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Abstract

Single-particle cryogenic electron microscopy (cryo-EM) is an imaging technique capable of recovering the high-
resolution three-dimensional (3D) structure of biological macromolecules from many noisy and randomly oriented
projection images. One notable approach to 3D reconstruction, known as Kam’s method, relies on the moments of the
two-dimensional (2D) images. Inspired by Kam’s method, we introduce a rotationally invariant metric between two
molecular structures, which does not require 3D alignment. Further, we introduce a metric between a stack of
projection images and a molecular structure, which is invariant to rotations and reflections and does not require
performing 3D reconstruction. Additionally, the latter metric does not assume a uniform distribution of viewing
angles. We demonstrate the uses of the new metrics on synthetic and experimental datasets, highlighting their ability
to measure structural similarity.

Impact Statement

Single-particle cryogenic electron microscopy (cryo-EM) is a popular method to obtain three-dimensional
(3D) reconstructions of biological molecules from noisy two-dimensional (2D) tomographic projection images.
Many iterative techniques for this reconstruction require initializations sufficiently close to the unknown
structure to obtain high-quality reconstructions. To help select an initialization from a database of known
structures, this paper introduces a metric to compare the similarity of known 3D structures with a stack of noisy
2D tomographic projection images of an unknown structure. We show that this metric distinguishes differing
structures and present an efficient method to compute it, notably without performing 3D reconstruction.

1. Introduction

Single-particle cryogenic electron microscopy (cryo-EM) enables high-resolution reconstruction of three-
dimensional (3D) biological macromolecules from a large collection of noisy and randomly oriented
projection images. Kam’s method" is one of the earliest methods proposed for homogeneous recon-
struction in cryo-EM. It is a statistical method-of-moments approach applied to the cryo-EM reconstruc-
tion problem, where the computation of low-order statistics of two-dimensional (2D) images allows for
the estimation of 3D structure through solving a polynomial system. Kam’s method has helped push the
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theoretical understanding of the reconstruction process — under certain conditions, it is a provable
algorithm and provides bounds for the estimated structure’s quality in terms of the noise level and the
number of images.”~*) Kam’s method also enjoys other remarkable properties:

1. It bypasses the need for angular assignment, typically a large computational burden in competing
methods.

2. Itis a streaming algorithm and is thus theoretically much faster than iterative methods.

3. Itcan—in tgleory — break the detection limit of the minimal size of proteins that can be observed in
cryo-EM.¢

While theoretically attractive, Kam’s method has not been able to yield high-resolution reconstructions as
yet. One direction that is currently being explored to resolve this issue is the development of better priors,
for instance, based on the sparsity of the solution as in the study by Bendory et al."” Separately, there has
been considerable, continued interest in utilizing the vast amount of solved structures stored in the Protein
Data Bank (PDB)!'” to improve cryo-EM reconstructions.

Leveraging the PDB as a prior, we propose a method to match either projection images or molecular
volumes to a database of previously solved structures (Section 3). We use this procedure as a rotationally
and reflectionally invariant metric that can be directly computed from raw image datasets without needing
a 3D reconstruction process. Importantly, our metric neither relies on prior knowledge of rotations nor
assumes a uniform rotational distribution, making it applicable to typical datasets.

To demonstrate the efficacy of our metric, we compare it to existing methods and show empirically that
it achieves similar performance to alignment-based metrics. As an application, we use our metric to
compute a low-dimensional embedding of a subset of the PDB into the Euclidean plane, visually
showcasing how structurally similar proteins are embedded near each other (Section 4.2). Further, we
apply the version of the metric that can be directly computed from stacks of 2D images and show that it
gives an efficient methodology to identify the nearest neighbors in a database to a given set of
experimental moments on synthetic and real datasets (Sections 4.3 and 4.4).

2. Background

This section presents the mathematical preliminaries needed to define our metric. Let @ : R* — R be the
electrostatic potential of a molecule and @ : R? — C be its Fourier transform, which we define by

(&)= / D (x)e “*dx.
RB
A single projection image is given by
I=h% PRD+e,
and its Fourier transform is
T=H-SRO+,
where P is the projection operator, S is the slicing operator, / is a point spread function, / is the contrast

transfer function (CTF), ¢ is noise, and R € SO(3) is a rotation operator. We assume that the Fourier
transform ® can be expanded in a spherical harmonic expansion:

L 4

O(r.0.0)=> > Arm(r)Y(0.9). %)

£=0m=—-¢
where (r,6,¢) are spherical coordinates, and Y7} denotes the complex spherical harmonic:

Y 12
Y7 (0,9):= <%> e P} (cosh),
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where P} are the associated Legendre polynomials, 4, (r) are r-dependent coefficients, and L is a
bandlimit parameter. See Eq. 14.30.1 in"'" for the definitions of ¥ ¥ and PJ.

Letp: SO(3) — R be the probability density function of the rotational distribution, which without loss
of generality is invariant to in-plane rotations and reflections. (Note that by augmenting the dataset with
in-plane rotations and reflections of all 2D images, one can always reduce to the case of such an invariant
distribution p; for example, see the study by Ponce and Singer''?). More formally, p is a function on
SO(3)/0(2) ~S?/{+ 1} which is formed by identifying antipodal points on the sphere S* ' Thus, we
model the density as a function p : SO(3) — R with an even-degree spherical harmonic expansion:

Z Z Bar Y55 (0(R).9(R)), )

=0m=-2¢
where (6(R),¢(R)) represents the third column of the rotation matrix given by R in spherical coordinates,
and P € Z 5 is a bandlimit parameter (see Section 4.2 in the study by Sharon et al.)). The analytical first
and second moments m; and m; of the Fourier-transformed projection images with respect to p are

m, (x,y) = / (R : 6) (x,,0)p(R)dR, and
(). (€)= [ (R-8) 3.0) (R @) (¢.y/.0)p (RIR

where dR denotes integration with respect to the Haar measure on SO(3). It will be convenient to write (x,y)
and (x¥’,)’) in terms of polar coordinates (r,¢) and (+',¢’), respectively. In Appendix A.1, we show in (12)
and (13) that the first moment only depends on 7, that is, m; —ml( ):Rs¢— C, and that the second
moment only depends on 7 and A{ ¢— ¢, thatis, my =my (r,7,Ad) : R X R x [-27,27] — C. We

3

write m; =m, ) ,p ) and my =m; ( D, p ) to denote the first and second moments defined by ®@ and p when
discussing multiple structures. The basis of Kam’s method is that the moments in (3) can be estimated from
images and related to expansion coefficients for the potential @; see Appendix A for explicit formulas.

