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Abstract. The Arens products are the standard way of extending the product
from a Banach algebra A to its bidual A′′. Ultrapowers provide another method which
is more symmetric, but one that in general will only give a bilinear map, which may not
be associative. We show that if A is Arens regular, then there is at least one way to use
an ultrapower to recover the Arens product, a result previously known for C∗-algebras.
Our main tool is a principle of local reflexivity result for modules and algebras.
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1. Introduction. Given a Banach algebra A, there are two canonical ways to
extend the products on A to products on the bidual A′′, called the Arens products (see
[2]). Another, less common, way to view the bidual of a Banach space is as a quotient
of an ultrapower of that space (see [13]). As the ultrapower of a Banach algebra is
again a Banach algebra, this suggests another way of defining a ‘product’ on A′′.

We recall below the notion of an ultrapower of A with respect to an ultrafilter
U , written (A)U . By weak∗-compactness of the ball of A′′, we can always define a
norm-decreasing map

σU : (A)U → A′′; 〈σU ((ai)), μ〉 = lim
i→U

〈μ, ai〉 (μ ∈ A′, (ai) ∈ (A)U ).

It follows from the principle of local reflexivity (see [13, Proposition 6.7] or
Theorem 2.2) that for a suitable U , that is an isometry K : A′′ → (A)U such that σU ◦ K
is the identity on A′′. Using this, we may define a bilinear map

� = �
K,U

: A′′ × A′′ → A′′; � � � = σU (K(�)K(�)) (�,� ∈ A′′).

This idea was explored by Godefroy and Iochum in [12] and Iochum and Loupias in
[14]. In general this might only lead to a bilinear map (which can fail to be associative).
However, for C∗-algebras, we always recover the Arens products.

In this paper, we shall explore these ideas further, and also consider related ideas
for Banach modules. The Banach space tool which relates an ultrapower of a Banach
space E to the bidual E′′ is the principle of local reflexivity. It should hence come as
no surprise that our line of attack is to prove various strengthenings of the principle of
local reflexivity for Banach algebras and modules. For example, we show that when A
is Arens regular, that is, the two Arens products agree on A′′, then there is at least one
way to use an ultrapower of A to induce the same product on A′′. As a result, we get a
‘symmetric’ definition of the product on A′′.
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We introduce some notation below, and summarise the results of [12] and [14]. We
then study the principle of local reflexivity, and prove versions for Banach modules and
Banach algebras which allow us to draw conclusions about ultrapowers. We investigate
when � can actually be chosen to be an algebra homomorphism, and how these ideas
interact with dual Banach algebras. Finally, we show that � can be badly behaved even
for C∗-algebras if the map K is not chosen to be an isometry.

1.1. Notations and basic concepts. Let E be a Banach space. We write E′ for the
dual space of E, and for x ∈ E and μ ∈ E′, we write 〈μ, x〉 for μ(x). Recall the canonical
map κE : E → E′′ defined by 〈κE(x), μ〉 = 〈μ, x〉 for x ∈ E and μ ∈ E′. When κE is an
isomorphism, we say that E is reflexive.

Recall the notions of filter and ultrafilter. Let U be a non-principal ultrafilter on a
set I , and let E be a Banach space. We form the Banach space

�∞(E, I) =
{

(xi)i∈I ⊆ E : ‖(xi)‖ := sup
i∈I

‖xi‖ < ∞
}

,

and define the closed subspace

NU =
{

(xi)i∈I ∈ �∞(E, I) : lim
i→U

‖xi‖ = 0
}

.

Thus we can form the quotient space, called the ultrapower of E with respect to U ,

(E)U := �∞(E, I)/NU .

In general, this space will depend on U (and upon, for example, if the continuum
hypothesis holds), though many properties of (E)U turn out to be independent of U ,
as long as U is sufficiently ‘large’ in some sense.

We can verify that, if (xi)i∈I represents an equivalence class in (E)U , then

‖(xi)i∈I + NU‖ = lim
i→U

‖xi‖.

We shall abuse notation and write (xi) for the equivalence class it represents; of
course, it can be checked that any definition we make is independent of the choice of
representative of equivalence class. There is a canonical isometry E → (E)U given by
sending x ∈ E to the constant family (x). We again abuse notation and write x ∈ (E)U ,
identifying E with a closed subspace of (E)U .

Recall the notion of a countably incomplete ultrafilter, for which see [13]. To avoid
set-theoretic complications, we shall henceforth assume that all our ultrafilters are
countably incomplete.

There is a canonical map (E′)U → (E)′U given by

〈(μi), (xi)〉 = lim
i→U

〈μi, xi〉 ((μi) ∈ (E′)U , (xi) ∈ (E)U ).

This map is an isometry, and so we identify (E′)U with a closed subspace of (E)′U . It is
shown in [13, Proposition 7.1] that (E)′U = (E′)U if and only if (E)U is reflexive.

For Banach spaces E and F , we write B(E, F) for the space of bounded linear
operators from E to F . Then there is a canonical isometric map (B(E, F))U ↪→
B((E)U , (F)U ) given by

T(x) = (Ti(xi)) (T = (Ti) ∈ (B(E, F))U , x = (xi) ∈ (E)U ).

We shall often identify (B(E, F))U with its image in B((E)U , (F)U ).
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When A is a Banach algebra, (A)U becomes a Banach algebra under the pointwise
product. This follows, as it is easy to show that NU is a closed ideal in the Banach
algebra �∞(A, I). Then A is commutative if and only if (A)U is; (A)U is unital if A is
unital. If A is a Banach ∗-algebra (see [5, Chapter 3]) or a C∗-algebra, then (A)U is a
Banach ∗-algebra or a C∗-algebra, respectively, with the involution defined pointwise.
Thus, as the class of C(K) spaces for compact, Hausdorff spaces K is the class of
commutative, unital C∗-algebras, we see that the ultrapower of a C(K) space is again a
C(K) space.

We now recall the Arens products on A′′. Firstly, we turn A′ into a A-bimodule in
the usual fashion,

〈a · μ, b〉 = 〈μ, ba〉, 〈μ · a, b〉 = 〈μ, ab〉 (a, b ∈ A, μ ∈ A′).

In a similar way, A′′, A′′′, and so forth also become A-bimodules. Then we define
bilinear map A′′ × A′,A′ × A′′ → A′ by

〈� · μ, a〉 = 〈�,μ · a〉, 〈μ · �, a〉 = 〈�, a · μ〉 (� ∈ A′′, μ ∈ A′, a ∈ A).

Finally, we define bilinear map �,� : A′′ × A′′ → A′′ by

〈���,μ〉 = 〈�,� · μ〉, 〈���,μ〉 = 〈�,μ · �〉 (�,� ∈ A′′, μ ∈ A′).

