
12

Text Data

So far in this book, we worked almost exclusively with data structured
in tabular form. In the previous chapter, we saw how simple tables can
be amended with spatial coordinates, such that each entry in the table is
linked to a location on the globe. In this chapter, we cover a type of data
with considerably less structure: texts. A text can be any written state-
ment or report, but also spoken words that were transcribed. Text data is
important to understand a wide variety of phenomena that are of interest
to social scientists: What issues are discussed in parliamentary debates?
How do certain hash tags travel on social media? How do journalists
frame particular social issues in news reporting? All these applications
require us to deal with text data.
In recent years, text analysis has become extremely popular in the social

sciences. While traditionally the domain of (computational) linguistics,
several types of text analysis have now become part of the social science
toolkit. Linguists focus more on in-depth analysis of text where they try
to identify, for example, the structure of sentences, and the subject or
the object of an action. In the social sciences, and in political science
in particular, text analysis has been done with simpler approaches, for
example, analyzing word frequencies, or searching for the occurrence of
particular keywords in texts.
Whatever type of analysis we plan to apply to textual data, we will

have to obtain, manage and store these texts first. This is what we focus
on in this chapter. The variety of methods for text analysis is so large that
this chapter cannot even provide a sufficient overview. Rather, we discuss
what text data look like, how they are typically stored as files, and howwe
can process and manage these data both in R and in a relational database.
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figure 12.1. Two documents with associated metadata.

In doing so, and in line with the general approach of this book, the focus
is on the handling of text data before it is used for some kind of text
analysis; therefore, we deal with the representation and storage of textual
data, and how we can search and query them. Once we know how to do
this, the data can later be used for all the different methods and tools that
exist for text analysis, such as topic modeling, sentiment analysis or more
advanced natural language processing approaches (Grimmer et al., 2022).

12.1 what is textual data?

Textual data (or “text as data,” as it is often called) usually comes in the
form of documents as the basic units. In its simplest form, a text dataset
is a collection of documents, where each document corresponds to what
we would call a “case” or an “observation” in a standard social science
dataset. A collection of text documents is often called a “corpus.” Not
surprisingly, each document in a corpus is much longer than the short
strings we have seen in standard tables (e.g., country names). In many text
datasets, individual documents are tagged with additional information.
For example, in a corpus of political speeches, each speech can be labeled
with the name of the speaker or the date it was held. Figure 12.1 illustrates
what this looks like for speeches held during the United Nations General
Debates, which will be introduced in more detail below.
The figure shows two speeches, one held by the US in the 34th General

Debate in 1978, one by Hungary in the 52nd debate in 1997. The main
data is the text of the speeches, and each of them is tagged with metadata.
This means that the entire corpus of textual data can actually be repre-
sented in a tabular structure, where each of the metadata fields and the
text itself correspond to a column. Figure 12.2 shows what this looks like
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figure 12.2. The two documents stored in a table.

for the two speeches above. Therefore, as in the chapters before, we can
transform yet another type of data to a tabular format, and use many of
the data operations we are already familiar with.
While we can use a structured data format such as a table to store an

entire corpus, text data is typically considered to be unstructured. Here,
“unstructured” refers to the main part of the data, which is the text.
Unstructured means that the text does not follow a particular pattern or
model, such that it is difficult to locate particular pieces of information in
it. For example, it is likely that each of the texts in our example above con-
tains information about the country holding the speech. You can see this
in the speech fromHungary,which pledges the support of the “Hungarian
delegation.” Still, it is not straightforward to extract this information, as
the country information is not explicitly flagged as such in the text, and
is likely to be phrased differently in speeches of other countries. Com-
pare this to the structured part of the dataset (the metadata). Here, we
can simply look up the respective column to find out about the country
holding the speech. Hence, not surprisingly, unstructured data require
different and more complex methods to extract information compared
to structured data such as tables.
How do we store text data digitally? As for spatial data, there exist

numerous options and file formats. A first distinction we have to make is
whether we store an entire corpus with different documents in a single file
or as a collection of files. For the latter, we can simply use one text file for
each document (see Chapter 4 for some basics about text files).When fol-
lowing this approach, each text file contains only text, not a CSV-encoded
tabular structure. This means that there are some potential issues. For
example, recall what we discussed about text encoding in Chapter 4. If
text contains special characters that exist for many languages worldwide,
we have to make sure that we choose an appropriate encoding. Also,
we have to decide where to store document metadata if the text files
themselves contain only plain text. As we will see below, this is often
done by encoding metadata in file names or folder names.
A different approach for storing a document collection is to keep all

documents in a single file. Again, there are many different ways for doing

https://doi.org/10.1017/9781108990424.017 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.017


12.2 Application: References to (In)equality in UN Speeches 169

this. One that you are already familiar with is the CSV format, where each
document and its associated metadata corresponds to a single line. When
using CSV for collections of long texts, we have to be particularly careful
about how to deal with commas and line breaks in the texts. Since these
characters have a particular function in CSV files (they separate fields and
lines), we have to make sure that the texts containing them are properly
encoded in the CSV file, for example, by enclosing them in double quotes
(see Chapter 4).