3. Definition of Kam’s metrics

We now use metrics between the moments in (3) to define similarity between proteins and stacks of
images. A first function is used to measure the similarity of two known structures by the moments of their
potential as defined in (3). The second is used to measure the similarity between a known structure and the
unknown structure observed in a dataset of images.

Crucially, the metrics can be computed without performing 3D alignment of the structures, reducing
their computational costs compared to other approaches. Moreover, one of the metrics can be directly
computed from noisy and CTF-affected projection images. This enables a nearest neighbor search among
known structures to determine an initialization for the 3D reconstruction pipeline, especially in the
expectation—maximization procedure.”'*-'?

3.1. Kam’s volume metric dx,m

Here, we introduce the first of Kam’s metrics, which measures the similarity of two 3D structures. We use
this to perform dimensionality reduction to visualize the relationship between structures from a subset of
the PDB.

In detail, given two 3D structures @, and ®,, we define the distance between them through their first
and second moments m; and m, under a uniform distribution of viewing directions, which we denote by
p=p,. We will derive the explicit equations for the uniform case in (17) and (18). We then measure the
resulting weighted deviation of the first and second moments by

[lm; (al,pu) —m ((Bz,pu) ”iz(Rz <R?) +4|Im, (&)1 ,pu) m ((Dz,pu) ”L-(Rz) “)
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where A >0 is a hyperparameter that we set to 1 for all experiments. The moments will be represented
on a discretized voxel grid, and we therefore replace the continuous norms with discrete norms. More
specifically, we will represent the second moment using a grid r,/” € {rl, P N2 } and A¢ :
= ¢—¢' €{Ad,...,Ad,y }, where N is the number of pixels of one side of the discretized volume. We
define the grid points 7, =Jk /N, A¢j=27rj/N—27t, fork=1,...,[N/2],andj=1,...,2N, where ¢ is the
side length of the volume grid in angstroms. We then use the following two approximations to the
continuous norms above

IMIZ= > M(Ag i) [rere INZ= Y INGO P ®)
i=1,..,2N k=1,...,[N/2]
ki=1,...,|N/2]
ky=1,...,|N/2]

With these norms, we define the metric comparing two sets of moments of two 3D structures by

~ - 5 N N L\ 12
d\Kam (@1, D7) = ||m2(q)1,pu)—m2(®2,pu)||m+/1||m1 (Dlspu)_ml(q)%pu)”wl> , (6

This distance is rotationally invariant since for any rotation R, we have R-®=R-® and the moments
m; and m; in (2) satisfy

m;(R-®,p) =m;(®,R" -p), 7)

as can be seen through a change of variables in (3). When p=p, is uniform, clearly R - p=p, which
therefore shows rotational invariance of the cost function in (4), up to the discretization of the volume grid.
Note that this bypasses the need for an alignment step. We detail the procedure for computing m;, m, and
therefore dyk.m in Appendix A.l. Under certain conditions, it has been demonstrated that the second
moment of the image collection identifies the 3D structure uniquely®"*" or up to a finite list of
candidate structures."” In Section 4.2, we show that our metric is alike other similarity scores but
remarkably does not rely on alignment.

3.2. Kam’s image metric dig,m

We now introduce a metric between the empirical moments computed from a set of experimental
projection images and the moments computed from the atomic coordinates of a known structure that
compares images to the known structure. We detail the procedure for computing these moments in
Appendix A.1.

If the distribution of poses in the experimental dataset would be known to be uniform, the empirical
moments could directly be substituted for m; and m; in (6) and the metric could be defined as the
deviation between the moments of the two structures. In practice, however, the distribution of angles is not
uniform and is unknown. Since the moments are functions of this distribution, it must therefore be
inferred.

We will show in (12) and (13) that m; and m, depend linearly on the expansion coefficients B, , of the
distribution of viewing directions. The optimization problem minimizing the discrepancy between the
moments of the two structures is, therefore, a linear least-squares problem in B, ,.. It follows from Table 3
of® that this linear least-squares is Zariski-generically full-rank (although not necessarily well-
conditioned) for various small bandlimits L and P. Solving this optimization problem efficiently
eliminates the unknown rotational distribution. We then define the metric between the moments of the
structure @ and the experimental moments m;, m; by

P = 2 ~ N 2
min i, — mz (@) I g gy + 200 — 1 (@) I - ®)

where 4 > 0 is a hyperparameter which we set to 1 for all experiments and
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P
77={p(R):SO(3)—>IRs.tp Z Z Bor Y5, (0 and/ R)dR = 1} ©9)

=0m=-2¢

is the set of admissible distributions of viewing directions that are invariant to global reflections and
in-plane rotations, where (A(R),¢(R)) s as in (2). To simplify the optimization problem and lead to faster
algorithms, note that we do not impose positivity of the distributions p € P, though this could be enforced,
for instance, by imposing linear constraints p(R;) > 0 for a suitable choice of R; € SO(3). Moreover, the
constraint fso 3P (R)dR = 11is equivalent to imposing By = 1,(8) which can be achieved by removing By
from the set of optimization variables and fixing its value to 1. The values of the bandlimit parameters L, P
and the hyperparameter 4 used in our numerical experiments are given in Appendix B.1.

