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Abstract
Irritable bowel syndrome (IBS) is a chronic disorder characterised by recurrent abdominal pain or discomfort and transit disturbances
with heterogeneous pathophysiological mechanisms. The link between food and gastrointestinal (GI) symptoms is often reported by patients
with IBS and the role of fructose has recently been highlighted. Fructose malabsorption can easily be assessed by hydrogen and/or methane
breath test in response to 25 g fructose; and its prevalence is about 22 % in patients with IBS. The mechanism of fructose-related symptoms is
incompletely understood. Osmotic load, fermentation and visceral hypersensitivity are likely to participate in GI symptoms in the IBS population
and may be triggered or worsened by fructose. A low-fructose diet could be integrated in the overall treatment strategy, but its role and impli-
cation in the improvement of IBS symptoms should be evaluated. In the present review, we discuss fructosemalabsorption in adult patients with
IBS and the interest of a low-fructose diet in order to underline the important role of fructose in IBS.
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Introduction

Irritable bowel syndrome (IBS) is the most frequent functional
bowel disorder. IBS is defined according to Rome IV criteria(1)

as chronic abdominal pain associated with transit disorders that
last for at least 3 months. It is divided into three predominant
subtypes according to the gastrointestinal (GI) symptoms expe-
rienced by patients: (1) IBS with constipation; (2) IBS with diar-
rhoea; and (3) mixed IBS. The prevalence of IBS is about 5 to
20 % in Western European and North American populations
according to Rome IV diagnostic criteria(2). In 2000, the direct
and indirect costs of IBS in the USA were estimated at 1·7 billion
dollars(3). While in Europe the direct annual cost per patient
ranged from 1421 up to 2487 euros and the indirect annual cost
per patient ranged from 339 up to 11 248 euros(4).

Food intake has been identified as a trigger of IBS symptoms
by patients(5) and meal tests have been used to study symptom
response in IBS(6). Patients with increased digestive postprandial
symptoms tend to have higher levels of depression and somati-
sation disorder(7). The occurrence or the exacerbation of IBS
symptoms as a result of food intake has been associated with
more severe symptoms and reduced quality of life(8,9). The del-
eterious and symptomatic role of poorly absorbable and rapidly
fermentable carbohydrates (fermentable oligo-, di-, mono-
saccharides and polyols (FODMAP)) in IBS was first proposed

by Gibson & Shepherd(10). The mechanisms underlying the
effects of unabsorbed carbohydrates on IBS symptoms may
involve osmotic load, alteration of GI tract functions (for exam-
ple, permeability and intestinal immunity) or modification of gut
microbiota composition and functions (for example, fermenta-
tion and production of gas)(11). Among FODMAP, fructose is
of particular interest. Consumption of high-fructose corn syrup
(HFCS) and sucrose has increased dramatically during the recent
decades, resulting in a current average fructose daily intake of
50 g per individual in the USA and most Western countries(12).
Fructose intake challenges the absorption capacity of the small
intestine and leads to fructose malabsorption even in patients
without hereditary fructose intolerance(13). Unabsorbed fructose
may be fermented by the intestinal microbiome and can lead to
gas production such as hydrogen which is known to participate
in IBS symptoms. Fructose has also been shown to trigger or
worsen symptoms in IBS patients(14). All these mechanisms sug-
gest that a low-fructose diet may be of potential interest in the
management of IBS.

Objectives

The main objective of the present narrative review is to define
the prevalence of fructose malabsorption in patients with IBS.

Abbreviations: ChREBP, carbohydrate responsive element-binding protein; FODMAP, fermentable oligo-, di-, mono-saccharides and polyols; GI, gastrointes-
tinal; HFCS, high-fructose corn syrup; IBS, irritable bowel syndrome; KHK, ketohexokinase; KO, knockout.
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Secondary objectives are: (1) to provide an overview of the
potential mechanisms underlying fructose-related IBS symp-
toms; (2) to determine the role of a low-fructose diet in the over-
all management of patients with IBS; and (3) to identify those
patients who could benefit from a low-fructose diet.