12.2 application: references to (in)equality
in un speeches

In 2015, the United Nations adopted the 2030 Agenda for Sustainable
Development, a plan for improving economic, social, and environmental
conditions worldwide. At the core of this agenda is a set of 17 Sustainable
Development Goals (SDGs) that should be achieved by the year 2030.
Goal No. 10 is reduction of inequality, both at a global scale between
countries and also between different groups within countries. More
details about SDGNo. 10 are provided on the UNwebsite at https://www
.un.org/sustainabledevelopment/inequality/. Inequality and its reduction
have not always been a high priority for the UN. For example, during the
Cold War era, much of UN politics was about international security and
the avoidance of violent conflict.
How can we trace the salience of different topics in the UN over time?

How can we find out whether and when (in)equality became an issue of
concern for deliberations at the UN? This is the kind of question that
can be analyzed using statements from political actors. In our application
for this chapter, we focus on speeches by UN member states at the UN
General Debate, held once a year at the beginning of each session of the
General Assembly at the UN Headquarters in New York. At the General
Debate, each state is usually represented by its head of government. The
first General Debate took place in 1946, the 2020 General Debate was
held in September 2020 and commenced the 75th session of the General
Assembly.
General debates last for several days and consist of a series of speeches

by the representatives of the member states. In this chapter, we rely on
the UN General Debate Speech Corpus (UNGDC, Baturo et al., 2017),
a collection of the General Debate speeches between 1970 and 2018. As
Baturo et al. (2017) note, the speeches are used by the different govern-
ments to comment on particular events and developments in the past year,
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but also to emphasize pressing issues in world politics. Therefore, the
collection provides us with an interesting opportunity to find out when
and how inequality was mentioned in these speeches over time.
Rather than placing all the speeches into a single file, the UNGDC is

distributed as a compressed archive,where each speech is stored in a single
plain text file. Speeches are stored in separate directories, one for each
year. The names of the text files contain information about the country
holding the speech, the session (starting with 25, which corresponds to
the 1970 General Debate) and the year. This is what the data structure
looks like for the 25th debate in 1970:

Session 25 - 1970

ALB_25_1970.txt

ARG_25_1970.txt

AUS_25_1970.txt

...

The dataset uses ISO three-letter codes to denote countries. In each file
name, the different metadata fields are separated with an underscore. For
the purpose of illustration, and to limit the computational complexity of
the code examples in this chapter, we focus only on speeches by the US as
one of the dominant countries in the UN. Our simple task in this chapter
is to locate mentions of terms related to (in)equality in the US speeches
over time. In line with the previous chapters, we do this first in R only,
and later also in PostgreSQL.

12.3 working with strings in (base) r

As you know, R data frames have columns with different types, one of
which is character vectors for text. The character sequences (strings) we
have used so far are short, such as country or party names. The texts
below are much longer, but in principle can be treated exactly as the short
strings we encountered so far. As mentioned above, a collection of texts
can stored in a tabular file format such as CSV, in which case you can
import them to R as any other CSV file. If, however, the texts are stored
as separate files, this becomes a bit more difficult. This is the case for the
UNGDC that we use in this chapter, where each file contains only the
text of a speech, and the metadata is encoded in the file name. Luckily,
there is a useful package called readtext that makes the import of these
file collections easy. readtext is a companion package to the powerful
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quanteda text analysis framework, which we take a closer look at below.
With readtext installed, we load the package:

library(readtext)

The data repository for this chapter contains the UN General Debate
speeches for the US, with one speech per file. The readtext() function is
designed to import collections of files. Rather than just specifying a single
file to be read, you can use the wildcard character * to specify a pattern of
directories and files that the function should use. In our case, this patterns
consists of the folder in which the text files are located (ch12), and the
file name pattern *.txt. The function will then process all files ending in
*.txt in the given directory. In addition, the function needs information
about where the document metadata are stored. In quanteda terminology,
these metadata are “document variables” or “docvars.” In our case, the
country, the session, and the year of the respective speech are part of the
file name, which is why we set the docvarsfrom parameter accordingly.
Finally, we need to specify what metadata fields are encoded in the file
name. If you omit this parameter, readtext() will assign standard names
for these variables. Our speech files are named such that the different
document variables are separated with an underscore, which the function
recognizes by default. A different separator can be set with the dvsep
parameter.