Just as in the previous section, we replace the continuous norms in (8) by discrete norms to define the
metric between empirical moments and the moments from a 3D structure as

1/2
i (1 ), )= <;rgg||ﬁnz —ma (@) I, + Al —m, (cb,p)nil) - (10)

The cost function in (8) is rotationally invariant, in that it does not depend on the orientation of @, since
(7) implies that

min [, — m; (R ) p)||L2(szR2)+/l||m1 “m (R q)p)uLz(Rz)
= miny [ — mz (D8 ) . g+l = (BB -9 ) 7 (11)

— i (1 & 2
= iy [ —m (@) 172 g ey 2080 — 1 (@) 2 ).

where the last equality follows because R - p lies in P, since rotating a viewing angle distribution over
SO(3) results in another viewing angle distribution over SO(3).

At the cost of solving the small linear system detailed in Appendix A.3, our method allows for the
comparison between a stack of images and a resolved structure, without performing a 3D reconstruction.
Furthermore, we precompute the least-squares matrices necessary for optimization, after which the
distance function can be calculated in real time. With sufficient storage and precomputation, the procedure
is scalable to the entirety of the PDB.

In particular, digx.m can be used in an efficient scheme to match a stack of synthetic images to the
potentials of nearby PDB structures. By selecting a subset of the PDB database, one can efficiently
compute digam((My,m,), ) for each @ in the subset and find the nearest neighbors. The method for
processing image moments in practice is detailed in Appendix A.4, and the computational complexity of
the metric is derived in Appendix A.5.

4. Results
4.1. Existing measures of structural similarity

There are several existing methods for reporting structural similarity between two known volumes. We list
two approaches based on computing alignment and Zernike moments. We compare both dig,m and dykam
to these approaches in the experiments in the following subsections. Note that the following existing
metrics are limited to measuring similarity between two structures and cannot compare images to
structures, whereas digam can.

1. Euclidean alignment: A classical approach for comparing the similarity of two structures is to
sample the volumes on a 3D grid and calculate the Euclidean distance between pairs over rotations
and translations. However, this method is expensive to compute since optimization over SO(3) is
required to align the structures. Accelerated methods for computing these alignments by maxi-
mizing the correlation between two volume maps over rotations and translations have been
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implemented in various programs, for example, via gradient ascent in Chimera."'® Further
acceleration can be achieved by calculating volumetric correlations by expanding the volumes
in a well-chosen basis and applying dimensionality reduction’' ” or by maximizing the correlation
between common lines in projection images generated from the volumes."'® Similar alignment
methods, such as those described in the study by Bartesaghi et al. and Xu etal.'”*?, are also used in
electron tomography for sub-volume similarity. In this paper, we use a Bayesian optimization
algorithm to minimize an Euclidean loss function, as described in the study by Singer and Yang,*"
to compute the alignment and minimum distance between two volumes.

2. Zernike moments: Another metric for structural similarity is to expand the molecule’s structure in
Zernike polynomials and compute a metric from the Zernike expansion coefficients, as described in
the study by Guzenko et al.*?, which is used by the PDB for structural similarity search.

4.2. Applying d.x.m to a PDB subset

To test the ability of d\kam to discern the similarity between 3D structures, we first generate a database
using 1420 structures downloaded from the PDB."'” The subset chosen here was selected by filtering for
human proteins with an experimental structure at resolution between 1 and 3 A and a molecular weight
between 150 and 250 kDa. We use this subset because it encompasses a diverse range of shapes and
symmetries as well as many homologous structures. Additionally, the weight range reflects a smaller and
more challenging protein size for a typical cryo-EM experiment.**) In the future, a larger database
containing the entire PDB can also be generated.

Using our database, we first generate a discretized potential for each structure as described in Appendix
A.2. The first and second moments of each structure can then be computed using (3). We then compute
dykam 1n (60) pairwise for all structures in the database.

To compare the performance of dyk,m against existing metrics, we calculate pairwise scores using
dvkam, Euclidean alignment, and the Zernike metric. We then plot the returned scores against each other
and calculate a ranking similarity using normalized discounted cumulative gain®® (NDCG). We use this
metric since it is a popular method to quantify the similarity between sets of rankings; its calculation is
given in Appendix A.6.

In Figure 1, we report the NDCG scores between pairs of metrics. All NDCG scores are close to
1, indicating strong agreement among the three different metrics on which structures are most similar.
However, the alignment metric and log(dykam) share the highest average NDCG score. To verify the
statistical significance of this agreement, we report a t-test by selecting 10 different subsets, showing that
the NDCG score between dyk,m and the alignment metric is statistically significantly higher (with a
p-value p ~ 8 x 10~%) than the NDCG score between the alignment metric and the Zernike metric. We thus
conclude that d\x,, provides a fast and accurate alternative for the alignment metric.

Although it is the most interpretable metric, Euclidean alignment is computationally expensive to
execute for all pairs of structures in a database. To achieve a manageable runtime for alignment, we
calculate pairwise Euclidean alignment distances for a subset of the database of size 100. Pairwise
alignment on this subset took 8 hours on a 2.6 GHz Intel Skylake Central Processing Unit (CPU) running
AVX-512 using 16 physical cores and 80 GB random-access memory (RAM). To do pairwise alignment
via Bayesian optimization for the entire database of 1420 structures would require 46 days of compu-
tation, whereas using d,kam (including precomputation) to calculate pairwise distances between all 1420
structures in the database requires 3 minutes on the same hardware. Despite containing an alignment
component, the Zernike metric is also fast, taking 3 minutes to compute pairwise distances for the entire
database.

After observing high agreement between d,k.m and the other metrics, we compute a 2D embedding of
the similarity between structures in our database using t-distributed stochastic neighbor embedding
(t-SNE)“? (see Figure 2). Analogous t-SNE plots for the alignment metric and Zernike metric are
reported in Appendix B.2. We find that d\k,m provides interpretable results in identifying similar
molecules from their moments without the need for alignment. In particular, we observe that both
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Figure 1. Comparison between dyx,m, the Zernike metric, and Euclidean alignment. a-c) A random size

100 subset of the database is selected. Then, pairwise similarity metrics are calculated and plotted, where

each point represents a pair of structures. The NDCG score is calculated using the metric on the y-axis as

the predicted metric, and the metric on the x-axis as the true metric. d) The procedure is repeated with

10 randomly selected size 100 subsets, and the mean (1) and standard deviation (o) of the NDCG scores
are calculated. The error bars and points visualize u+o.

homologous (i.e., structures with similar sequences) and similar-shaped structures are shown to be
clustered together.