Methods

All published studies related to the subject were retrieved from
the PubMed database. For the main objective, we used the key
words: fructose, fructose malabsorption, fructose breath test,
with IBS. Only papers written in English were eligible. Papers
about IBS in children, case reports, case–control-led studies
and reviews were excluded (Fig. 1). Studies were selected by
two independent reviewers.

FODMAP and irritable bowel syndrome

The link between food intake and GI dysfunctions in IBS has
been confirmed in a prospective study(15). The majority of
patients with IBS consider their symptoms to be related to spe-
cific food items; therefore they often change their diet by limiting
the food they perceive as problematic(16). Nevertheless, daily
nutrient intake in patients with IBS is similar to the diet of the
general population and meets national nutrient recommenda-
tions(17). Reporting by IBS patients of specific foods as IBS symp-
tom triggers has led to focusing attention on some dietary factors
such as FODMAP and, more specifically, fructose(18).

FODMAP

Ultra-processed foods of the Western diet are of particular inter-
est as their consumption has increased and they are associated
with IBS(19,20). One of the features of ultra-processed foods is the
high amount of sugar they contain(21). A recent study revealed a
correlation between carbohydrate intake and IBS severity(22).
Moreover, the majority of patients with IBS are intolerant to
incompletely absorbed carbohydrates (70 %)(8) and malab-
sorbed carbohydrates, i.e. carbohydrates that are not absorbed
in the upper GI tract (fructose, fructans, sorbitol, etc.), have been
linked to IBS symptoms(23). The poorly absorbed carbohydrates
have been collectively grouped under the FODMAP concept.
They are frequently associated with and even trigger GI
symptoms(24,25) even if some of them participate in the mainte-
nance of the normal microbial community. Furthermore, diets
low in FODMAP improved symptoms in patients with IBS in
more than ten controlled randomised trials(24,25), reducing
overall symptoms, abdominal pain, bloating and quality of life
in comparison with a traditional diet, Western diet or diet recom-
mendation for IBS(26,27). Even short-term exposure to an
enriched-FODMAP diet (diet enriched in fermentable oligo-,
di-, monosaccharides and polyols) favoured gut symptoms in
patients with IBS when compared with a low-FODMAP diet(28).
However, the unique role of fermentable oligosaccharides in IBS
is more controversial. Indeed, some of them such as inulin, fruc-
tans or galacto-oligosaccharides have prebiotic actions and their
elevated quantity in a high-FODMAP diet may increase the

abundance of beneficial bacteria. Consumption of up to 7 g
of trans-galacto-oligosaccharide per d as a prebiotic supple-
mentation was associated with a beneficial increase in faecal
Bifidobacterium abundance and a decrease in IBS symptoms
and anxiety scores in IBS patients(29). However, larger doses
of prebiotics, for example, 19 g of fructans in children or 40 g
of inulin in adults, have a negative impact on IBS symptoms(30,31).
In contrast, dietary restriction of fermentable carbohydrates has
shown efficacy in improving IBS symptoms(11,25,32-35). However,
the mechanisms by which FODMAP exacerbate IBS symptoms
remain unclear. FODMAP could contribute to GI symptoms by
increasing the luminal water volume or by promoting bacterial
fermentation and subsequent gas production, mainly hydrogen
and methane. These two effects may explain GI symptoms in
patients with visceral hypersensitivity. The involvement of
microbial composition and metabolism(36), the increase in
faecal pH(37) and changes in intestinal permeability(36) are also
suspected but need further investigation.

Fructose

Fructose is a monosaccharide belonging to FODMAP. Its intake
worsens symptoms in patients with IBS(38). It is found in many
fruits and in honey and is present as added sugars inmany indus-
trial foods containing sucrose or HFCS(39). In these foods, fruc-
tose is either free or is part of the sucrose disaccharide while
HFCS is composed of a mix of non-bonded glucose and fructose
in approximately 1:1 ratio.