docs <- readtext("ch12/*.txt",
docvarsfrom = "filenames",
docvarnames = c("country", "session", "year"))

The readtext() function can process many more types of text files,
including PDF or MS Word. Also, it can handle different ways of storing
metadata, for example, in CSV format. Let us take a closer look at what
the function does. If the import is successful, the function returns an
(amended) data frame, where each speech corresponds to one row (49
in total).We can use standard R syntax to output a single document, such
as this one:

docs[1,]

readtext object consisting of 1 document and 3 docvars.
# Description: df [1 x 5]
doc_id text country session year

* <chr> <chr> <chr> <int> <int>
1 USA_25_1970.txt "\"1.\t It is \"..." USA 25 1970

https://doi.org/10.1017/9781108990424.017 Published online by Cambridge University Press

https://doi.org/10.1017/9781108990424.017


172 12 Text Data

This document is the speech given by the US in 1970, at the beginning
of the UN’s 25th session. Each document has a unique doc_id, generated
from the file name. The metadata (country, session, and year) are con-
tained in the respective columns, exactly as we specified above. The most
important column is text, which contains the text of each speech. This is
a standard character variable, and we can use R’s basic functions to work
with it. Before we turn to our research question and study how inequality
is referenced in the speeches over time, let us examine the texts in more
detail. Take a closer look at the first speech by outputting the beginning of
the first two paragraphs with the substr() function that returns a subset
of a string between the given positions:

substr(docs[1,]$text, 1, 22)

[1] "1.\t It is my privilege"

substr(docs[1,]$text, 957, 970)

[1] "2.\tDuring this"

It seems that each paragraph in this speech is numbered, followed
by a tab character (\t). Recall that the tab is one of the invisible
characters we discussed in Chapter 4. If you open the corresponding
file USA_25_1970.txt in RStudio’s text editor, you can verify that
the numbering of paragraphs continues in the same fashion (digits,
followed by a dot, followed by a tab character). These numbers may be
problematic, since they are not part of the actual speech, but also are not
used consistently throughout the dataset. For example, the speech from
1996 no longer has numbered paragraphs. Therefore, it is best to clean
up the texts by removing the paragraph numbers. How can we do this?
Manually searching for (and replacing) individual numbers such as

“1.”, “2.”, etc. is not an option, as there are dozens of numbered para-
graphs in some speeches. Also, it would violate one of our core rules for
data processing, which is that data manipulations should be transparent
and replicable, and therefore be defined in code. For these reasons, we
need a better searchmethod,where we can flexibly define a search pattern.
This is what so-called regular expressions (in short, regex) allow us to do.
Regular expressions are extremely powerful and not just limited to R;
in fact, they constitute a standard feature of many other programming
languages as well. Relational databases can handle regular expressions
too, as we will see below.
We start by first developing a pattern to locate the paragraph numbers,

and later use this pattern to eliminate them from the speeches. Before we
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use the real speeches, I demonstrate the use of regular expressions using
some toy examples. In R, the most important functions to be used together
with regular expressions are grep() and the closely related grepl(). They
require two parameters: A regex pattern and a vector of strings in which to
locate the pattern. grep() then returns the index for each string in which
it was able to locate the pattern. For simplicity, we use grepl(), which
returns a vector of the same size as the input vector, where each entry
indicates whether the search pattern occurs in the respective input string.
Let us try this with a simple example. A regex pattern can be a single
character, for example, the character a:

grepl("a", c("data", "management", "book", "2022."))

[1] TRUE TRUE FALSE FALSE

The character a occurs somewhere in the first two input strings, but not
in the last two. If we refine our pattern such that it looks for the sequence
ag, we get only one match, since this pattern only occurs in the string
management:

grepl("ag", c("data", "management", "book", "2022."))