4.3. Database search using dix., with synthetic cryo-EM data

We next demonstrate the ability of dix.,m to accurately find a match for the moments computed from
projection images to a database of analytical moments computed from the atomic coordinates of known
structures. To test our metric, we use the same dataset as the previous section, selecting the protein
structure of a Mas-related G-protein-coupled receptor (available as entry PDB-7VV3©®) from our
database described in Section 4.2. We use this entry because our database includes several similarly
shaped yet nonidentical structures, on which we examine our metric’s performance.

We generate a synthetic cryo-EM dataset as illustrated in Figure 3: We take 25000 clean projection
images from a nonuniform distribution over SO(3) at viewing angles given by a mixture of three von
Mises—Fisher distributions.””” To simulate cryo-EM data, the images are then corrupted with one of
100 unique radial CTFs, after which we add white noise with a signal-to-noise ratio (SNR) of 0.1. We
define the SNR by taking the signal as the average squared intensity over each pixel in all the clean images
and setting the noise variance to the appropriate ratio of the signal. These simulated images are generated
using the ASPIRE software package”" and have parameters consistent with many experimental datasets.

We then compute the moments of the simulated images as will be shown in (12) and (13) and compare
them to the database of moments using the image-to-volume metric described in (8). We also report the
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number of atoms
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sloged
B o & . g @ 20000
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dimension 2

dimension 1

Figure 2. 2D embedding of protein structures based on their similarity using dyx.m. The analytical
moments of 1420 proteins were computed and compared using (6), and t-SNE was applied for visual-
ization. Each node represents a single structure and is colored by the number of atoms. Distinct clusters
containing homologous or similarly shaped structures suggest that dx.m provides interpretable results.

[LDI,

-180 -120 -60 0 60 120 180

Figure 3. Visualization of the generation of simulated images. (a) Protein structure of PDB-7VV3.
(b) Clean projection images from PDB-7VV3 generated with a nonuniform viewing angle distribution.
(c) Projection images corrupted with a CTF and white noise with SNR=0.1. (d) Distribution of
nonuniform viewing angles.

effect of varying the number of images on the metric’s performance in Appendix B.3. Using our metric,
we can rank the similarity of the image’s moments to our database as shown in Figure 4. We show that the
most similar score (i.e., the smallest value in image Kam’s metric) corresponds to the ground truth
structure used to generate the images. Furthermore, based on our results, the next top 116 structures
correspond to structures with similar volumes and sequences. These results demonstrate that we are able
to compare directly between noisy, CTF-corrupted images and known structures. This approach could be
especially valuable if there is no known model for initialization in 3D reconstruction or if the molecule
generating the images is unknown.®”

We report alignment scores between molecules in our database to PDB entry 7VV3, compare these to
our metric’s scores, and plot the results in Figure 5. Most notably, when the protein structure becomes less
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Figure 4. Histogram ranking of dissimilarities computed using dix.m on simulated noisy projection
images generated from PDB-7VV3.
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Figure 5. Comparison between the rankings given by dik.m (computed from simulated images) and the
minimum Euclidean distance after alignment (computed from volumes). The structures shown are super-
imposed with the ground truth after alignment in panels (a)—(d). The points on the graph that correspond to
these structures are colored and labeled. The ground truth corresponds to the green cross in the lower left.

Note that the Euclidean alignment metric shows stagnation whereas Kam's metric does not.

similar to the ground truth (7VV3), the alignment metric begins to lose discriminative power. Figure 5
shows structures with varying degrees of dissimilarity as having the same score (~100). In contrast, our
metric retains discriminative power, ranking structures with similar sequences/functions before structures
with similar shapes.
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Alignment via Bayesian optimization between one structure and the 1420 structures in the database
took 95 minutes using the hardware described in Section 4.2. Aside from the computational cost, the
interpretation of the optimal rotation returned by alignment becomes unclear when comparing two
structures that are not volumetrically similar. On the other hand, our metric does not return an alignment
between two structures, which could render it less useful when an explicit alignment must be computed.
Without this alignment, it may become harder to visually compare their volumes.

It is computationally costly to generate and perform moment estimation on synthetic images for every
molecule in the database. As such, to compare the performance of our metric against the Zernike metric,
we select from our database a random subset of 100 structures. For each structure, we repeat the process
we perform on PDB-7VV3: First, we generate a nonuniform distribution over S* as a mixture of three von
Mises—Fisher distributions with random means, weights, and covariance matrices. We then generate
25000 images, corrupt with SNR = 0.1 and radial CTFs, compute the moments, and search across the
database.

For every structure, we recover the ground truth as one of the first six lowest-scoring molecules.
Moreover, 88 of the 100 tests recovered the ground truth as the lowest-scoring molecule. To evaluate how
well the metrics agree on structural similarity, we compute the size of the intersection between the top ten
structures returned by our metric and those returned by the Zernike metric. As shown in Figure 6, we find
that the metrics agree on two to three structures, and a large number of structures agree only on the ground
truth structure. When they occur, disagreements between the metrics are likely due to the presence of near-
identical molecules in the database.

4.4. Toward matching experimental datasets by dix,n,

While our simulated result shows success in matching a synthetic cryo-EM dataset to PDB structures,
many experimental cryo-EM datasets are corrupted by a large number of unmodeled effects that we have
not considered. Among the real-data effects are scattering potential’s corruption by a solvent effect,”” the
B-factor,”’ " a global scaling ambiguity, imperfect centering, junk particles, non-radial CTF, and imperfect
noise model. Our simulation falls short on these counts.