Fructose consumption pattern

For thousands of years, man consumed < 5 g of fructose per d
from fruit and honey(40). Since the 1970s, fructose has been

Fig. 1. Systematic review search strategy.
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increasingly consumed in developed countries due to the
increase in total sugar consumption and the advent of HFCS.
In the USA, this raised the per capita fructose daily intake to
a staggering 50–80 g(40). Despite scarcity of available data for
other countries, the consumption of total sugar (including
fructose) has increased in most continents over the past
20 years(40-44). In Europe, the Netherlands is one of the few
countries for which recent data on fructose intake are available,
revealing a fructose intake of 35–60 g/d in the population aged
7–69 years(41). In the UK, the daily mean fructose intake has
reached 15–18 g for individuals over 4 years old but it can reach
37–43 g/d for the top 2·5th percentile of the same age group(45).
Normal fructose absorption should be considered alongside
fructose intake. Indeed, one out of two adults cannot fully
absorb a 35 g load of fructose(13). Fructose absorption is also
highly age dependent(46). Infants display the highest predispo-
sition for fructose malabsorption(47), while they are the age
group which consumes the most fructose. Thus, changes in
food intake patterns have probably created a prevalent condi-
tion of fructose malabsorption leading to its overspill in distal
GI tract regions(39).

Intestinal fructose absorption and its regulation

Fructose ismainly absorbed in the proximal small intestine. Since
only monosaccharides can be absorbed, sucrose is cleaved into
glucose and fructose at the brush border by sucrase–isomaltase.
Recently, functional variants in the sucrase–isomaltase gene
which result in reduced or defective enzymic activity were iden-
tified in IBS patients(48-52), supporting the potential link between
sugar absorption defects and IBS. Fructose is mainly passively
transported across the apical brush-border membrane of the
small intestine via the GLUT5 transporter(53-56) and subsequently
exits enterocytes to enter the blood via a different transporter,
GLUT2, present at the basolateral membrane. GLUT5 is the only
fructose-specific transporter unable to transport glucose or gal-
actose at physiological concentrations(57,58), whereas GLUT2 can
transport the three monosaccharides (glucose, fructose and gal-
actose)(59). GLUT2 can also be recruited transiently at the apical
membrane of enterocytes in response to high luminal glucose
concentrations (> 1 mM) in order to support glucose transport
across this membrane(60-64).

Luminal fructose exerts a rapid, strong and specific up-
regulation of GLUT5 mRNA expression above the basal level,
leading to an increase in GLUT5 protein and activity levels(65,66).
In enterocytes, the first step of the main pathway of fructose
metabolism involves ketohexokinase (KHK or fructokinase), a
specific enzyme of fructose metabolism converting fructose
into fructose-1-P(67). Recently, the use of a KHK knockout (KO)
(KHK–/–) mouse model demonstrated that the suppression of
intracellular fructose metabolism prevents fructose-induced
up-regulation of GLUT5 in the small intestine and leads to major
fructose malabsorption(68-70). While aldolase B is a knownmarker
of hereditary fructose intolerance(71), the role of other enzymes
specific to the fructose metabolic pathway in fructose malabsorp-
tion in humans remains unknown.

Fructose breath test

Breath tests estimate amounts of unabsorbed ingested carbohy-
drates bymeasuring hydrogen or methane generated by fermen-
tation of the unabsorbed sugar by the intestinal bacteria. These
tests can be used for the diagnosis of various carbohydrate mal-
absorption syndromes and small-intestinal bacterial overgrowth.
Breath testing remains a useful, inexpensive, simple and safe
diagnostic tool in gastroenterology and is performedwith several
substrates (for example, glucose, lactulose, fructose, sorbitol,
sucrose and inulin) and at various doses. A positive breath test
following fructose ingestion, defined as a rise ≥ 20 parts per
million(72), indicates that bacteria are able to ferment fructose
before its absorption. This may be due to all or any of the follow-
ing scenarios – inefficient fructose absorptive mechanisms,
rapidity of small bowel transit leaving insufficient time for
absorption, or small-intestinal bacterial overgrowth. Small-
intestinal bacterial overgrowth is a condition characterised by
an abnormally high level of bacterial population in the small
intestine where fructose is normally absorbed. This condition
may produce false-positive sugar breath test results which could
be ruled out with a glucose breath test(73). Fructose malabsorp-
tion in humans increases with fructose intake concentration and
in healthy adults, there is a significant positive relationship
between fructose dose and the breath test result(13). In healthy
volunteers, after 15, 25, 35 and 50 g fructose loads, breath tests
were positive in 0, 10, 52 and 65 % of the individuals tested,
respectively (Table 1)(74,75). In healthy subjects the absorption
of 15 to 25 g of fructose was not associated with malabsorption
signs, suggesting that the intestinal absorptive capacity for fruc-
tose is about 25 g per food intake(75). Conversely, increasing fruc-
tose doses (>50 g) were associated with more positive breath
tests. Therefore doses > 50 g are not helpful to detect true
malabsorbers(75). Thus, a 25 g load seems to be the most
specific dose to diagnose fructose malabsorption which has
been accepted as the optimal dose by the North American
Consensus(72).