[1] FALSE TRUE FALSE FALSE

Rather than particular characters, you can also search for classes of
characters, such as all lowercase letters, or all digits. Let us try the latter.
Before we do this, we need to briefly look at how R deals with strings and
special characters within them, since this can interfere with how some
regexp patterns are defined. Some characters in R have a special meaning.
For example, as you recall from Chapter 4, a line break is denoted by
\n, which uses the special character \. Another example is single (') or
double quotes ("), which are used to denote the beginning and the end
of a string, and therefore cannot occur within the string itself unless we
remove their special meaning. To do this, you need to “escape” them with
a backslash \. For example, to generate an actual backslash in a string,
you write \\. To try this, you can use the writeLines() function in R to
output the real content of a string, not how it is represented in R. For
example, writeLines("\\\"") generates the output \".
Similar problems arise if we use a notation with a backslash (or other

special characters) to define search patterns in regular expressions. In a
regex pattern, the shortcut \d denotes a single digit (between 0 and 9).
Since we need to escape the backslash, \d now becomes \\d. The added
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backslash tells R to treat the next character as is, and not as one with a
special meaning. Let us use this to locate digits in our toy example:

grepl("\\d", c("data", "management", "book", "2022."))

[1] FALSE FALSE FALSE TRUE

Oftentimes, we want to detect repetitions of particular patterns, for
example, a sequence of exactly four digits to search for years. This can
be done with a regex quantifier, which indicates that a particular pattern
must occur at least (or at most) a certain number of times. In its most
generic form, this is denoted with curly brackets around the exact number
of occurrences we want. The following example demonstrates this and we
correctly locate the four-digit number in the last string:

grepl("\\d{4}", c("data", "management", "book", "2022."))

[1] FALSE FALSE FALSE TRUE

There are different variations of the notation. For example, {n,m}
matches the preceding patterns at least n, but at most m, times. If you
would like a pattern to be present at least once (but possibly more than
that), you can also use the + operator. Searching for at least one digit
then simply becomes d+. Let us use this to search for a sequence of digits
followed by a dot. The latter is again a special character and needs to be
escaped to be interpreted as a full stop (dot).

grepl("\\d+\\.", c("data", "management", "book", "2022."))

[1] FALSE FALSE FALSE TRUE

We are now already very close to a regex pattern that allows us to
clean up the UN speeches. Recall that we need to search for a sequence of
digits (at least one), followed by a dot, followed by a tab character. The
latter is a literal character in a regular expression and does not need to be
escaped, so we simply amend our above pattern with a \t before we can
apply it to the speeches. To verify whether this works, we use the grep()
function that returns the indexes of those texts where it was able to locate
the pattern.

grep("\\d+\\.\t", docs$text)

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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As we already suspected above, the numbering of paragraphs is not
consistently applied in all speeches. Rather, the output of the grep() func-
tion shows that this pattern is only found in the first 15 speeches, which
means that it stops after 1984. The gsub() function helps us remove these
paragraph numbers. It takes as input a regex pattern (which we already
have), a replacement text (which in our case is an empty string "", because
we simply delete the paragraph numbers), and a vector of strings that
should be modified. The latter is our collection of speeches, and we write
the result back to our existing data frame:

docs$text <- gsub("\\d+\\.\t", "", docs$text)

This example gave you an idea of how to work with regular expres-
sions for searching and manipulating texts. Regular expressions are a
widespread and extremely powerful technique to process strings, and we
have only scratched the surface of the functionality and flexibility they
offer. If you want to learn more about them, you will find many useful
tutorials online or in more comprehensive R introductions. As mentioned
above, regex are not a feature specific to R.While the general ideas apply
also to other programming languages and regex implementations, there
are different dialects with slight differences in the syntax. Even though
we covered regular expressions for our work with political texts, their
use is by no means limited to human text and language. In fact, regular
expressions can be very useful to fix issues in data files, for example, in
malformed CSV files.

12.4 natural language processing with quanteda

Base R and regular expressions can help you get a lot of tasks done when
it comes to the management and processing of text data, as we have seen
above. These tools are not specifically designed for the processing of natu-
ral language – you can use them for any types of strings. However, social
science applications of text analysis mostly deal with text produced by
humans, which is why we need extension libraries with features designed
specifically for the processing of natural language.With the growing pop-
ularity of these approaches, a variety of software tools are now available
for text analysis, including several ones for R.
Natural language processing (NLP) can be done at very different lev-

els of sophistication. Simple approaches such as the one we use in this
chapter are based on frequencies of words. More complex ones explore
relationships between words, for example, by grouping them together
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such that documents can be assigned to the topic(s) discussed in them.
Even more sophisticated techniques for the processing of texts aim to get
at the semantics of texts and their constituent parts. This usually involves
the parsing of sentences to detect different classes of words such as nouns
or verbs, or the extraction of subject and object in a sentence. All these
more advanced methods are beyond the scope of this book, but they
require the same type of input that we are dealing with in this chapter.
Almost all text analysis methods require some basic processing steps.

