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1. Let

/ ( « ) = £ <*n<?Xn (s = ar+it),
n = l

where 0 = Ao < At < ..., kn -* oo as n -> oo, and lim inf (An+1 - A J = /j > 0, be an entire
fl-»0O

function represented by a Dirichlet series whose order (R) and proximate order (R) are
respectively p (0 < p < oo) and p(p). For proximate order (R) and its properties, see the paper
of Balaguer [4, p. 28].

In § 2 I prove a general theorem involving proximate order (R), and in § 3 I apply it to
give an important application in the theory of entire functions represented by Dirichlet series.
§ 4 is exclusively devoted to illustrating the best possible nature of this application.

2. Define

/f \ f
j4(<7) = expl p(t)dt), B(a)= n(t)p(t)dt,

\J o / Jo
where n(t) is a non-decreasing function of t, at least for t 2: t0, and is continuous almost
everywhere in (t0, t). Let

lim sup {n (a)! A (a)} = C, lim inf {n(a)/A (cr)} = D,
CT—•QO (T-+00

lim sup {B(ft)IA(o)}=E, lim inf {B(ff)M(ff)}=F.
<r-»oo o-»oo

I have elsewhere shown [1, (4.1)] that
PF> CP°IC > C O \\
e& ^ L-e ^ o. ^z.i;

THEOREM. Let 0 < p < oo anrf 0 < £ < oo; then
B'(6) C

1 ^ lim sup TTTITTT-x ^ "^ ̂  e> (2-2)

where\ a-*co excluding a set of measure zero and B'(p) is the first derivative of B{a).

Proof. We have, for almost all a ̂ a0,

B'{p) = n(p)p(o) < {C+z)A{o)p(o)

by (2.1), where e is an arbitrarily small positive number. Hence

lim sup — , , , . ̂  — ^ c
„-«, v EA{p)p(p)- E~

t From now on it will be assumed that er-*oo excluding a set of measure zero.
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Next, suppose that the left-hand inequality in (2.2) is false; then if 8 < 1, we have

B'(<r)
\ V < <5i < 1, o £ (r0).EA(p)p{p)

Then

B(a)-B{aQ) = | B'(x) dx < £5, P A(x)p(x) dx
J (To Jffo

and consequently
5(<T)lim tun < F.5 <" F

ff -• 00 - ^ \P)

which is inconsistent with the fact that

lim sup = E;

the result follows.

3. An application. Let p(o) = p, B(a) = p log fi(a) and «(CT) =Av((r), where ji(cr) and
Av{(7) are respectively the maximum term of f(s) and the rank of the maximum term. Then we
have from the above theorem:

1^ lim sup I ^ M £ e , (3.1)

where /i'(ff) is the first derivative of n(a) and

T = lim sup l0g^(<T) (0 < T < oo),

71 being the type of/(s). The result (3.1) has been obtained earlier by the author [2].

4. First, I construct an example which shows that the lower bound in (3.1) cannot be
greater than 1.

Example 1. L e t O < r < o o , 0 < p < o o , and

oo

/(») = z ^r
n = l Til

Suppose now that /„ denotes the rectified ratio in/(j). Then
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Hence, for xn ^ o < xn+i> w e n a v e

Now obviously/(J) is an entire function of order (R) p. By (4.1),

_ \np~]a+n\og T-log «!

and so, for large n,

zn) n log (n/T) + n log T-n log n + n - ^ log n
gPXn glog(n/T)

Since

it follows that

lim SUp "Ol^"/ = T,

and hence/(s) is of type T. Further, by (4.1),

• 1 as n -> oo,

and it follows similarly that

l i m i n f

Next, consider the following example which shows that the upper bound e in (3.1) cannot
be diminished. Srivastava [3] also makes use of it for another purpose.

Example 2. Let

where

/<! = l,P = l + [p], Hn+i. = exp(j£) for n = l, 2

Srivastava [3, p. 144] has shown that/(s) is an entire function of order (R) p and type T. Also
p

Co"') epTlln

/*(*) = H . (4-2)
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if 4>{n)^a«j>{n+\), (4.3)

where

Now it is obvious that for large n, say n > n0, we have

log nn < (f)(n) < log (fttt + p%) < log nn+l/p < log nn+i < ej)(n + l) if 0 < K < 1.

Again, for the above function,
p

(4.4)

where a lies in the interval denned by (4.3). Therefore, from (4.2) and (4.4), we get

-J!^--'i* (4.5)
oTii((r)e e

Let a = log 0*n+/^) =<5n. Then, from (4.5), we obtain

PTn(5n)e<»»

Therefore

. -» e as n-* oo.

u'(a)
lim sup —— > e,

and this, when combined with (3.1), shows that for this function

lim sup = e.
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