In a first step toward applying dikam to real experimental datasets, we compare the moments of a stack
of images deposited in the Electron Microscopy Public Image ARchive (EMPIAR)®? to the moments of
its preprocessed 3D reconstructions given by the program CryoSPARC®?. We select the dataset
EMPIAR-10076,"" a heterogeneous dataset containing five major structures. The dataset is well
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154

number of structures
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0 ]

1 2 3 4 5 6 7 8 9
size of intersection

Figure 6. Comparison between digam computed from simulated images, and the Zernike metric,
computed from volumes. Here, we repeat simulated experiments 100 times. Then, the size of the inter-
section of the top ten structures returned by dixam and the Zernike metric is plotted as a histogram.
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characterized, and each image in the dataset has been classified into one of the five major states®* or
“junk” particles, which we discard. We use the classification to generate five separate datasets, allowing us
to compute five different moments, one for each of the major states. This test case allows us to examine our
metric matching on a real dataset, while bypassing some of the issues associated with comparing datasets
and volumes obtained in different experimental conditions.

We downsample the image stack to 64 x 64, center using the deposited shift, and mask the images with
a circular binary mask of radius 0.8 times half the side length of the image. We then estimate the moments
for each structure and compare them to moments computed analytically from preprocessed volume
reconstructions of the five major structures, as well as two other distinctly shaped ribosomes from the
Electron Microscopy Data Bank®? (EMDB), EMD-8457 and EMD-2660, used as a baseline. Scaling
issues between the moment computed from the images and the moment computed from the volume are
resolved by examining the diagonal entries of the second moments. Specifically, we find a multiplicative
scaling factor that best matches the diagonal of the image-computed second moment and those of the
volume-computed second moment under a uniform distribution with respect to the /* norm.

Asshown in Figure 7, it is observed that Kam’s metric recovers the ground truth structure at the lowest
distance for the experimental images corresponding to structure 001. We note that the scores for molecules
001 and 002, as well as molecules 003 and 004, are almost identical in value. Also, we find that the
analytical moments are closer to each other than to the experimentally determined moments. Finally, the
metric reports the baseline structures, which are very different in shape and size, at the largest distances.

In Figure 8, we plot the distances between the five reconstructions (or in the case of dikam, their
experimental images) and the seven candidate structures given by both of our metrics. The exact values for
dikam are given in Appendix B.4. There is also scaling ambiguity in dyk.m Since our reconstructions are
preprocessed; hence, we use the same approach as above: We scale each candidate structure’s moment by
a multiplicative scaling factor that best matches the candidate structure’s diagonal entries of the second
moment with those of the ground truth structure. Analyzing the trends in each row, we observe that the

b) —mon| ©
10° m; (002) 106
m

s m; (003)
m; (004)
m;

0 5 10 15 20 25 30 0 5 10 15 20 25 30
radius radius

d)

-

001 002 004 003 000 EMD-8457 EMD-2660
(Ground Truth)

Figure 7. dixan visualization and ranking results for experimental data corresponding to structure
001 (a) Experimental images from EMPIAR-10076 corresponding to structure 001 downsampled to
64 x 64 pixels, centered, and with binary mask applied. (b) Comparison between diagonal entries of the
second moment computed from the reconstructed volumes 001 and 002 and the moment estimated from
experimental images corresponding to structure 001. (c) Comparison between diagonal entries of the
second moment computed from the reconstructed volumes 003 and 004 and the moment estimated from
experimental images corresponding to structure 001. (d) The five reconstructions (000-004) and two
baseline structures (EMD-8457 and EMD-2600) ranked using dik.m, ordered from left to right.
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Figure 8. Visualization of 10g(dykam) and 1og(dikam) values on the seven candidate structures. Here,
EMD-8457 and EMD-2660 are listed as 8457 and 2660 for brevity. Note that there are five ground truth
structures but seven candidate structures since EMD-2660 and EMD-8457 are baseline structures for
which there are no images in the experimental dataset.

metrics seem to agree on the general ranking of the molecules. While the structures 001, 002 and 003, 004
are very similar, dyg,, shows that the metric distinguishes between them given accurate moment
estimation, whereas djk.m loses some discriminative power. However, when it comes to distinct molecules
such as EMD-8457 and EMD-2660, both metrics agree on their rankings.

5. Limitations and future work

dikam currently falls short of being directly applicable to experimental datasets. As stated in Section 4.4, there
are several unmodeled effects not considered in this work that could lead to unexpected results for real data.
The net effect of ignoring these experimental considerations is to bias our moment estimator, which may
explain the inability of dik,m to detect the smaller differences between structures 001 and 002, as well as
003 and 004. Developing an estimator that is robust to outliers (such as junk particles) could help alleviate this.

While we address a few of these parameters, we do so with prior knowledge. For example, the shifts
used to center images are a byproduct of the reconstruction process. In future work, we aim to develop
methods to correct these effects directly from the raw images. Likewise, here we have controlled for
experiment-specific artifacts by using images and structures resolved from the same experiment, whereas
in the future we wish to compare across all structures. Furthermore, in the future we seek to compare
moments computed from real data directly to the PDB, by appropriately correcting for the discrepancies
between PDB and reconstructed structures.

Even with our current mitigations, issues such as the B-factor and inaccuracies in the noise model remain
completely unmodeled. Further studies will be required to investigate which of these omissions is important
and which can safely be made. Then, our method could be modified to account for the important effects.

6. Discussion

We introduced structural similarity metrics for proteins based on moments, inspired by the moment
computation in Kam’s method. dyk.m compares known 3D structures according to the difference between
the moments of their potentials. We showed that the metric accurately captures similarity according to the
rotationally aligned Euclidean metric, an interpretable but expensive-to-compute molecular similarity metric.
Therefore, dykam allows for the efficient comparison of large number of known structures. A potential
application is to improve the similarity search presently in the PDB, which uses the Zernike metric — a fast but
less principled metric that involves learning weights and which our results suggest performs worse than ours.