In this section, we perform these steps with the quanteda library, one of
the most advanced text analysis packages for R. In line with the scope
of the book, however, we do not explore quanteda’s analysis features in
depth. If you would like to learn more about the package, the online
guide at https://quanteda.io/articles/pkgdown/quickstart.html is a good
place to start.
Basic processing of text data involves a number of clean-up steps. One

of the first is the splitting of texts into tokens, which usually correspond
to words or word stems. This may seem straightforward: In English, and
many other languages, words are separated by white spaces, so we can
use these to separate words. However, in addition we need to deal with
punctuation, which means that full stops, commas, or quotes also need
to be taken into account. To do this, the computer needs instructions for
what sequences of characters to assign to the same word, and when to
start a new word. quanteda can deal with all this, so let us take a look.
Once you have installed the package, you can load it with:

library(quanteda)

Since quanteda and readtext come from the same developers and are
designed to work together, we can easily create a corpus from the doc-
uments imported above, from which we already removed the paragraph
numbers:

speech_corpus <- corpus(docs)

Once the text is converted to a corpus, quanteda can easily split the texts
into words and sentences. Take a look at the output of summary(speech_
corpus) to find out how the length of the speeches (measured as the
number of words or the number of sentences) varies in the speeches over
time. For our application, however, we can get a first view by looking at
the words we are interested in, and the context in which they occur with
the kwic() function (“keywords in context”). We first use the tokens()
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function to split the text into its constituent parts, and pass these tokens
on to the kwic() function (the output is restricted to the first three
occurrences for presentational purposes). With the pattern parameter,
we define the term(s) we are interested in. Here, it is possible to specify
a single term that will be matched exactly. In our example, we use the
wildcard character *, which matches zero or more characters. This means
that we can search for “equality” but also “inequality” with this simple
pattern. Note that the pattern is matched against the individual tokens
in the text which were generated when creating the corpus. The window
parameter specifies the context that should be displayed with each match
of the pattern – in our example, we show the two tokens left and right:

kwic(tokens(speech_corpus), pattern = "*equality", window = 2)[1:3,]

Keyword-in-context with 3 matches.
[USA_25_1970.txt, 1287] and human | equality | ; fifth
[USA_25_1970.txt, 3336] of racial | equality | . The
[USA_25_1970.txt, 3484] justice, | equality | and self

The example shows you what context our keywords occur in, and
what the tokens in the text look like. Try removing the restriction to
the first three lines to display the entire output, and you will see that we
are capturing the right words that we are interested in. “Equality” and
“inequality” occur together with references to justice or race. Oftentimes,
these references are made with political goals (“combating inequality”).
You can try to increase the window size in the above example to see more
words before or after the target terms. The output also shows that the tok-
enization in quanteda does not remove anything from the text by default –
punctuation characters such as ; or . are included as individual tokens.
In the next steps, we create a data structure that is very common in text

analysis: a document-feature matrix (DFM). This matrix has a column for
each token (feature) in our corpus. Each row corresponds to a document
in our corpus, and it contains the number of times that a token occurs
in that text. Recall that we have a number of rather useless tokens in
our corpus. This is why we first remove punctuation and numbers from
our tokens before passing them on to the dfm() function. Later, we also
remove so-called stopwords (words such as “a,” “the,” etc) from our
DFM. For these stopwords, it is necessary to select the language ("en"),
since stopwords are obviously specific to each language:

speech_dfm <- dfm(
tokens(speech_corpus, remove_punct = T, remove_numbers = T))

speech_dfm <- dfm_remove(speech_dfm, pattern = stopwords("en"))
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As you can find out with featnames(speech_dfm), by default the DFM
converts all tokens to lowercase, otherwise the different spellings of the
same word (as in “Products” and “products”) would be counted as two
different words. A DFM has usually lots of columns (10059, in our case),
and many entries are zero because the corresponding terms do not occur
in the respective document. If you print the DFM for our corpus, you can
see this in the output (not shown here):

print(speech_dfm)

quanteda has a number of useful functions for exploring DFMs.One of
them displays the most frequent words in the corpus, the “top features.”
Not surprisingly, for our corpus of UN speeches, the top two words are
“united” and “nations” (output again restricted to the first three for pre-
sentational purposes):

topfeatures(speech_dfm)[1:3]

united nations world
1604 1577 979

The DFM already contains the information we need for our applied
example in this chapter. Recall that we want to count the mentions of
(in)equality in the different speeches given by the US at the UN General
Debate over the years. Our DFM gives us the number of times that any
term in the corpus appears in the respective speech. Therefore, all we need
to do is select the relevant terms from our DFMand extract the counts.We
achieve this by creating a new, restricted DFM that only contains terms
related to inequality. The dfm_select() function does this for us, and it
accepts the same type of filter pattern as the kwic() function above.

dfm_ineq <- dfm_select(speech_dfm, pattern = "*equality")

By default, the function keeps the specified terms,which is exactly what
we want. All that is left for us to do is to compute the row sums of the
reduced DFM dfm_ineq, which gives us the number of times that either
“inequality” or “equality” is mentioned in the speech. We add this count
as an additional variable to our corpus:

speech_corpus$ineq_count <- rowSums(dfm_ineq)
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At the end of the chapter, we create a simple plot using the year field
and the newly created ineq_count field from the corpus.