These are associative products which extend the natural action of A on A′′, called
the first and second Arens products. See [5, Section 3.3] or [17, Section 1.4] for further
details. Thus � and � agree with the usual product on κA(A). When � and � agree on
all ofA′′, we say thatA is Arens regular (see also Section 5). As stated above, for suitable
U , given �,� ∈ A′′, we can find bounded families (ai) and (bi) with (ai) tending to �

weak∗ along U , and (bi) tending to �. Then

〈���,μ〉 = lim
j→U

lim
i→U

〈μ, aibj〉, 〈���,μ〉 = lim
i→U

lim
j→U

〈μ, aibj〉 (μ ∈ A′).

We show that when A is Arens regular, we can find a more ‘symmetric’ version of these
formulae.

Recall the map �= �
K,U

defined above. We shall henceforth always assume that

K : A′′ → (A)U is such that σ ◦ K is the identity on A′′ and that K ◦ κA is the canonical
map A → (A)U . This is enough to ensure
� for � ∈ A′′ and a ∈ A, we have � � κA(a) = � · a and κA(a) � � = a · �;
� if A has a unit eA, then κA(eA) is a unit for �.

In [14], the authors make the further assumption that K is always an isometry.
Under this extra condition, from the proof of [12, Corollary II.2], it follows that
when A is a C∗-algebra the map �

K,U
always agrees with � = � (recall that a C∗-

algebra is always Arens regular, see for example [12, Corollary I.2]). We shall show that
without this isometric condition on K , we do not always have �

K,U
= �, even for some

commutative C∗-algebras. In [12, Example 3, Page 55], it is shown that when A = �1

with pointwise product (which is easily seen to be Arens regular), then for some K , we
do not have that �

K,U
agrees with the Arens products.
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In [14, Definition 5], the authors say that �
K,U

is regular if it is separately weak∗-

continuous. They show in [14, Proposition 6] that if �
K,U

is regular for some K and U ,

then A is Arens regular, and that �
K,U

= � = �. This follows fairly easily from weak∗-

continuity. Conversely, in [14, Theorem 12], the authors show that if A is commutative
and not Arens regular, then �

K,U
, as it is always a commutative bilinear map, never agrees

with either Arens product. Let E be a reflexive Banach space with the approximation
property (see [22, Section 4] or [10, Section VIII]). LetA = K(E), the algebra of compact
operators on E. Then [14, Corollary 14] shows that �

K,U
is associative on A if and only

if it is regular. The second remark after this result in [14] asks if there is in general any
link between associativity and regularity of �

K,U
, something we do not consider further

here.

2. The principle of local reflexivity. The classical principle of local reflexivity
states that for a Banach space E, the local (or finite-dimensional) structure of E′′ is the
same as that of E, taking account of duality. Formally, we have

DEFINITION 2.1. Let E and F be Banach spaces, and let T ∈ B(E, F). For ε > 0, we
say that T is a (1 + ε)-isomorphism onto its range if (1 − ε)‖x‖ ≤ ‖T(x)‖ ≤ (1 + ε)‖x‖
for each x ∈ E.

THEOREM 2.2. Let E be a Banach space, and let M ⊆ E′′ and N ⊆ E′ be finite-
dimensional subspaces. For each ε > 0 there exists a (1 + ε)-isomorphism onto its range
T : M → E such that

(1) 〈�,μ〉 = 〈μ, T(�)〉 for μ ∈ N and � ∈ M;
(2) T(κE(x)) = x for x ∈ E such that κE(x) ∈ M.

Proof. See [22, Section 5.5] for a readable account. �
We wish to extend this result, using the results of Behrends [3]. Before we can

do this, we need a word about tensor products of Banach spaces. Let E and F be
Banach spaces, and let E ⊗ F be the algebraic tensor product of E with F . We define
the projective tensor norm on E ⊗ F by

‖u‖π = inf

{
n∑

i=1

‖xi‖‖yi‖ : u =
n∑

i=1

xi ⊗ yi

}
(u ∈ E ⊗ F).

Then the completion of E ⊗ F with respect to ‖ · ‖π is the projective tensor product,
E⊗̂F .

See [8], [10, Section VIII] or [22] for further details. In particular, when E is a
Banach space and M is a finite-dimensional Banach space, then the dual of B(M, E)
may be identified with M⊗̂E′ by

〈x ⊗ μ, T〉 = 〈μ, T(x)〉 (x ⊗ μ ∈ M⊗̂E′, T ∈ B(M, E)).

For general Banach spaces F and G, the dual of F⊗̂G is B(F, G′), under the
identification

〈T, x ⊗ y〉 = 〈T(x), y〉 (x ⊗ y ∈ F ⊗ G, T ∈ B(F, G′)).
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Thus B(M, E)′′ = (M⊗̂E′)′ = B(M, E′′), and we can check that the canonical map
κB(M,E) : B(M, E) → B(M, E′′) satisfies κB(M,E)(T) = κE ◦ T for T ∈ B(M, E).

The following definitions are from [3]. For a Banach space E, we write FIN(E) for
the collection of finite-dimensional subspaces of E.

DEFINITION 2.3. Let E be a Banach space, and let M ∈ FIN(E′′) and N ∈ FIN(E′).
A map T : M → E is an ε-isomorphism along N if T is a (1 + ε)-isomorphism onto its
range such that 〈�,μ〉 = 〈μ, T(�)〉 for μ ∈ N and � ∈ M.

Let (Fi)n
i=1 and (Gj)m

j=1 be families of Banach spaces. Let Ai : B(M, E) → Fi be an
operator, for 1 ≤ i ≤ n, and let ψj : B(M, E) → Gj be an operator, for 1 ≤ j ≤ m. For
1 ≤ i ≤ n, let fi ∈ Fi, and for 1 ≤ j ≤ m, let Cj ⊆ Gj be a convex set. Then M satisfies

(1) the exact conditions (Ai, fi), for 1 ≤ i ≤ n, and
(2) the approximate conditions (ψj, Cj), for 1 ≤ j ≤ m,

if for each N ∈ FIN(E′) and ε > 0, there exists an ε-isomorphism T : M → E along N
such that Ai(T) = fi, for 1 ≤ i ≤ n, and ψj(T) ∈ (Cj)ε = {y + z : y ∈ Cj, z ∈ Gj, ‖z‖ ≤
ε}, for 1 ≤ j ≤ m.

Given (Ai) as in the above definition, notice that we have A′
i : F ′

i → M⊗̂E′ and
A′′

i : B(M, E′′) → F ′′
i . For M ⊆ E′′, let ιM : M → E′′ be the inclusion map.