Fructose malabsorption

According to the North American Consensus(72), the prevalence
of fructose malabsorption in IBS patients is 22 %(76), which is
higher than in healthy individuals(75). Indeed, after 15, 25, 35
and 50 g fructose loads, breath tests were positive in 20, 22,
45 and 64 % of IBS patients, respectively (Table 1)(76-79).
Surprisingly, fructose malabsorption prevalence is independent
of the IBS subtype (diarrhoea, constipation or mixed)(76). As
mentioned above, current fructose intake per food intake prob-
ably exceeds the capacity of human absorption(12). As an exam-
ple, one can of Pepsi® or Coca-Cola® (33 cl) contains up to
24·6 g of fructose(80). Fructose absorption is also dependent on
the presence of glucose in the lumen(13); simultaneous consump-
tion of glucose and fructose increases fructose absorption(81).
However, the mechanisms underlying the limited capacity of
the intestine to absorb fructose remains unclear. In a randomised
controlled study, a 40 g fructose test meal was associated with
increased fructose malabsorption in healthy individuals after
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injection of corticotrophin-releasing hormone (a peptide
hormone involved in the stress response) in comparison with
placebo(82). In rat, GLUT2 translocation is inhibited by stress(83).
Interestingly, IBS patients often report that the onset of IBS is
associatedwith stress(15) and the stress scores of patients also cor-
related with themedical impact of IBS(18). Therefore, one possible
mechanism of fructose malabsorption in IBS could be the inhib-
ition ofGLUT2 translocation in response to stress. However, so far
GLUT2 has not been identified as a major player in fructose
malabsorption(84,85) or as an IBSmarker. Carbohydrate responsive
element-binding protein (ChREBP) is a transcription factor regu-
lated by sugar intake. ChREBP-KO mice fed with a high-fructose
diet developed fructose malabsorption with diarrhoea and
caecum distension in association with decrease in expression of
genes involved in fructose transport and metabolism(85,86). More
specifically, ChREBP-KO mice were associated with insufficient
induction of GLUT5 in response to fructose, which could poten-
tially explain fructose malabsorption(87). However, GLUT5 mRNA
expression and protein level are not affected in patients with
fructose intolerance(83). The mechanism underlying fructose
malabsorption in humans is largely unknown and may depend
on the transport capacity of GLUT5 or on fructose transporter
regulation. However, the reason for a higher prevalence of fruc-
tose malabsorption in IBS patients requires further investigation.

Mechanisms underlying fructose-related symptoms in
irritable bowel syndrome

The deleterious role of fructose in IBS was emphasised 10 years
ago when uncontrolled studies using a low-fructose diet
reported an improvement in IBS symptoms(88), while 25 and
50 g intake of fructose was found to promote IBS-like GI symp-
toms in healthy individuals(12,89). Fructose is also able to cause

GI symptoms (abdominal pain, diarrhoea) in IBS patients but
at a dose as low as 14 g/d(90,91).

Unabsorbed fructosemay play a role in osmotic load. Fructose
is osmotically active in the intestine when poorly absorbed and
in healthy humans, unabsorbed fructose increases water volume
in the small bowel(89). Similar results were found in IBS patients in
which fructose-induced small bowelwater contentwas associated
with increasing symptoms(89).