12.5 using postgresql to manage documents

In the final part of this chapter, we will show how to use a relational
database to store and manage text documents. As we saw in previous
chapters, the main focus of databases is the storage and efficient retrieval
of data, not the analysis. This is why PostgreSQL is very limited when it
comes to the processing of natural language; if your workflow involves
text data stored in a database, you will typically export it for further
processing in a specialized package such as quanteda. Nevertheless, it is
useful to take a brief look at how PostgreSQL deals with text data, and
how you can query the data with natural language searches. As in the
previous chapters,we assume that you use a new database for this chapter,
called textdata. We connect to our database with

library(RPostgres)
db <- dbConnect(Postgres(),
dbname = "textdata",
user = "postgres",
password = "pgpasswd")

and import the UN speeches into a new table speeches. As you know from
above, readtext() returns an extended data frame. We cannot directly
send it to the database, which is why we convert it to a real data frame
beforehand:

docs <- readtext("ch12/*.txt",
docvarsfrom = "filenames",
docvarnames = c("country", "session", "year"))

dbWriteTable(db, "speeches", as.data.frame(docs))

The table we created has five fields: the doc_id (the file name of the
corresponding text file); the three docvars country, session, and year; and
the text column that contains the text of the speech. As a next step, we
again remove the line numbering from the speeches. Above, we have seen
how to do this with regular expressions. Regex are not a feature specific
to R; they also exist for PostgreSQL with a notation similar to the one
described above. This is why we can use the search pattern \d+\.\t –
which matches one or more digits followed by a dot, followed by a tab
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character – also in our database. Let us first use the regexp search operator,
the tilde �. This operator performs pattern matching. In the following
query, we count the number of documents from our collection where the
text field matches our search pattern (i.e., contains it at least once). Note
that we again have to escape the backslashes properly, so that R passes
them correctly to the database:

dbGetQuery(db, "SELECT count(*) FROM speeches WHERE text ˜ '\\d+\\.\t'")

count
1 15

The result is the same as above: 15 documents match our search pat-
tern, which are the first 15 speeches in the dataset. How can we clean up
the texts of these speeches? For this, we use the regexp_replace() function
in PostgreSQL. It takes a string, a search pattern, and a replacement string,
and returns a new string in which all occurrences of the search pattern
have been replaced with the replacement string. The pattern we need is
the same as above, and our replacement string is the empty string '', since
we only want to delete the line number. In addition, the function takes
optional control flags. Here, we must set the g (global) flag to extend the
search/replace to all instances of the pattern, and not just the first one.
There is no danger in applying this function to all texts in our sample;
since the pattern is only found in the first 15 speeches, the others will
remain unaffected:

dbExecute(db,
"UPDATE speeches
SET text=regexp_replace(text, '\\d+\\.\t', '', 'g')")

Having done some basic clean-up, we can now proceed to explore how
to select documents from our database according to particular words in
the text. One way to do this is the � operator, which allows us to specify a
regex search pattern. Oftentimes, however, we do not really need regular
expressions, which is why there is a simpler way to search text fields:
the LIKE operator. Here, the syntax for the search pattern is much simpler.
LIKE expects normal strings, which can contain two types of placeholders:
the underscore (which matches any single character) and the percentage
sign (which matches an arbitrary sequence of characters). How does this
work in practice? First, we try to use LIKE with a search string that does
not have any placeholders:

dbGetQuery(db, "SELECT count(*) FROM speeches WHERE text LIKE 'equality'")

count
1 0
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This query does not find any matching documents – why? The reason
is that the search pattern equality is matched against the entire text
column, so a match would only occur for any document where the entire
text of the speech is “equality.” Of course, there is no single speech with
this content in our collection.This is whywe need the % placeholder,which
matches an arbitrary sequence of characters. In this query

dbGetQuery(db,
"SELECT count(*) FROM speeches
WHERE text LIKE '%equality%'")