THEOREM 2.4. Let E be a Banach space, M ∈ FIN(E′′), and let (Fi), (Ai), (yi), (Gj),
(ψj) and (Cj) be as defined in the above definition. Then the following are equivalent:

1. M satisfies the exact conditions (Ai, yi)n
i=1 and the approximate conditions

(ψj, Cj)m
j=1;

2. ιM is weak∗-continuous on the weak∗-closure of A′
1(F ′

1) + · · · + A′
n(F ′

n), A′′
i (ιM) =

κFi (yi) for each i, and ψ ′′
j (ιM) lies in the weak∗-closure of κGj (Cj), for each j.

Suppose that the map T �→ (Ai(T))n
i=1 from B(M, E) to A1 ⊕ · · · ⊕ An has a

closed range. Then we may replace ιM being weak∗-continuous on the weak∗-closure
of

∑n
i=1 A′

i(F
′
i ) by there existing T : M → E which satisfies Ai(T) = yi, for 1 ≤ i ≤ n

(T need not satisfy any other condition).

Proof. This is in [3, Theorem 2.3], and the remark thereafter. �
For example, let AM : B(M, E) → B(M ∩ κE(E), E) be the restriction operator,

and let BM ∈ B(M ∩ κE(E), E) be the map BM(κE(x)) = x. Then the principle of local
reflexivity is just the statement that each M ∈ FIN(E′′) satisfies the exact condition
(AM, BM). Notice that A′′

M : B(M, E′′) → B(M ∩ κE(E), E′′) is also the restriction
operator, and that B′′

M : M ∩ κE(E) → E′ is the inclusion map, so that condition (2)
given above is easily verified in this case (or one can use the remark).

3. Ultrapowers of modules. We wish to extend the principle of local reflexivity to
(bi)modules of Banach algebras. Let A be a Banach algebra, and let E be a Banach
left A-module (or a right A-module, or an A-bimodule), so that we can certainly apply
the principle of local reflexivity to E. However, we also want to take account of the
A-module structure, that is, ensure that T : M → E is ‘in some sense’ an A-module
homomorphism (of course, M will in general not be a submodule).

It will be helpful to recall that κE is an A-module homomorphism. For the
following, note that for L ⊆ A and M ⊆ E′′ finite-dimensional, we have

L · M = {a · � : a ∈ L,� ∈ M} ∈ FIN(E′′).
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THEOREM 3.1. Let A be a Banach algebra and let E be a Banach left A-module. Let
M ⊆ E′′, L ⊆ A and N ⊆ E′ be finite-dimensional, and let ε > 0. Let M0 ∈ FIN(E′′) be
such that L · M + M ⊆ M0. Then there exists T : M0 → E, a (1 + ε)-isomorphism onto
its range, such that,

1. 〈�,μ〉 = 〈μ, T(�)〉 for � ∈ M0 and μ ∈ N;
2. T(κE(x)) = x for κE(x) ∈ M0 ∩ κE(E);
3. ‖a · T(�) − T(a · �)‖ ≤ ε‖a‖‖�‖ for a ∈ L and � ∈ M.

A similar result holds for Banach right A-modules and Banach A-bimodules with
condition (3) changed in the obvious way.

Proof. Let δ = ε/5 or 1, whichever is smaller. Let (ai)n
i=1 be a set in L such that

‖ai‖ = 1 for each i, and such that

min
1≤i≤n

‖a − ai‖ < δ (a ∈ L, ‖a‖ = 1).

For 1 ≤ i ≤ n, define ψi : B(M0, E) → B(M, E) by

ψi(T)(�) = T(ai · �) − ai · T(�) (T ∈ B(M0, E),� ∈ M).

Then ψ ′
i : M⊗̂E′ → M0⊗̂E′, and for � ∈ M, μ ∈ E′ and T ∈ B(M0, E), we have

〈ψ ′
i (� ⊗ μ), T〉 = 〈μ,ψi(T)(�)〉 = 〈μ, T(ai · �) − ai · T(�)〉,

so that ψ ′
i (� ⊗ μ) = ai · � ⊗ μ − � ⊗ μ · ai. Then, for � ∈ M and μ ∈ E′, we have

〈ψ ′′
i (ιM0 ),� ⊗ μ〉 = 〈ιM0 , ai · � ⊗ μ − � ⊗ μ · ai〉 = 〈ai · �,μ〉 − 〈�,μ · ai〉 = 0,

so that ψ ′′
i (ιM0 ) = 0.

Consider the exact condition (AM0 , BM0 ), as after Theorem 2.4. Then clearly we
have verified condition (2) for the approximate conditions (ψi, {0}), for 1 ≤ i ≤ n.
Applying Theorem 2.4, we find T ∈ B(M0, E), a (1 + δ)-isomorphism onto its range,
with conditions (1) and (2), and such that ‖ψi(T)‖ < δ for 1 ≤ i ≤ n. Then, for a ∈ L
and � ∈ M with ‖a‖ = ‖�‖ = 1, we can find i with ‖a − ai‖ < δ. Then we have

‖a · T(�) − T(a · �)‖
≤ ‖(a − ai) · T(�)‖ + ‖ai · T(�) − T(ai · �)‖ + ‖T(ai · � − a.�)‖
< δ(1 + δ) + ‖ψi(T)‖ + (1 + δ)δ < 3δ + 2δ2 < ε.

Thus we are done, as δ < ε.
Similarly, we can easily adapt the above argument to give the result for right

A-modules and A-bimodules. �
It would be nice if we could work with the exact conditions (ψi, {0}) given above,

but it is far from clear that we can apply condition (2) of Theorem 2.4 in this case.
Fortunately, the above is enough for our application.

We now apply this to prove a result about ultrapowers of modules. Notice that for
a Banach algebra A, a left A-module E and an ultrafilter U , we have that (E)U is a left
A-module with pointwise module action. As usual, E′ becomes a right A-module for
the module action given by

〈μ · a, x〉 = 〈μ, a · x〉 (a ∈ A, x ∈ E, μ ∈ E′).
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Similarly, E′′ becomes a left A-module. Recall the map σU : (E)U → E′′; this is easily
seen to be a left A-module homomorphism, as

〈a · σU (x), μ〉 = lim
i→U

〈μ · a, xi〉 = lim
i→U

〈μ, a · xi〉 = 〈σU (a · x), μ〉,

for a ∈ A, μ ∈ E′ and x = (xi) ∈ (E)U . This all holds, with obvious modifications, for
right A-modules and A-bimodules.

THEOREM 3.2. Let A be a Banach algebra, and let E be a left A-module. Then there
exists an ultrafilter U and a map K : E′′ → (E)U such that

1. K is an isometry and a left A-module homomorphism;
2. σU ◦ K is the identity on E′′;
3. K ◦ κE : E → (E)U is the canonical map.

Similar results hold for right A-modules and A-bimodules.