Furthermore, induction of GI symptoms after a fructose
load is linked to intestinal fermentation and gas production
(hydrogen, carbon dioxide andmethane)(92). In non-IBS and IBS
individuals fructose intake increased colonic luminal volume,
gas production and breath hydrogen levels, but only IBS patients
experienced increased abdominal symptoms(31). This suggests
that colonic hypersensitivity to distension produces fructose-
related symptoms only in patients with IBS(31) even if the role
of visceral hypersensitivity in carbohydrate-related symptoms
is still debated(93).

The role of barrier function and inflammation has also been
proposed. In animal models, there is an association between
fructose intake, increased intestinal permeability and inflamma-
tion(94-97). However, in humans, fructose malabsorption in IBS
patients does not seem to be linked to low-grade inflammation
or to increased intestinal permeability(98,99).

The importance of the microbiota in IBS has been suggested
by the transplantation of microbiota from IBS patients into mice
and rats which leads the recipient animals to develop IBS-like
symptoms(100,101). In a context of fructose malabsorption, unab-
sorbed fructose spills over into the distal small intestine and the
colon, where it is fermented by anaerobic bacteria. Lactic acid
and SCFA, predominantly propionate and butyrate, are some
of the potential by-products of this fermentation(70,102,103).
Differences in the ability of intestinalmicrobiota tometabolise car-
bohydrates exist and are related to microbiome composition(104).
Fructose can be metabolised by several groups of bacteria(105,106)

and in humans it is mainly fermented by lactic acid bacteria
(mainly Lactobacillus species), and also by Clostridium cluster
IV genus Faecalibacterium(107). IBS patients with functional var-
iants of the sucrase–isomaltase gene displayed a specific faecal
microbiota composition including higher Blautia abundance(108).
In a rodent fructose malabsorption model (KHK–/– mice) fructose
intake alters microbiota composition and metabolism, including a
drastic increase in Coriobacteriaceae, Corynebacteriaceae and
Lactobacillaceae as well as higher levels of propionate and
lactate in the caecal content(70). In rodent models of IBS, butyrate
was suggested to sensitise the colon, through acid-sensing ion
channel 3 (ASIC3) and transient receptor potential vanilloide
1 (TRPV1)(109-111), while lactate production favours luminal
acidity which has been associated with an increase in visceral
hypersensitivity(112).

Low-fructose diet in irritable bowel syndrome

A low-fructose diet consists in reducing daily fructose intake; the
most frequently allowed dose is under 6 g/d. The efficacy of a
low-fructose diet has been suggested in several studies
(Table 2). However, the dose for fructose restriction in low-
fructose diet has not yet been established. In a study which

Table 1. Studies assessing fructose malabsorption in health and in
irritable bowel syndrome according to fructose load

References
Subjects

(n)
Fructose
load (g)

Prevalence of fructose
malabsorption (%)