A second metric, termed dik.m, allows for the computation of a similarity score between an unknown
structure present in a large cryo-EM dataset and a solved structure. The computation of this metric does
not require a 3D reconstruction process for the image stack and therefore is very efficient. We showed on
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simulated projection images that our method could discriminate between even very similar proteins with
reasonably sized datasets. If it were to work on experimental datasets, dik,m could become a versatile tool
for 3D reconstruction. Typical reconstruction algorithms used in practice are only locally optimal and thus
require good initialization, which dik,m could provide by returning the homologous structures present in
the PDB. By extending the database to the entirety of the PDB and including structure predictions, both
solved and predicted structures could be quickly compared against.

Beyond its application to experiments, dik.m demonstrates that Kam’s method is a feasible strategy for
high-resolution reconstruction. Recent works have improved the viability of Kam’s method by using
sparsity'” or neural network®® priors; likewise, the search over the PDB using Kam’s metric can be
interpreted as simply running Kam’s method under a very strong prior, where only a finite number of
structures appear with nonzero probability. Our results suggest that, if one could formulate a tractable
prior over the manifold of proteins, Kam’s method could yield high-resolution reconstructions.
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Appendix
A. Methodology

In this section, we describe the computational details of the method.

A.1. Moment derivation

Prior work™ has shown that the analytical first and second moments of cryo-EM images generated by ® and p equal

m; <(,I\),p) ZBK mAfm f2f+] ( l)m, (12)

where the sum ranges over (£,m) such that 0 <¢ < mm(L,P), ¢ is even, and — ¢ <m<¢, and

m; (&p) = Zei"(‘f’,’“’)
n

(7l)m+m’ (13)
Apm(r)Ap uy (F)NGNZ By _ i Con (6,8 smym’ 0, —n) ~—5——,
; " ’ o 207 +1
Cym, ' m'
where
20+ 1(¢—n)!(=1)" ¢ -
+1)! —D)2 i = 2
= | o @l 2 T ()T S medd) (14)
0 if n# £ (mod2)
is an explicitly calculated constant,
Cp (&8 smum ,n,n):=C(¢,m; ', |€" s m+m' ) C(¢,m38 1 |€" ,n+ 1) (15)

G7)

is a product of Clebsch-Gordan coefficients,"’” and the sum ranges over those indices n,2,m, ¢’ ,n’, ¢" that satisfy

—L<n<L, [n|<¢€<L, |n|<' <L, —¢<m<¢, —¢<m <7,
£=¢"=nmod2, max(|£—7|,|m+m'|)<¢" <min(+¢,P).

See Sections 2. 3 1 and 2.3.2 in,® respectively, for the derivations of (12) and (13). In the case of the uniform density on SO(3),
we note that N = iz SO (12) and (13) simplify to the following:

m ()= \/%Ao,o(’”), 17

mo (Ag,rr!) = ﬁZAm(r)Aa,m(r')pf(cos(mm))

(16)

(18)
,fZA/m )Azm(r')Pr(cos(Ag)),

where P, is the Legendre polynomial of degree and z denotes the complex conjugate of a complex number z€ C. The
simplification of (12) to (17) is immediate, whereas the simplification of (13) to (18) uses the sum rule for spherical harmonics; see
(10) in the study by Kam.")

A.2. Uniform case

This section details the method to compute dyk,m. Our algorithm takes as input a PDB identifier (a list of atomic coordinates), on which we
center the atomic positions by subtracting the molecule’s center of mass. Then, we use the three-dimensional nonuniform fast Fourier
transform (NUFFT)®**? to compute the discrete Fourier transform evaluated on a grid in spherical coordinates, that is, to compute

q
a1 = g fi (rkaﬂ) M4l where aj = (sin()j cos gy, sind; sing,, cosﬁj) S (19)

i=1
where x; denotes the coordinates of the i atom from the PDB identifier and ¢ is the total number of atoms. The function f; is the Fourier
transform of the scattering potential of the i atom as reported in the study by Peng et al. and Singer.“**" In real space, this corresponds
to convolving a Gaussian mixture with a delta function, in other words, adding a Gaussian blob around the atom coordinate. Here,

= k” ,0;=% and g, = 2”1 for k=0,...,N/2 and j,/=0,...,N — 1 and J is the side length of the volume grid in angstroms.

Lastly, we apply the spherical harmonic transform to a;; defined on the spherical coordinate grid (rk,é)j,(o,) in (19) using
SHTools.“**? This gives us coefficients

Afm rk § ak,/lY a//
0</<L
0<k<n-1
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Let p,, denote the uniform density on the sphere. In the discrete case, we sample each image as a 2D polar grid at N /2 radial points
rand N angular points ¢, where N is the number of pixels of one side of the projection images. In (12), the first moment m; is indexed
by rand is thus an N /2 length vector. Note that in (5), Ag; =27j/N — 2z forj=1,...,2N, but since €" in (13) is 27 /n periodic, we
have that ¢"(27=4¢) = ¢=5¢ and hence, m, (r, v, Aqﬁ_/) =m, (r,r’ A N>‘ Thus, Ag; forj=1,...,N is redundant and we consider
only Ag; forj=N +1,...,2N, which enumerates [0,27]. Thus, m, is a three-dimensional tensor of size N x N /2 x N /2, since there
are N values for Ag and N /2 values each for r and #/, where Ag are points uniformly spaced between 0 and 27z and r and // are N
uniformly spaced points between 0 and 6. Equations (17) and (18) give

my (k) =Aoo(rk), (20)
m (. k1, k) = LZx‘lf,m(rk. )A¢—m(ri, )Pe ( cos( Ag;+m
Ar o

: yren) @)
- E;’;Aam (r )Aem (11, )Pe (cos (Aqﬁj) ) .

We then compute the metric given in (10). To better approximate the L, norm in the continuous case, we scale the difference of each
entry my (j, k1, k2) by \/Tki Tk, so that the squared norm is scaled by 7y, 7,. More precisely, we define weighted £ 2 norms || - II,, and
[I-1I,, on RY/2 and RV *N/2XN/2 a5 described in (5). Let @ and @' be two different molecules, and m;,m, and m;,, m, be the first
and second moment tensors, respectively, from two different molecules. We define the distance between the moments as in (6).