Proof. We carefully prove this sort of result once, for completeness. Define

I = {
(M, N, L, ε) : M ∈ FIN(E′′), N ∈ FIN(E′), L ∈ FIN(A), ε > 0

}
,

with partial order given by (M1, N1, L1, ε1) ≥ (M2, N2, L2, ε2) if and only if M1 ⊇ M2,
N1 ⊇ N2, L1 ⊇ L2 and ε1 ≤ ε2. Then (I,≤) becomes a directed set, and let U be some
ultrafilter refining the order-filter on I .

We now define K : E′′ → (E)U . Fix � ∈ E′′, and let K(�) = (xi)i∈I ∈ (E)U , where,
for i = (M, N, L, ε) ∈ I , we let xi = T(�) where T : M → E is given by the above
theorem (with, say, M0 = L · M + M). Then, if �,� ∈ E′′, let K(�) = (xi), K(�) =
(yi) and K(� + �) = (zi), so that for i = (M, N, L, ε) with �,� ∈ M, we have xi + yi =
T(�) + T(�) = T(� + �) = zi. Thus (xi) + (yi) = (zi) in (E)U , so that K is linear.
Similarly, we see that K is an isometry, as ε → 0 along U . It follows from conditions
(1) and (2) in the above theorem, that, respectively, σU ◦ K is the identity on E′′, and
K ◦ κE is the canonical map E → (E)U .

Finally, we show that K is a leftA-module homomorphism. Let a ∈ A and � ∈ E′′,
let K(�) = (xi) and K(a · �) = (yi), and let i = (M, N, L, ε) with �, a · � ∈ M and
a ∈ L. Then

‖a · xi − yi‖ = ‖a · T(�) − T(a · �)‖ ≤ ε‖a‖‖�‖,

by condition (3) in the above theorem. Thus a · K(�) = K(a · �) in (E)U . �

4. Ultrapowers of algebras. Let A be a Banach algebra. Using the above, as A′′

is an A-bimodule, we can find an ultrafilter U and an isometry K : A′′ → (A)U which
is an A-module homomorphism, and with σU ◦ K the identity on A′′. This is not quite
enough to show that �

K,U
agrees with either Arens product on A′′. We now show that,

at least when A is Arens regular, we can do better.

THEOREM 4.1. Let A be an Arens regular Banach algebra, M ∈ FIN(A′′), N ∈
FIN(A′) and ε > 0. Let M0 = M + M�M and N0 = N + M · N. Then there exists a
(1 + ε)-isomorphism onto its range T : M0 → A such that

1. 〈�,μ〉 = 〈μ, T(�)〉 for � ∈ M0 and μ ∈ N0;
2. T(κA(a)) = a for κA(a) ∈ M0 ∩ κA(A);
3. |〈μ, T(���) − T(�)T(�)〉| ≤ ε‖μ‖‖�‖‖�‖ for μ ∈ N and �,� ∈ M.
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Proof. Let δ > 0 be such that δ < ε and δ(1 + δ)(3 + δ) < ε. Let (μi)n
i=1 ⊆ N be

such that ‖μi‖ = 1 for each i, and such that we have

min
1≤i≤n

‖μi − μ‖ < δ (μ ∈ N, ‖μ‖ = 1).

For 1 ≤ i ≤ n, define ψi : B(M0,A) → B(M0,A′) by

ψi(T)(�) = T(�) · μi (T ∈ B(M0,A),� ∈ M0),

and define Ti ∈ B(M0,A′) by Ti(�) = � · μi for � ∈ M0. Then we have ψ ′
i : M0⊗̂A′′ →

M0⊗̂A′, and, for T ∈ B(M0,A), � ∈ M0 and � ∈ A′′, we have

〈ψ ′
i (� ⊗ �), T〉 = 〈�,ψi(T)(�)〉 = 〈�, T(�) · μi〉 = 〈μi · �, T(�)〉.

Thus we have ψ ′
i (� ⊗ �) = � ⊗ μi · �, and so

〈ψ ′′
i (ιM0 ),� ⊗ �〉 = 〈�,μi · �〉 = 〈���,μi〉

= 〈���,μi〉 = 〈�,� · μi〉 = 〈κA′(Ti(�)),�〉, (4.1)

as A is Arens regular. Thus ψ ′′
i (ιM0 ) = κB(M0,A′)(Ti). Again, we can then find T ∈

B(M0,A) satisfying (1) and (2), and such that ‖ψi(T) − Ti‖ < δ for 1 ≤ i ≤ n.
For μ ∈ N and �,� ∈ M with ‖μ‖ = ‖�‖ = ‖�‖ = 1, let i be such that ‖μ −

μi‖ < δ. Then ��� ∈ M0 and � · μ ∈ N0 so that we have

〈μ, T(���)〉 = 〈���,μ〉 = 〈�,� · μ〉 = 〈� · μ, T(�)〉.

As ‖ψi(T) − Ti‖ < δ, we have ‖T(�) · μi − � · μi‖ < δ, and so

‖T(�) · μ − � · μ‖
≤ ‖T(�) · μ − T(�) · μi‖ + ‖T(�) · μi − � · μi‖ + ‖� · μi − � · μ‖
< δ‖T(�)‖ + δ + δ‖�‖ ≤ δ(1 + δ) + 2δ.

Putting these together, we then get

|〈μ, T(���) − T(�)T(�)〉| = |〈� · μ, T(�)〉 − 〈T(�) · μ, T(�)〉|
< ‖T(�)‖(δ(1 + δ) + 2δ

) ≤ (1 + δ)(δ(1 + δ) + 2δ)

= δ(1 + δ)(3 + δ) < ε,

as required, completing the proof. �
THEOREM 4.2. Let A be an Arens regular Banach algebra. There exists an ultrafilter

U and an isometry K : A′′ → (A)U such that
1. σU ◦ K is the identity on A′′;
2. K ◦ κA is the canonical map A → (A)U ;
3. �

K,U
, defined using K, agrees with the Arens products on A′′.

Proof. This follows exactly as for the proof of Theorem 3.2. �
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Let A be an Arens regular Banach algebra, and form K : A′′ → (A)U as in the
theorem. For �,� ∈ A′′, let (ai) = K(�) and (bi) = K(�), so that for μ ∈ A′,

〈�,μ〉 = lim
i→U

〈μ, ai〉, 〈�,μ〉 = lim
i→U

〈μ, bi〉,
〈���,μ〉 = 〈

� �
K,U

�μ
〉 = lim

i→U
〈μ, aibi〉.

Compare this symmetric definition of ��� to the formulae in Section 1.1. Of course,
here we have to be careful in our choice of K .