count
1 11

we allow an arbitrary number of characters to occur before and after
“equality.”This matches any speech where “equality”occurs at least once
in the text, which is the case for eleven of them. Similar to grep() and its
related functions in R, stringmatching operators such as LIKE are designed
to work with strings in general. If you use them with natural language,
they have no knowledge of what a word is, or that particular characters
such as the dot can have a special meaning in language. This is why we
need special extensions. PostgreSQL has a built-in set of functions for
“full text search,” which help us process natural language. However, as
the name suggests, it is designed primarily for searching natural language
documents, so its applicability is much more limited compared to pack-
ages such as quanteda.
Recall that the first step in dealing with natural language is usually the

clean-up of the text: We identify the tokens in the text and remove stop-
words and punctuation. PostgreSQL does this by converting a document
to a text search vector (tsvector), that contains a reduced form of the
text. Similar to our document-feature matrix above, this vector contains
the list of tokens in the text as well as the positions where they occur in
the text. Therefore, once processed in this way, it is much easier to search
for natural language terms in the text, since the DBMS only needs to go
through this vector rather than the entire text. The creation of this vector
is done with the to_tsvector() function, which converts a given string
to a text search vector. Let us try this first with a simple example before
applying it to the UN speeches:

dbGetQuery(db,
"SELECT to_tsvector('english', 'The problems the world faces today')")

to_tsvector
1 'face':5 'problem':2 'today':6 'world':4
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The output shows you what a vector looks like. It contains four tokens,
along with the positions of these tokens in the text. For example, world
is the fourth token in the text. There are a few things to note here.
Most importantly, tokenization is language specific, so we need to specify
english as the language. Now, take a look at the second token in the text,
problems. This token is included as problem in the vector, with the “s”
removed. The reason is that text search vectors trim the words to their
word stems, so problems and problem are reduced to the same stem. Also,
stopwords such as the have been removed from the index, and all the
tokens are lower case.
The creation of text search vectors is computationally costly, so it is

good practice to compute them once and save them in a separate column,
such that you can use them later when searching the documents. The
following code creates a new column of type tsvector, computes the
vectors, and indexes the column using a special type of index (gin) to
speed up data retrieval (see Chapter 10):

dbExecute(db, "ALTER TABLE speeches ADD COLUMN tokens tsvector")
dbExecute(db, "UPDATE speeches SET tokens = to_tsvector('english', text)")
dbExecute(db, "CREATE INDEX ON speeches USING gin(tokens)")

How do we use the text search vectors in practice? In PostgreSQL, we
can now run a text search query against the vectors we created. A text
search query uses a very simple syntax, similar to web search engines. In
its simplest form, such a query is just a single word, but you can also
connect different words with logical AND (&) and OR operators (|). We
create a query with the to_tsquery() function. Importantly, PostgreSQL
internally reduces the query in the same way as a text search vector. The
advantage is that we do not have to worry about the different forms of a
word – for example, inequality and inequalities are internally reduced
to the same form:

dbGetQuery(db,
"SELECT
to_tsquery('english', 'inequality'),
to_tsquery('english', 'inequalities')")

to_tsquery to_tsquery..2
1 'inequ' 'inequ'

Now let us apply a simple query to our documents. For text searches,
there is a special operator, @@, which determines whether a given text
search vector matches a text search query. Here, we count the number
of documents that match the query inequality:
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dbGetQuery(db,
"SELECT doc_id FROM speeches
WHERE tokens @@ to_tsquery('english', 'inequality')")

doc_id
1 USA_33_1978.txt
2 USA_53_1998.txt
3 USA_70_2015.txt
4 USA_71_2016.txt

If you go through the four speeches that match our query (the speeches
for 1978, 1998, 2015, and 2016), you will see that not all of them contain
the word inequality or some other form of it. The 1978 speech only
talks about “international inequities and poverty” – however, since the
text search applies stemming to the tokens, inequality and inequities
are reduced to the same stem inequ, which is why we get a match also
for the 1978 speech. This is exactly what we want in this case, since the
1978 speech talks about inequality between countries, which is what we
are interested in. However, in other cases, the results of text searches can
be too inclusive. Consider the following example, where we amend our
pattern such that it searches of inequality or equality. Now, we get 34
matching documents:

dbGetQuery(db,
"SELECT count(*) AS num_ineq FROM speeches
WHERE tokens @@ to_tsquery('english', 'inequality | equality')")

num_ineq
1 34

The reason is that equality is reduced to equal, which occurs fre-
quently without any connection to inequality, for example, in sentences
such as “Equally important, we hope that [..].” Hence, while text search
can be a powerful and flexible tool to explore natural language, you have
to be aware of the uncertainties when doing so. Before we proceed to
show the result of our applied example, we close the database connection
properly:

dbDisconnect(db)