A.3. Least squares for the nonuniform case
This section describes the process for generating and solving the least-squares system for B, the matrix encoding the viewing angle
distribution. We use the following convention for the vectorization operator vec(-): If # €C™/, vec(M) returns a vector of
dimension ij obtained by stacking the columns of ./Z, that is,
ayy e ay
vec ==[a1,1 e Al vt a,':/']r. (22)
aiy et a4y
The first moment is linear in B as shown in (12), so fitting a viewing distribution to observed moments can be solved through a
least-squares problem. We detail this procedure in Algorithm 1.

Algorithm 1: Computation of least-squares matrix 7 for m;.

1 initialize V[i=1,...,N/2][(p=1,...,P;m= —p,...,p)] < 0.
2 fori=1,...N/2 do.
3 for p=1,...,P do.

4 for m= —p,...,p do. .
5 VI[(pi—m)] — Aem(r)N G
6 end.

7 end.

8 end.

9 return V.

Algorithm 2: Computation of least-squares matrix U’}’ o for g%”:,, P2

I Initialize U}, [i=1,...,2¢ +1)2¢' + )] [(¢" =1,....Psm= —¢",....£")] 0.
2 fori=1,...2¢+1)(2¢'+1) do.

3 form=—¢,...,¢ do.

4 form'=—-7¢,...¢

5 for /"' = max (| — 2|, |m+m'|),...,min(¢' +¢,P). o
6 % o] [(f’/, —m—m')] Uy i [(f'/,—m—m')] +Cp(¢,¢ ,m,m',n, —n)%
7 end.

8 end.

9 end.

10 end.

11 return L(’;;, p
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For the second moment, we rewrite (13) more compactly:

my(Ag)=> "N A B A (23)
n ¢,
where
(_ 1 )m +m'
( ;,t”)m’m, = ;N;N;’ﬂBﬂ',fmfm’ Cor (£, ;m,m’,n, —n) 27+ 1 (24)

is a matrix of size (2¢+1) x (2¢'+ 1) indexed by m; = —#...¢ and my = — ¢'...¢', and (Ay),, .= A¢.m(r) is a matrix of spherical
harmonic coefficients indexed by m,r. Here, the sum ranges are detailed in (16). Since & is linear in B, we use Algorithm 2 to
construct many linear systems U/ ,» such that

Uy vee(B) =vec (%’}f ) s

Using the Kronecker product, (23) can be written as

vec(my (Ag)) Ze”'wz Ar®@A)U ,vec(B).

‘0
This, too, is linear in B:
vee(my(Ag)) = U(Ag)vec(B), where U(Ag)=Y "> (A @AUL .. (25)
n 6,
By vertically appending ¥ and copies of U(A¢) for all values of Ag in Section 3.1, we obtain the least-squares formulation
min||4Ax — b||,
X
where
V
U(A ec(m
a-| VA | x=vec(B), and b=<v ( ')>. 26)
: vec(my)
U(Ag,)

To solve this, we perform OR decomposition 4= QR and then solve the normal equations

A*Ax=R*Rx=A*b=R*Q*b,
that is, we solve Rx=Q"b. Since R is a square upper triangular matrix, we solve this using back substitution.

A.4. Change of bases for moment comparison

We compute moments from images using the fast method“* that produces the moments expanded in the Fourier Bessel basis. Thus,
achange of bases is required for moment comparison. The Fourier Bessel basis has several nice properties that make it advantageous
to use when computing the moment from images; it is orthonormal, frequency-ordered, steerable, provides fast radial convolutions,
and has a fast transform.“*> The Fourier Bessel basis functions can be written in polar coordinates (r,6) as

Vi (7,0) =cnid n(Aukr e, 27
nk :

where J,, is a Bessel function of the first kind of order #, and 4, is the k-h smallest positive zero of J,, and ¢, is a normalization
constant.

We create a change of basis matrix (B),, ¢ ,.x) = ¥ (7> 0) by sampling on a Cartesian grid (x,y) € {r;} x {r;} with the {r;} grid
defined as in Section 3.1, where (r,0) are the grid points (x,y) in polar coordinates. This yields the moments in real space
m, (®,p)(x,y) =Bmy(P,p)(n.k),
my(D,p) (x1,31,%2,¥;) =Bma(®,p)(n1,k1,n2,k2)B*
Now, we compute the NUFFT to convert the moments into radially sampled polar coordinates in Fourier space as in (19). In

practice, we do this for m, by taking each row (which is indexed by (x;,y, )), reshaping it into an image, and applying the transform.
We then apply the same process to the columns indexed by (x2,,).

A.5. Computational complexity
In the following, L is the molecule bandlimit, and see (1); P is the distribution bandlimit, and see (2); M is the number of projection
images; and N is the image side length of the N x N pixel images. We assume that P <L.

There are three main steps for calculating the least-squares matrix for each structure in our database. We first calculate the least-
squares matrices Uy . for 98 as described in alg:BLSalg. This needs only to be done once and does not need to be recomputed for
each molecule. Calculating this matrix takes O(PL5 ) time and uses O(PLS) space. For the calculation of the least-squares matrix
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itself, we precompute (Ay ® A )Us 1, for £,¢',n as described in (25). These intermediate steps take O(P?L*N* +L*N?) time and
use 0(L3N 2) space for forming the Kronecker product and subsequent matrix multiplication. Finally, the construction of the least-
squares matrix 4 in (26) takes 0(L3N 3) time for the scalar multiplication of a matrix for each n,#,¢’, and the least squares use
O(P2N 3) space. As such, the total computational complexity for calculating a least-squares matrix is O(PZL5 +P2L’N?*+°N? )
time and O(PZN3 +L3N? +PL5) space.