As in the introduction, we note that [14, Theorem 12] shows that it is too much to
expect the above to be true for a non-Arens regular Banach algebraA, with (3) replaced
by asking for �

K,U
to agree with � or �. At least, this is true if A is commutative. It

would be interesting to know if we could ever have, say, �
K,U

= � for a non-commutative,
non-Arens regular Banach algebra.

4.1. Asking for an algebra homomorphism. A much stronger result than the above
would be to find U and K : A′′ → (A)U with K being an algebra homomorphism
(presumably assuming that A is Arens regular). We now present a case when this is
possible.

PROPOSITION 4.3. Let A be a commutative, Arens regular Banach algebra such that
A is an essential ideal in A′′. Suppose that A has an approximate identity (eα) consisting
of idempotents, which is bounded in the multiplier norm. Then there exists an ultrafilter
U and K : A′′ → (A)U with K being an algebra homomorphism, and such that σ ◦ K is
the identity on A′′, and K ◦ κA is the canonical inclusion A → (A)U .

Proof. Let (eα) be indexed by the directed set I , and let U be an ultrafilter on I
refining the order filter. As A is an ideal in A′′, we see that for � ∈ A′′, we have that
�eα ∈ A for each α ∈ I . As (eα) is bounded in the multiplier norm, there exists M > 0
such that

‖aeα‖ ≤ M‖a‖ (a ∈ A, α ∈ I).

Thus ‖eα · μ‖ ≤ M‖μ‖ for μ ∈ A′ and each α, and so ‖�eα‖ ≤ M‖�‖ for � ∈ A′′ and
each α. Hence we may define K by

K(�) = (�eα) ∈ (A)U (� ∈ A′′).

Hence K is linear and bounded, and as (eα) is an approximate identity, we see that
K ◦ κA is the canonical map A → (A)U . For each α, we know that e2

α = eα, and so

K(�)K(�) = (�eα�eα) = (��eαeα) = K(��) (�,� ∈ A′′).

For μ ∈ A′ and a ∈ A, we see that

〈σK(�), a · μ〉 = lim
α→U

〈�, eαa · μ〉 = 〈�, a · μ〉 (� ∈ A′′).

Hence σK(�) = � when restricted to A · A′. If � ∈ (A · A′)⊥, then �a = 0 for each
a ∈ A. As A is an essential ideal in A′′, by definition, � = 0, and so we conclude that
σ ◦ K is the identity on A′′. �
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The above applies in particular to A = c0. It would be interesting to know if the
same conclusions hold in the non-commutative case, namely the compact operators
on �2.

Following an example from [11], letA = C([0, 1]), a commutative C∗-algebra. Then
A′′ is a von Neumann algebra, and so has many (self-adjoint) projections. Let U be an
ultrafilter, and suppose that A′′ is isomorphic, as a Banach algebra, to a subalgebra
of (A)U . Thus (A)U contains non-trivial, not necessarily self-adjoint, projections.
However, (A)U is isomorphic to C(K) for some compact Hausdorff K , and any
projection in C(K) is automatically self-adjoint. It follows from [11, Proposition 2.1]
that (A)U does not contain non-trivial projections, as the only projections in A are
0 and 1, and so we have a contradiction. It would be interesting to, say, characterise
C∗-algebras A which are such that A′′ is isomorphic, or ∗-isomorphic, to a subalgebra
of an ultrapower of A. This of course has links to the notorious Connes-embedding
problem for von Neumann algebras.

Following [12, Example III.1], let A = �1 with the pointwise product. Then c0 ⊆
(�1)′ = �∞, and we can decompose (�1)′′ as c⊥

0 ⊕ �1, where

c⊥
0 = {� ∈ (�1)′′ : 〈�, x〉 = 0 (x ∈ c0)}.

Furthermore, ‖� + a‖ = ‖�‖ + ‖a‖ for � ∈ c⊥
0 and a ∈ �1. Then the product on (�1)′′

is simply

(�, a)(�, b) = ab (a, b ∈ �1,�,� ∈ c⊥
0 ).

Thus A is an ideal in A′′, and clearly A has an approximate identity consisting of
idempotents, and bounded in the multiplier norm. Notice that A is certainly not an
essential ideal in A′′.

PROPOSITION 4.4. With notation as above, there exists an ultrafilter U and an
isometry K : (�1)′′ → (�1)U satisfying the conclusions of Theorem 4.2, with K being a
homomorphism.

Proof. Let M ∈ FIN((�1)′′), N ∈ FIN(�∞) and ε > 0. As (�1)′′ is an L1 space (see
[22, Chapter 2], for example), by enlarging M as necessary, we can find a basis (mi)k

i=1
for M such that ‖mi‖ = 1 for each i, and

(1 − ε)
k∑

i=1

|αi| ≤
∥∥∥∥∥

k∑
i=1

αimi

∥∥∥∥∥ ≤ (1 + ε)
k∑

i=1

|αi| ((αi)k
i=1 ⊆ �).

As (�1)′′ = c⊥
0 ⊕ �1, we may suppose that mi ∈ �1 for 1 ≤ i < k̂ and mi ∈ c⊥

0 for k̂ ≤
i ≤ k. Similarly, it is no loss of generality to suppose that N is the linear span of
indicator functions χA1 , . . . , χAl with (Ai)l

i=1 ⊆ � pairwise disjoint. Furthermore, we
may suppose that

sup
{|〈m, x〉| : x ∈ N, ‖x‖ ≤ 1

} ≥ (1 − ε)‖m‖ (m ∈ M).

Order (Ai) so that Ai is finite for 1 ≤ i < l̂, and Ai is infinite otherwise.
Let ai = mi ∈ �1 for 1 ≤ i < k̂, let ai = (a(i)

t )t∈� ∈ �1. Suppose we have chosen
a1, . . . , ar, and let N be such that

∑
|t|>N |a(i)

t | < ε for 1 ≤ i ≤ r, and such that Aj ⊆
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{1, · · · , N} for 1 ≤ j < l̂. As mr+1 ∈ c⊥
0 , for all finite sets A ⊆ �, we have that

〈mr+1, χAj 〉 = 0, (1 ≤ j < l̂), 〈mr+1, χAj\A〉 = 〈mr+1, χAj 〉, (l̂ ≤ j ≤ l).

Consequently, by a simple argument, we can find ar+1 = (a(r+1)
t ) ∈ �1 with ‖ar+1‖ =

‖mr+1‖ = 1, 〈χAj , ar+1〉 = 〈mr+1, χAj 〉 for l̂ ≤ j ≤ l, with a(r+1)
t = 0 for t ≤ N, and with

|a(r+1)
t | < ε for all t. Thus 〈χAj , ar+1〉 = 0 = 〈mr+1, χAj 〉 for 1 ≤ j < l̂.

Hence we find (ai)k
i=1 ∈ �1 such that 〈x, ai〉 = 〈mi, x〉 for x ∈ N and 1 ≤ i ≤ k.

