of
Hewitt and Ross (1970)) shows that the bound on the degrees of the
representations cannot be omitted from the statement of Corollary 2.6.
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3. Compact Lie groups

If G is a compact Lie group then a theorem of Cecchini shows that the
converse to Corollary 2.5 also holds. Moreover, the (equivalent) conditions of
Corollary 2.5 are satisfied precisely when G is not semi-simple. To prove this
for possibly disconnected G we require a small lemma.

LEMMA 3.1. Let G be a compact group with a closed normal subgroup H of
finite index in G. Then G is tall if and only if H is tall.

PROOF. Suppose that H is tall. By the Frobenius reciprocity theorem,
each a E G of degree n is a component of an induced representation TG

where T £ H is some irreducible component of a |H. Clearly we have dr S= n.
Therefore, since {T £ H: dr S n} is a finite set and each T E H induces up to
only finitely many a E G, we have that {<r E G: da = n) is a finite set.

Conversely, suppose that there are infinitely many T E H of degree n.
Since each r has at most [G/H] inequivalent conjugates, Mackey's intertwin-
ing number theorem shows that the induced representations T° give rise to
infinitely many a £ G such that < t ^ n | G/H .

THEOREM 3.2. Let G be a compact Lie group. The following are
equivalent:

(i) G is semi-simple*;
(ii) G is tall;

(iii) G admits no infinite A4 sets;
(iv) G admits no infinite Sidon sets.

PROOF. We first show that (ii) => (iii) => (iv) =̂  (ii). Theorem 3 of
Cecchini (1972) shows that (ii) => (iii) and the implication (iii) => (iv) is given
by Theorem (37.10) of Hewitt and Ross (1970). The implication (iv) => (ii) is
contained in our Corollary 2.5.

We complete the proof of the theorem by showing that (i) <=> (ii). Note
that Go, the connected component of the identity in G, has finite index in G.

Assume (i). Then Go is connected and semi-simple so by Theorem 9 of
Rider (1972), Go admits no infinite central Sidon sets. Thus Go admits no
infinite Sidon sets. Corollary 2.5 and Lemma 3.1 then show that (ii) holds.

Conversely, suppose that G is not semi-simple. Then by Theorem 87 of
Pontryagin (1939), we may write Go = G*/N where G* is the direct product
of a non-trivial torus T and a semi-simple group S and N is a finite normal

' D . Rider (private communication) has given a direct proof that a compact connected
semi-simple Lie group is tall.
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subgroup of G*. Clearly S has finite index in NS so G*/(NS) is an infinite
abelian group. Therefore Go has infinitely many pairwise inequivalent
irreducible unitary representations of degree 1 so, by Lemma 3.1, G cannot
be tall.

REMARK. Let G be a compact group with a closed normal subgroup H of
finite index in G. If £ CH is a Sidon set for H which is closed under
conjugation by elements of G then a rather intricate calculation shows that
F = {a G G: cr a component of T° for some T E £} is a Sidon set for G. In
particular, if H has an infinite abelian continuous homomorphic image then H
contains an infinite set E satisfying this requirement, and so G admits an
infinite Sidon set. This result may be used to give a proof of Theorem 3.2
which does not use Corollary 2.5.

4. Examples

We give two examples of tall compact groups which admit infinite Sidon
sets. They are similar to the example given in (37.5) of Hewitt and Ross
(1970).

EXAMPLE 4.1. Let G = n^.2St/(n) where, for each positive integer
n S 2, SU(n) denotes the group of n x n complex unitary matrices with
determinant 1. Since SU(n) is simple, Theorem 3.2 shows that SU(ti) is tall.
Moreover, if vr E 5C/(n)A is not the representation which is identically 1, then
Tr(SU(n)) is a compact Lie subgroup of U(dn) of dimension n2-\ (see
Helgason (1962), p 346). Since U{d^) has dimension d\ we must have that
d, s n. it follows that G is tall.

For each n let nn be the projection of G onto SU(n). Corollary 4.2 of
Parker (1972) shows that E = {TT2, TT3, • • •} is a central Sidon set for G. We
show in fact that E is Sidon.

Accordingly, let / G CE(G). For each n we may write /(•&•„) = AnWn

where An is positive definite and Wn is unitary. We may then choose a
complex number an of absolute value 1 and a matrix Xn G SU(n) such that
Wn = anXn. Since E is central Sidon there are central measures A and /u. on G
such that \(irn) = aj and /I(7rn) = o j for all n (Parker 1972, Theorem 2.1).
Let Sx be Dirac measure at X = (X2, XM • • -)G G. Then g =
/jL*Sx*fGCE(G) and g(-rrn) = An for each n so by Theorem (34.12) of
Hewitt and Ross (1970) we have that g belongs to the Fourier algebra. Thus
/ = Sx-' * A * g belongs to the Fourier algebra and £ is a Sidon set.

EXAMPLE 4.2. Let G = UZ~i SO(n) where for each n, SO(n) is the group
of n x n real orthogonal matrices with determinant 1. As in the previous
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example G is tall and E = {TT2, TT>, • • •}, where nn is the projection of G onto
SO(n), is a central Sidon set.

Now let /G CE(G). Since the Trn are real we have that ^ / , ^ / E CE(G)
and that (9tfY(irn), (^/)A(T7,,) each have real coefficients. Thus we may
suppose that / is real-valued. Since real matrices also have a polar decomposi-
tion (Gantmacher (1958), p. 263), a similar argument to that of the previous
example shows that / belongs to the Fourier algebra and so E is Sidon.
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