12.6 results: references to (in)equality in un speeches

The reduction of inequality has been one of the UN’s Sustainable Devel-
opment Goals, and the purpose of our exercise is to track the use of this
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figure 12.3. Number of mentions of (in)equality in UNGeneral Debate speeches
by the US over time.

and related terms over the years. We now use the statistics we computed
with the help of the quanteda package. Above, we extracted the number of
times that inequality or equality appear in the speeches from the DFM.
In the simple plot in Figure 12.3,we use the two fields speech_corpus$year
and speech_corpus$ineq_count for plotting.
We can see that in the early years of the sample, the US made several

references to (in)equality in the UNGeneral Debate speeches. This may be
partly due to the civil rights movement in the US and political attention it
had triggered to issues of inequality. The 1970s, however, were followed
by a period without any mention in the 1990s, before the term came
up more often again during the 2000s and later. The peak at the end
of the study period (2016) coincides roughly with the adoption of the
SDGs in 2015. Thus, as we can see based on this simple example, there is
considerable variation in the salience of inequality in international politics
over time, although it is not very prominent throughout.

12.7 summary and outlook

Much research in the social sciences now relies on natural language data.
In this chapter, we covered text as data, and how it can be processed
in R and in PostgreSQL. Even though documents and their metadata
can be stored in a tabular (structured) format, the texts themselves are
examples of “unstructured” data. That is, within a text, we usually have
no explicit structure, and the format and content of texts varies between
documents. In this chapter, we used two different approaches to process
text data. First, you can treat text simply as long strings, and use standard
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string functions. Among these, we have introduced regular expressions, a
very powerful method to search strings for particular patterns and replace
them. Regular expressions are available in R and in PostgreSQL, but also
in almost any other programming language. While useful when process-
ing text data, they can be of great help for other tasks with strings, for
example, when fixing malformed data files.
The second, more sophisticated approach we have illustrated in this

chapter is to treat texts as natural language, and apply specialized meth-
ods for this. For R, the quanteda package is a good choice, but there
are also other options such as tidytext, which integrates nicely into the
tidyverse universe. These packages can perform a variety of NLP tasks,
such as the splitting of a text into tokens, the elimination of stopwords and
punctuation, or the reduction of words to their stems. For all of this, spe-
cialized knowledge of the particular features of a language are required,
for example, how different sentences are separated, or how words can
be trimmed to their stem. The relational database PostgreSQL has some
basic functionality for doing this, which can come in handy if you keep a
collection of documents on a centralized server and need to do fast and
flexible lookups. For more advanced analysis of text, however, it is usually
required to export the documents to R and use a text analysis package
such as quanteda, whose functionality is much more advanced. For your
future work with text data, here are some useful pointers:

• Practice the use of regular expressions: We began this chapter with
an introduction to some standard string operations, which are avail-
able both in R and PostgreSQL. Among these, regular expressions are
particularly powerful, but at the same time remain challenging even
for experienced programmers. If you plan to work more with text
data in the future, I recommend that you practice the use of regular
expressions, since there are many operators and shortcuts we did not
discuss in this chapter.

• Compression is highly effective for text data: Remember that we dis-
cussed the use of file compression in Chapter 4? This is particularly
important if you store text datasets in files, since they can became very
large. File compression works well with text files, and you can reduce
the required disk space considerably for text data projects with tools
such as zip or gzip. It is up to you to implement compression in a file-
based workflow; PostgreSQL enables it automatically for text data.

• Large files can be loaded directly into PostgreSQL: So far,we have used
R’s DBI functions (such as dbWriteTable()) to import data into our
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database. For very large CSV files, there is another way to this, which
bypasses R completely. The PostgreSQL server can read files on your
disk directly,which is much faster – for details, see the PostgreSQL doc-
umentation at https://www.postgresql.org/docs/current/sql-copy.html.
There are some restrictions, however: This feature can only process
tabular data in CSV (or similar) formats, and it becomes more difficult
to use if you connect to PostgreSQL running on a remote server.

• What if you need more flexible fuzzy string matching? In the chapter,
we discussed a number of ways in which you can specify search
patterns to be located in strings. These approaches allow you to use
different wildcard characters. Another way to implement non-precise,
fuzzy string matching is by means of the “Levenshtein distance,”
which is the number of characters that need to be changed when
transforming one string into another. This is a common measure of
similarity between strings, and you can use it in R with the adist()
and the agrep()/agrepl() functions. In PostgreSQL, you can use the
levenshtein() function, which is part of the fuzzystrmatch extension.
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