Furthermore, (ai)k
i=k̂

have disjoint support. Consequently, for (αi)k
i=1 ⊆ �,

∥∥∥∥∥
k∑

i=1

αiai

∥∥∥∥∥ =
∥∥∥∥∥∥

k̂−1∑
i=1

αimi

∥∥∥∥∥∥ +
k∑

i=k̂

|αi| ≤ (1 + ε)
k∑

i=1

|αi| ≤ 1 + ε

1 − ε

∥∥∥∥∥
k∑

i=1

αimi

∥∥∥∥∥ .

Similarly,

∥∥∥∥∥
k∑

i=1

αiai

∥∥∥∥∥ ≥ sup

{
k∑

i=1

αi〈x, ai〉 : x ∈ N, ‖x‖ = 1

}
≥ (1 − ε)

∥∥∥∥∥
k∑

i=1

αimi

∥∥∥∥∥ .

Hence the map T : M → �1 defined by T(mi) = ai and linearity is a (1 + ε̂)-
isomorphism onto its range, for ε̂ = 2ε(1 − ε)−1. Furthermore, 〈m, x〉 = 〈x, T(m)〉 for
m ∈ M and x ∈ N, and Tκ�1 (a) = a for a ∈ �1 with κ�1 (a) ∈ M.

By a now standard argument, we find an isometry K : (�1)′′ → (�1)U such that
σUK is the identity on (�1)′′, Kκ�1 is the canonical map �1 → (�1)U , and for �,� ∈ c⊥

0 ,
we have K(�)K(�) = 0. This last fact follows as we chose (ai)k

i=k̂
above with disjoint

support, and with ‖ai‖∞ small for i ≥ k̂ (this deals with the case that � is a scalar
multiple of �). By the discussion above hence K is an algebra homomorphism, as
required. �

5. Dual Banach algebras and weakly almost periodic functionals. Let A be a
Banach algebra such that A = E′ for some Banach space E. We say that A is a dual
Banach algebra if the product on A is separately weak∗-continuous. It is shown in
[21, Section 1] (see also [6, Section 2]) that A is a dual Banach algebra if and only if
κE(E) ⊆ E′′ = A′ is an A-submodule.

Notice that A′′ is always a dual Banach space. It is not hard to show that A′′,
with either Arens product, is a dual Banach algebra if and only if A is Arens regular.
Similarly, by the definition given in [14], the product �

K,U
is regular if and only if it makes

A′′ a dual Banach algebra (of course, taking account of the fact that �
K,U

may not be

associative). Hence [14, Proposition 6] shows that (A′′, �
K,U

) is a dual Banach algebra (in
this not necessarily associative sense) if and only if �

K,U
= � = � (in which case, �

K,U
is

automatically associative). In particular, �
K,U

cannot turnA′′ into a genuine dual Banach

algebra unless A is already Arens regular.
Let A be a Banach algebra. We say that μ ∈ A′ is weakly almost periodic (WAP)

if the map A → A′; a �→ a · μ is weakly compact. We write μ ∈ WAP(A′) in this case
(some authors write WAP(A) for this). The space WAP(A′) has been widely studied,
especially in the context of group algebras. We now collect some useful results.
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PROPOSITION 5.1. Let A be a Banach algebra. Then WAP(A′) is a closed submodule
of A′. For μ ∈ A′, we have μ ∈ WAP(A′) if and only if 〈���,μ〉 = 〈���,μ〉 for
�,� ∈ A′′. In particular, A is Arens regular if and only if WAP(A′) = A′.

Let X ⊆ A′ be a closed submodule, so we identify X ′ with the quotient A′′/X⊥. The
following are equivalent:

1. X ⊆ WAP(A′);
2. the Arens products drop to a well-defined product on X ′ turning X ′ into a dual

Banach algebra.

Proof. These facts are collected in [6, Section 2]. The first result is due to John Pym.
The second result can be found in many places in the literature; see [16, Lemma 1.4]
for example, which shows this for commutative Banach algebras. �

Similarly, we say that μ ∈ A′ is almost periodic, written μ ∈ AP(A′), if the map
A → A′; a �→ a · μ is (norm) compact.

PROPOSITION 5.2. Let A be a Banach algebra. Then AP(A′) is a closed submodule
of A′.

Let X ⊆ A′ be a closed submodule, so we identify X ′ with the quotient A′′/X⊥. The
following are equivalent:

1. X ⊆ AP(A′);
2. the Arens products drop to a well-defined product on X ′ which is jointly continuous

on bounded spheres.

Proof. Lau shows this for a certain class of commutative Banach algebras in [15,
Theorem 5.8], although the proof is very easy to adapt to the general case. Compare
also [14, Proposition 7]. �

Let A be a Banach algebra and let U be an ultrafilter. Define σ WAP
U : (A)U →

WAP(A′)′ by 〈
σ WAP
U ((ai))μ

〉 = lim
i→U

〈μ, ai〉 ((ai) ∈ (A)U , μ ∈ WAP(A′)).

That is, σ WAP
U is simply the map σU composed with the quotient map A′′ → WAP(A′)′.

THEOREM 5.3. Let A be a Banach algebra, let M ∈ FIN(A′′), N ∈ FIN(WAP(A′))
and N̂ ∈ FIN(A′), and let ε > 0. Let M0 = M + M�M and N0 = N + M · N. Then
there exists a (1 + ε)-isomorphism onto its range T : M0 → A such that

1. 〈�,μ〉 = 〈μ, T(�)〉 for � ∈ M0 and μ ∈ N̂;
2. T(κA(a)) = a for κA(a) ∈ M0 ∩ κA(A);
3. |〈μ, T(���) − T(�)T(�)〉| ≤ ε‖μ‖‖�‖‖�‖ for μ ∈ N and �,� ∈ M.

Proof. If we examine the proof of Theorem 4.1, we see that it will hold for non-
Arens regular Banach algebras, so long as N ⊆ WAP(A′). It is an easy exercise to take
account of N̂. �

COROLLARY 5.4. Let A be a Banach algebra. There exists an ultrafilter U and an
isometry K : A′′ → (A)U such that

1. σU ◦ K is the identity on A′′;
2. K ◦ κA is the canonical map A → (A)U ;

https://doi.org/10.1017/S0017089508004400 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089508004400


ULTRAPOWERS OF BANACH ALGEBRAS AND MODULES 551

3. Let ι = ιWAP : A′′ → WAP(A′)′ be the quotient map. For �,� ∈ A′′, we have

〈ι(�)ι(�), μ〉 = 〈
σ WAP
U (K(�)K(�))μ

〉
(μ ∈ WAP(A′)).