The computation of moments from noisy projection images in the Fourier—Bessel basis takes O(MN 3 +N4) time and uses
O(MN 24N 3) space. To convert this to polar coordinates in Fourier space, we must first evaluate the moments in the Fourier—Bessel
basis. This takes O(N 2logN ) time for each expansion, and we require 2N such expansions (see app:basis). Hence, in total, this step
takes O(N*log N) time and uses O(MN? + N*) space. Converting into Fourier space using the NUFFT takes O(N*log ') time and
uses O(N4logN ) space, and we do this 2N? times for a total of O(N logN ) time and space complexity. Storing the final moment
uses O(N 3) space (since the resulting matrix from the NUFFT is block circulant). Overall, computing moments from images and
converting them to polar coordinates in Fourier space take O(N logN +MN 3) time and use O(MN 2+ N®logN ) space.

A.6. NDCG score
The NDCG®* is calculated by taking the discounted cumulative gain (DCG) and normalizing by ideal discounted cumulative gain

(IDCG):
DCG = Z%ﬁiﬁm,
ees ZW’ (28)
NDCG:%,

where i is enumerated in the order induced by the predicted scores.

The NDCG puts weight on scores that are agreed to be high by both metrics. However, our metric and the metrics we compare to
are dissimilarity scores, so we prefer weight on scores that are considered low by both metrics. To remedy this, we use the reverse of
the order enumerated by the predicted scores. For the true scores, we first normalize the scores to the range [0, 1] and then take the
exponential e~ for each true score s.

B. Additional Results

B.1. Parameter selection

In the experiments, we set the bandlimit parameters to P =6 and L =25. Note that this value of P is comparable to previous work as
described in the study by Sharon et al.®¥), whereas the higher value of L allows for a more accurate representation of the molecule in
spherical harmonics. Furthermore, the hyperparameter A was set to be 1. As shown in tab:lambda below, varying A does not greatly
impact the performance of the metric.

Table Bl. Effect of the value of the hyperparameter J. on the ranking induced by dixam

A 4, As As Ay As
le-2 7VV3 7VUZ 7TRK 7TRP 7VDM
e-1 7VV3 7VUZ 7TRK 7TRP 7VDM
1 7VV3 7VUZ 7TRK 7TRP 7VDM
el 7VV3 7VUZ 7TRK 7TRP 7VDM
e2 7VV3 7VUZ 7TRK 7TRP 7VDM
e3 7Y15 6 K4l 7VDM 7VUZ 7E33

Note: A; denotes the structure with the ith lowest value of dix.m In each row, the entry shaded green indicates the ground truth structure.

B.2. Additional t-SNE plots

This appendix includes t-SNE visualizations of the Zernike metric on our database and the alignment metric on a subset of our
database of size 100. The alignment metric is restricted to a subset of size 100 since calculating pairwise distances for a 1420 is
computationally taxing; see Section 4.2. Visually, the Zernike t-SNE seems to have fewer distinct clusters than the t-SNE plot
generated using dykam and also groups molecules with different numbers of atoms together. It seems possible that Zernike metric is
less discriminative, although this may also be an artifact of t-SNE’s dimensionality reduction.
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Figure Bl. Additional t-SNE plots. (a) t-SNE plot of pairwise Euclidean alignment distances on a subset
of size 100. (b) t-SNE plot of pairwise Zernike distances on the entire database. (c) t-SNE plot of pairwise
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B.3. Robustness to number of images

Here, we examine the robustness of our metric to inaccuracies of moment estimation. Specifically, we vary the number of noisy
synthetic projection images that the metric has access to and record the highest-ranking structures.

Table B2. Effect of the number of projection images used for moment estimation on the ranking
induced by dikam

Number of Relative M, Relative M,
images Ay A> As Ag As error (%) error (%)
500 7VDM 7VvUZ 7Y15  7E33 7VV3 1.49 8.23
1000 7vUzZ 7VDM 7VV3 7TRK  7EJ8 0.76 6.22
2500 7VUZ 7VDM 7VV3 7TRK  7TRP 0.43 4.02
5000 7VV3  7TRK 7VUZ 7TRP 7VDM 0.27 2.95
10000 7VV3 7vUZ 7TRK 7TRP 7VDM 0.25 1.89
25000 7VV3 7vUZ 7TRK 7VDM 7TRP 0.19 1.37
50000 7VV3 7vUZ 7TRK 7VDM 7TRP 0.14 1.15

Note: A; denotes the structure with the ith lowest value of dikam. In each row, the entry shaded green indicates the ground truth structure. The relative
error in each moment is between the moment estimated from noisy projection images and the moment calculated from their clean counterparts.

B.4. Additional experimental results

Table B3 reports the metric’s rankings using experimental images corresponding to the five structures resolved from EMPIAR-
10076.

Cite this article: Zhang A, Mickelin O, Kileel J, Verbeke EJ, Marshall NF, Gilles MA & Singer A (2024). Moment-based metrics for
molecules computable from cryogenic electron microscopy images. Biological Imaging, 4: e3. doi:https://doi.org/10.1017/
$2633903X24000023
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Table B3. Performance of dikam on structures 001, 002, 003, 004, and 005 of EMPIAR-10076

Number of images Ay Ay As Ay As As A7

2018 000 (14.56) 004 (16.22) EMD-2660 (16.23) 003 (16.32) 002 (16.42) 001 (16.45) EMD-8457 (17.43)
12650 001 (14.28) 002 (14.29) 004 (14.34) 003 (14.35) 000 (14.95) EMD-8457 (15.15) EMD-2660 (15.64)
26104 001 (15.13) 002 (15.16) 004 (15.18) 003 (15.29) 000 (16.50) EMD-8457 (16.51) EMD-2660 (17.14)
26138 003 (14.56) 004 (14.73) 001 (14.74) 002 (14.74) 000 (15.50) EMD-8457 (15.83) EMD-2660 (16.08)
36561 003 (14.62) 004 (14.80) 001 (14.84) 002 (14.88) 000 (15.40) EMD-8457 (16.00) EMD-2660 (16.09)

Note: A; denotes the structure with the ith lowest value of dikam. The value of 1og(dikam) is reported next to each structure in parenthesis. In each row, the entry shaded green indicates the ground truth structure.
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