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Abstract
The long-term cholesterol-lowering effect of replacing intake of SFA with PUFA is well established, but has not been fully explained mechanistically.
We examined the postprandial response of meals with different fat quality on expression of lipid genes in peripheral blood mononuclear cells (PBMC)
in subjects with and without familial hypercholesterolaemia (FH). Thirteen subjects with FH (who had discontinued lipid-lowering treatment ≥4 weeks
prior to both test days) and fourteen normolipidaemic controls were included in a randomised controlled double-blind crossover study with two
meals, each with 60 g of fat either mainly SFA (about 40% energy) or n-6 PUFA (about 40% energy). PBMC were isolated in fasting, and 4 and 6 h post-
prandial blood samples. Expression of thirty-three lipid genes was analysed by reverse transcription quantitative PCR. A linear mixed model was used to
assess postprandial effects between meals and groups. There was a significant interaction between meal and group for MSR1 (P = 0·03), where intake of
SFA compared with n-6 PUFA induced a larger reduction in gene expression in controls only (P= 0·01). Intake of SFA compared with n-6 PUFA induced
larger reductions in gene expression levels of LDLR and FADS1/2, smaller increases of INSIG1 and FASN, and larger increases of ABCA1 and ABCG1
(P= 0·01 for all, no group interaction). Intake of SFA compared with n-6 PUFA induced changes in gene expression of cholesterol influx and efflux med-
iators in PBMC including lower LDLR and higher ABCA1/G1, potentially explaining the long-term cholesterol-raising effect of a high SFA intake.
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Elevated total cholesterol and LDL-cholesterol (LDL-C)
concentrations are established risk factors for CVD(1). In a
meta-analysis of sixty controlled trials, Mensink et al.(2) showed

a significant decrease in serum LDL-C when SFA were
replaced with unsaturated fatty acids. We previously showed
that by exchanging only a few regularly consumed food
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items with less SFA and more PUFA for 8 weeks, serum total
cholesterol and LDL-C significantly decreased in hypercholes-
terolaemic subjects(3). For every energy percentage of SFA that
is replaced with PUFA, a 2–3 % risk reduction is seen in
CHD(4), providing strong evidence for the role of fat quality
in CVD development(5,6).
Patients with familial hypercholesterolaemia (FH) are charac-

terised by genetically elevated cholesterol levels, mainly due to a
mutation in the gene coding for the LDL receptor (LDLR)(7).
Thus, these patients have increased CVD mortality(8). It has
also been suggested that subjects with FH may have an altered
metabolism of TAG-rich lipoproteins(9,10). We recently showed
that the postprandial TAG response did not differ between
young FH subjects and healthy controls after intake of high-fat
meals rich in SFA or PUFA. However, the TAG peaked later
after intake of SFA compared with PUFA(11).
Peripheral blood mononuclear cells (PBMC) are circulating

cells playing an important role in CVD development and are
exposed to environmental factors such as dietary compo-
nents(12). Studies have shown that PBMC reflect hepatic regu-
lation of cholesterol metabolism(13–15). Thus, since tissue
availability in human studies is very limited, PBMC may
serve as a model system to investigate cholesterol metabolism.
The exact mechanisms behind the LDL-C-lowering effect of

replacing SFAwith PUFA are not fully explained, but may poten-
tially be through regulation of the LDLR(16). This should be fur-
ther clarified in humans to strengthen the evidence for current
dietary recommendations. If SFA induce a cholesterol-increasing
effect through modulation of the LDLR, it may be hypothesised
that intake of SFA may be particularly unfavourable for patients
with FH and LDLR deficiency(17). The aim of the present study
was to explore the expression of lipid-related genes in PBMC
after a single meal with high SFA v. high n-6 PUFA content in
subjects with and without FH.

Subjects and methods

Subjects

The subjects and study design including inclusion and exclu-
sion criteria have been described in detail previously(11).
Briefly, in this randomised controlled double-blind crossover
study we included two groups, one with genetically verified
heterozygous FH subjects and one with normolipidaemic con-
trols, both aged 18–30 years. The subjects were included if
they had BMI 18·5–30·0 kg/m2, C-reactive protein levels
≤10 mg/l, TAG ≤4 mmol/l and no metabolic co-morbidities.
An additional inclusion criterion for the FH subjects was the
presence of a FH mutation in the gene encoding the LDLR.
All FH subjects were treated with lipid-lowering medications,
but discontinued the treatment during the last 4 weeks prior
to the first test day and during the whole period between
the first and second test day.