It would seem to be natural to ask if we could define K as a map WAP(A′)′ → (A)U
with σ WAP

U ◦ K , the identity on WAP(A′)′.

PROPOSITION 5.5. Let A be a Banach algebra. The following are equivalent:
1. There exists a map KWAP : WAP(A′)′ → (A)U with σ WAP

U ◦ KWAP, the identity on
WAP(A′)′;

2. WAP(A′)⊥ is complemented in A′′ (that is, WAP(A′) is weakly complemented);

Proof. If (1) holds, then L = σU ◦ K is a map WAP(A′)′ → A′′. Then ιWAP ◦ L is
the identity on WAP(A′)′, and so L ◦ ιWAP is a projection of A′′ onto the image of L,
with complementary space WAP(A′)⊥, and so (2) holds.

If (2) holds then let P : A′′ → WAP(A′)⊥ be a projection. Let K : A′′ → (A)U
be such that σU ◦ K is the identity on A′′. We identify WAP(A′)′ with the quotient
A′′/WAP(A′)⊥, and let ιWAP be the quotient map. Define KWAP : WAP(A′)′ → (A)U by

KWAP(ιWAP(�)) = K(� − P(�)) (� ∈ A′′).

Then, if ιWAP(�) = ιWAP(�), we have � − � ∈ WAP(A′)⊥, so that P(� − �) =
� − �, and so K(� − � − P(� − �)) = 0, showing that KWAP is well defined. Then
σ WAP
U KWAPιWAP = ιWAPσUK(I − P) = ιWAP(I − P) = ιWAP, and so (1) holds. �

We currently have no examples showing that WAP(A′)⊥ can be complemented in
A′′. An obvious place to look is at group algebras L1(G), for which WAP(L∞(G)) is
(reasonably) well understood (see [6, Section 7] and references therein).

We can similarly define σ AP
U , and as AP(A′) ⊆ WAP(A′), all of the above holds

for AP, with suitable modifications. By Proposition 5.2, we see that σ AP
U is actually an

algebra homomorphism.

6. Automatic regularity for C∗-algebras. As stated in the introduction, [12,
Corollary II.2] shows that when A is a C∗-algebra the map �

K,U
always agrees with

� = �, so long as K : A′′ → (A)U is an isometry (and satisfies our two standing
assumptions, namely, σ ◦ K is the identity on A′′, and K ◦ κA is the canonical
embedding).

The proof of [14, Proposition 7] is trivially adapted to our situation (that is, when
K is not assumed to be an isometry) to show that when AP(A′) = A′, we have that
�

K,U
= � (as WAP(A′) = A′, such algebras are always Arens regular).

Recall, [23], that a positive functional of a C∗-algebra is pure if the associated
GNS representation is irreducible. Recall that a C∗-algebra is said to be scattered if
every positive functional is a sum of pure positive functionals. For a commutative
C∗-algebra, C(X) is scattered if and only if X is scattered, in the topological sense that
every subset of X contains an isolated point. Then Quigg [19, Theorem 3.2] showed
the following:

THEOREM 6.1. For a C∗-algebra A, AP(A′) = A′ if and only if A is scattered and
each irreducible representation of A is finite-dimensional.
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It seems possible that for well-behaved Banach algebras (say, certainly for C∗-
algebras), that when A′ �= AP(A′), we can construct a map K : A′′ → (A)U satisfying
our two assumptions, but with �

K,U
�= �. We can currently only show this under an

extra assumption.
Before we proceed, we provide a general way of finding such maps K .

PROPOSITION 6.2. Let A be an Arens regular Banach algebra. Suppose that there
exist weakly null nets (aα) and (bα), on the same index set, such that (aαbα) is not weakly
null. Then there exists an ultrafilter U and a bounded map K : A′′ → (A)U which satisfies
our standing assumptions, but with �

K,U
not equal to the Arens products.

Proof. Let our nets be indexed by the directed set J, and let V be an ultrafilter
refining the order filter on J. Let W be some ultrafilter such that there exists a bounded
map L : A′′ → (A)W satisfying the conclusions of Theorem 4.2. Let � ∈ A′′ be the
weak∗-limit of (aαbα) along V , so that � �= 0.

Let �1, �2 ∈ A′′ \ A and M1, M2 ∈ A′′′ be such that 〈M1, κA(a)〉 = 〈M2, κA(a)〉 =
0 for a ∈ A, and

〈M1, �1〉 = 〈M2, �2〉 = 1, 〈M2, �1〉 = 〈M1, �2〉 = 0.

Recall that we define the ultrafilter V × W on J × I by, for K ⊆ J × I , setting K ∈
V × W if and only if

{i ∈ I : {α ∈ J : (α, i) ∈ K} ∈ V} ∈ W.

Then, for a family (xα,i)α∈J,i∈I in a Hausdorff space X , we have

lim
i→W

lim
α→V

xα,i = lim
(α,i)→V×W

xα,i,

whenever the limits exist. Let U = V × W , and define K : A′′ → (A)U as follows. For
� ∈ A′′, let L(�) = (ci)i∈I , and define

K(�) = (ci + 〈M1,�〉aα + 〈M2,�〉bα)(α,i)∈J×I .

Obviously K is linear and bounded. For a ∈ A, by the choice of M1 and M2, we have
K(κA(a)) = (a), so that K ◦ κA is the canonical map A → (A)U .

For μ ∈ A′ and � ∈ A′′, let L(�) = (ci), so we have

〈σ (K(�)), μ〉 = lim
(α,i)→U

〈μ, ci + 〈M1,�〉aα + 〈M2,�〉bα〉 = lim
i→W

〈μ, ci〉 = 〈�,μ〉,

as (aα) and (bα) are weakly null.
Finally, let L(�1) = (ci) and L(�2) = (di), so that

K(�1) = (ci + aα), K(�2) = (di + bα).

Thus we see that for μ ∈ A′,

〈�1 �
K,U

�2, μ〉 = lim
(α,i)→U

〈μ, (ci + aα)(di + bα)〉 = lim
(α,i)→U

〈μ, cidi + aαdi + cibα + aαbα〉

= 〈�1��2, μ〉 + 〈�,μ〉 + lim
i→W

(
lim
α→V

〈di · μ, aα〉 + 〈μ · ci, bα〉)
= 〈�1��2 + �,μ〉,

as (aα) and (bα) are weakly null. Hence, �1 �
K,U

�2 �= �1��2 as � �= 0. �
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Let A = K(�p), the compact operators of �p, for 1 < p < ∞. Then, as detailed
in [17, Section 1.4] for example, the dual of A is the nuclear operators on �p, and
A′′ = B(�p), with � = � agreeing with the usual product. Let (δn) be the standard unit
vector basis of �p, and for each n, let an be the rank-one operator which sends δn to δ1,
and kills δk otherwise, and let bn be the rank-one operator which sends δ1 to δn, and
kills δk otherwise. Then (an) and (bn) are both weakly null sequences, but anbn is the
projection onto the first coordinate, for each n. Hence the above proposition applies in
this case, and in particular it applies to the C∗-algebra K(�2).