Health
Jung et al.(79) 35 15

25
5·7
22·9

Sharma et al.(124) 41 25 2·4
Corlew-Roath & Di

Palma(125)
55 25 16

Batt et al.(74) 100 35 25
Skoog et al.(126) 20 40 65
Rao et al.(75) 20 15

25
50

0
10
80

Irritable bowel syndrome
Jung et al.(79) 35 15

25
20
15·7

Sharma et al.(124) 97 25 14·4
Corlew-Roath & Di

Palma(125)
66 25 3

Melchior et al.(76) 90 25 22
Wilder-Smith et al.(78) 1372 35 45
Skoog et al.(126) 30 40 70
Goebel-Stengel(77) 2390 50 76
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included twenty-six patients with IBS, patients compliant with a
low-fructose diet had improvement in their GI symptoms
(abdominal pain and diarrhoea), with amoderate impact on their
quality of life(90). A larger study, with 182 IBS patients, found that
a low-fructose diet improved symptom scores (abdominal pain)
but had a modest effect on stool frequency(113). In patients with
IBS with fructose and sorbitol malabsorption, 81 % reported
improvement after 1 month of a low-fructose and -sorbitol diet
and 67% at 12months(114). On the other hand, after 22weeks of a
low-fructose diet, 70 % of IBS patients challenged with fructose
and fructans reported symptoms in a dose-dependent manner
compared with only 14 % in the placebo group with glucose(38).
To summarise, in open-label studies, the efficacy of a low-
fructose diet achieves adequate symptom relief in 46 to 81 %
of IBS patients (Table 2)(90,113,115). These large fluctuations could
be explained by the different endpoints used in the studies
(abdominal pain, transit, quality of life, etc.). Unfortunately, most
of the studies provided a low level of evidencewith retrospective
analysis and were done without control or placebo groups.
Moreover, it is still unclear which patients could benefit from
a low-fructose diet. In several open studies, the fructose breath
tests were not predictive of the efficacy of a low-fructose diet on
IBS symptoms(113,116,117). Different doses of fructose for breath
testing may have to be used to better select the candidates for
this diet. Moreover, in IBS patients, certain factors appear to
be involved in the efficacy of low-FODMAP or low-fructose
diets. For instance, sucrase–isomaltase variants in IBS patients
were associated with a lower efficacy to reduce IBS symptoms
in response to a low-FODMAP diet(50,118). In three randomised
trials, the efficacy of a low-FODMAP diet in IBS patients was pre-
dicted by the amount of volatile organic compounds present in
the faeces(119), by the initial faecal bacterial profiles of the
patients(120) or the increased peak concentrations of breath
methane during the fructose breath test preceding the low-
FODMAP intervention(121). These data suggest a potential role
of the gut microbiota composition and metabolism of the
patients in their ability to respond to the dietary interventions.

Irritable bowel syndrome patients’ management
regarding fructose

One of the first steps regarding IBS patients’ management
regarding fructosewould be to avoid high fructose consumption.
Indeed, high fructose consumption can lead to GI symptoms
without IBS. Adolescents are among the higher fructose consum-
ers(40), their consumption exceeds intestinal ability to absorb
fructose. Lowering their fructose to a normal consumption often
resolves the GI symptoms they experience.

A second step would be to identify the individuals in whom
fructose malabsorption should be tested. Those included in pri-
ority the IBS patients refractory to first-line therapies and/or with
a clear link between carbohydrate intake and GI symptoms. For
instance, young male IBS patients could be at a higher risk for
fructose malabsorption and be systematically tested(76).

Diet could be recommended in all IBS patients in second-line
therapy. The only validated restrictive diet is the low-FODMAP
diet. Initially, a 4-week low-FODMAP diet could be introduced
and, if efficient, FODMAP have to be reintroduced progressively
to identify foods triggering symptoms, as a low-FODMAP diet
could lead to nutritional deficiency such as fibre, Ca, Fe, Zn,
folate, vitamins B and D and natural antioxidants(122). Following
this, the patient can follow a less restrictive diet that only
excludes their personal FODMAP triggers(123). The restriction
of individual FODMAP (such as lactose, fructose, etc.) could
be of interest for long-term management.

Conclusion

Fructose plays an important role in IBS. Fructose malabsorption
is frequent in patients with IBS but its mechanisms are not
well understood. Exceeding the capacity of intestinal fructose
absorption leads to an osmotic effect and fermentation by-
products by themicrobiome. The roles of visceral hypersensitivity
and specific microbiota profiles in fructose-induced symptoms
require better understanding. Further controlled studies are
needed to identify predictive factors of the efficacy of a low-
fructose diet on IBS symptoms.
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Table 2. Studies assessing low-fructose diet in irritable bowel syndrome (IBS)

References Subjects (n) Population Methods Efficacy (%)

Berg et al.(113) 88 IBS patients Open controlled study 55–65
Choi et al.(90) 26 IBS with fructose malabsorption Retrospective 46
Fernandez-Banares et al.(114) 26 IBS with sugar malabsorption Open labelled 81
Shepherd & Gibson(115) 62 IBS with fructose malabsorption Retrospective 74
Melchior et al.(117) 88 IBS with v. without fructose malabsorption Prospective 62·5
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