DEFINITION 6.3. Let E and F be Banach spaces, and let T : E → F be a bounded
linear map. Then T is totally completely continuous if, whenever (xα) is a weakly null
net in E, then limα ‖T(xα)‖ = 0.

Recall that if we only use sequences in the above definition, we get the usual
notion of T being completely continuous [1]. Our work below will show that being
totally completely continuous is strictly stronger than being completely continuous.
We view being totally completely continuous as a property close to being compact.

PROPOSITION 6.4. Let A be a Banach algebra, and let μ ∈ WAP(A′) be such that the
map A → A′; a �→ a · μ is not totally completely continuous. Then there exist weakly
null nets (aα) and (bα), on the same index set, such that (bαaα) is not weakly null.

Proof. Let (ai) be some weakly null net in A such that for some δ > 0, we have
‖ai · μ‖ ≥ δ for all i. Let � be the collection of finite-dimensional subspaces of A′,
partially ordered by reverse inclusion. For each M ∈ �, if we can find some i and some
b ∈ A with ‖b‖ = 1, and with

|〈ai · μ, b〉| ≥ δ/3, 〈λ, b〉 = 0, |〈λ, ai〉| ≤ (dim M)−1‖λ‖ (λ ∈ M),

then we are done.
As (ai) is weakly null, we can ensure the final condition by simply ensuring that

i ≥ i0, for some i0 depending upon M. For c ∈ A, we have

lim
i

〈ai · μ, c〉 = lim
i

〈μ · c, ai〉 = 0,

so we see that (ai · μ) is weak∗-null.
For fixed i, notice that the Hahn–Banach theorem shows that

sup{|〈ai · μ, b〉| : b ∈ A, ‖b‖ = 1, 〈λ, b〉 = 0 (λ ∈ M)}
= d(ai · μ, M) := inf{‖ai · μ − λ‖ : λ ∈ M}.

For each i, let λi ∈ M be such that ‖ai · μ − λi‖ = d(ai · μ, M). Suppose that d(ai ·
μ, M) ≤ ε for each i ≥ i0. Then (λi) is a bounded net, and so, by passing to a subnet if
necessary, we may suppose that λi → λ ∈ M, in norm. For c ∈ A, we see that

|〈λ, c〉| = lim
i

|〈ai · μ − λ, c〉| = lim
i

|〈ai · μ − λi, c〉| ≤ ‖c‖ε,

so that ‖λ‖ ≤ ε. Hence

δ ≤ lim inf
i

‖ai · μ‖ ≤ lim inf
i

‖ai · μ − λ‖ + ‖λ‖ ≤ ε + lim inf
i

‖ai · μ − λi‖ ≤ 2ε,

showing that ε ≥ δ/2, as required. �
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For more about the following definition, see [4, Section 5].

DEFINITION 6.5. A Banach space E has the π -property if there exists a bounded
net (Tα) of finite-rank projections such that ‖Tα(x) − x‖ → 0 for x ∈ E.

Notice that if E has a basis, then it has the π -property. It is easy to show that
L1 spaces (and hence M(X) spaces) have the π -property, so the duals of commutative
C∗-algebras have the π -property. However, the π -property is stronger than the more
usual (bounded) approximation property, and it is known (see [20, Remark 6.1.9]) that
a von Neumann algebra M has the approximation property if and only if it is nuclear,
which is if and only if M is a finite sum of algebras of the form C(X) ⊗ �n. As the
approximation property passes to preduals, there are plenty of von Neumann algebras
M such that M′ cannot have the π -property.

PROPOSITION 6.6. Let A be a Banach algebra such that A′ has the π -property.
Let μ ∈ WAP(A′) \ AP(A′). Then the map A → A′; a �→ a · μ is not totally completely
continuous.

Proof. Let (Tα) be a net of finite-rank projections on A′ such that ‖Tα(λ) − λ‖ → 0
for each λ ∈ A′. Let M = supα ‖Tα‖. Suppose, towards a contradiction, that for each
δ > 0 there exists some α such that for each � ∈ A′′ with T ′

α(�) = 0, we have ‖� · μ‖ ≤
δ‖�‖.

For each δ, choose such an α. For � ∈ A′′ let � = � − T ′
α(�), so that T ′

α(�) =
0, and so ‖� · μ − T ′

α(�) · μ‖ = ‖� · μ‖ ≤ δ‖�‖ ≤ δ(1 + M)‖�‖. As δ > 0 was
arbitrary, we see that the map A′′ → A′; � �→ � · μ can be uniformly approximated by
finite-rank operators, and hence is compact, contradicting the fact that μ �∈ AP(A′).

Thus, for some δ > 0, for each α there exists �α ∈ A′′ with ‖�α‖ = 1, T ′
α(�α) = 0

and ‖�α · μ‖ ≥ δ. For each α, let aα ∈ A be such that ‖aα‖ ≤ 2, aα agrees with �α on
the image of Tα, a finite-dimensional subspace ofA′, and ‖aα · μ‖ ≥ δ/2. We can ensure
the final condition as aα · μ → �α · μ weakly, as μ ∈ WAP(A′). Then, for λ ∈ A′, as
Tα(λ) → λ in norm, we see that

lim
α

〈λ, aα〉 = lim
α

〈Tα(λ), aα〉 = lim
α

〈�α, Tα(λ)〉 = 0,

so (aα) is weakly null. �
We can immediately draw conclusions about commutative C∗-algebras.

THEOREM 6.7. Let A = C0(X) be a commutative C∗-algebra. The following are
equivalent:

1. X is scattered;
2. for any K : A′′ → (A)U satisfying our standing assumptions, we have �

K,U
= �.

Asking for K to be an isometry is a strong condition. There is by now a large
selection of results in the theory of C∗-algebras which weaken the requirement of
‘isometry’ to ‘completely bounded’ (see [18], for example). Given a C∗-algebra A,
there is a canonical way to turn the matrix algebra �n(A) into a C∗-algebra. Given
a linear map T : A → B between two C∗-algebras, let T acts pointwise as a map
(T)n : �n(A) → �n(B). Then T is completely bounded if and only if supn ‖(T)n‖ < ∞.
It is simple to show the map K which we constructed in Proposition 6.2 is completely
bounded: the only non-trivial thing to check is the well-known fact that bounded linear
functionals are automatically completely bounded. It would be interesting to know if
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there is any reasonable weakening of the ‘isometry’ condition on K which still ensures
that �

K,U
= � for C∗-algebras.
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