Study design

The FH subjects and normolipidaemic controls ingested two
meals with different fat quality in a randomised order with a
wash-out period of 3–5 weeks between the meals. The two

meals (150 g) were high in fat (60 g; 70 % energy) and with either
mainly SFA (about 40 % energy) or n-6 PUFA (about 40 %
energy), and were blinded to the participants and care providers.
The two meals contained the same amount of energy, MUFA,
carbohydrates and proteins. Fat originated from palm oil and
coconut oil in the SFA meal, and from sunflower-seed oil and
rapeseed oil in the n-6 PUFA meal. The fatty acid composition
of the meals is illustrated in Fig. 1. Venous blood samples were
taken after 12 h of fasting (baseline, 0 h) and 4 and 6 h after meal
consumption. The study visits were performed at the University
of Oslo, Norway between March and May 2016. This study was
conducted according to the guidelines laid down in the
Declaration of Helsinki and all procedures involving human
subjects were approved by the Regional Committees for
Medical and Health Research Ethics (REK 2015/2392/REK
sør-øst B). Written informed consent was obtained from all sub-
jects. The study was registered at http://www.ClinicalTrials.gov
(registration no. NCT02729857). The main results from the
study have been published previously(11). This paper presents
pre-specified secondary outcomes from the study.

Routine measures

Serum was collected from silica gel tubes (Becton Dickenson
Vacutainer Systems) and stored at room temperature for 30–
60 min until centrifugation (1500 g; 15 min). Whole blood
samples in EDTA tubes (Becton Dickenson Vacutainer
Systems) were kept at room temperature until analysed.
Standard blood chemistry was measured in serum and whole
blood using routine laboratory methods at an accredited med-
ical laboratory (Fürst Medical Laboratory).

Gene expression analysis in peripheral blood mononuclear
cells

PBMC were isolated from blood using BD Vacutainer Cell
Preparation tubes with sodium heparin according to the manufac-
turer (Becton Dickinson) and stored as pellets at −80°C until

Fig. 1. Fatty acid composition of the test meals. , SFA meal; , PUFA meal.
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further RNA isolation. Total RNA was isolated using an RNeasy
mini kit (Qiagen), and treated with DNase I (Qiagen) according
to the manufacturer’s instructions and stored at −80°C. The
quantity and quality of RNA were measured using an ND
1000 Spectrophotometer (Saveen Werner Carlson Circle) and
an Agilent Bioanalyser (Agilent Technology), respectively. A high-
capacity RNA-to-cDNA kit (catalogue no. 4387406; Applied
Biosystems) was used to reverse transcribe 500 ng of RNA
from all samples. Quantitative real-time PCR was performed
on an ABI PRISM 7900HT Sequence Detector System
(Applied Biosystems) using custom TaqMan array cards (Life
Technologies). Acyl-CoA synthetase long-chain family member
(ACSL) 3 and ACSL4 were chosen as reference genes based
on the lowest between-sample variation as recommended by
the manufacturer’s protocol. For this purpose and to calculate
the relative mRNA expression level for each transcript, the soft-
ware ExpressionSuite v1.1 (ThermoFisher Scientific) was used.
Further, the ΔΔ cycle threshold (CT) method(18) was used.
Briefly, the CT values of each target gene were normalised to
the CT values of the two reference genes (=ΔCT). ΔΔCT was
then calculated as ΔCT, 4 or 6 h minus ΔCT, baseline (0 h). The fold
change in mRNA expression was calculated as 2−DDCT .
An overview of the lipid-related genes, respective metabolic

pathway and assay identification number of the inventoried
TaqMan probe and primer sets used is provided in Table 1.

Statistics

Subject characteristics are presented as medians and 25th–75th
percentiles, or as frequencies and percentages. The
Mann−Whitney test and χ2 test were used to compare subject
characteristics and baseline (0 h) gene expression levels (2−DCT )
between FH and control subjects. We performed a linear
mixed-model analysis on the changes from baseline (0 h) to
4 and 6 h (2−DDCT for time 4 and 6 h, respectively). Meal
(i.e. change after the SFA v. PUFA meal), group (i.e. change
in FH v. control subjects), time (i.e. change at 4 h v. 6 h from
0 h) and period (order of the meals) were included in the
model. We tested for the following two-way interactions
between the variables, one at a time: time–meal (i.e. difference
in change from 4 to 6 h between the SFA and the PUFA meal),
time–group (i.e. difference in change from 4 to 6 h in FH v. con-
trol subjects) andmeal–group (i.e. difference in change from 0 h
after the SFA and PUFA meal between FH and control sub-
jects). Non-significant period or interaction effects were not
included in the final models. Data were stratified by group
and meal when there was a significant interaction effect.
Normality, outliers and systematic trends of the residuals
were examined in histograms and Q−Q plots to assess the
adequacy of the fitted models. The maximum number of obser-
vations (indicated by n in the tables) included in the analysis was
108 (27 subjects × 2 meals × 2 times (4 and 6 h)). The

Table 1. Overview of the lipid-related genes examined by quantitative real-time PCR

Gene symbol Full name Function

ThermoFisher

Scientific’s assay no.

ACAT1 Acetyl-CoA acetyltransferase 1 Cholesterol biosynthesis Hs01011096_m1

DHCR24 24-Dehydrocholesterol reductase Cholesterol biosynthesis Hs00207388_m1

DHCR7 7-Dehydrocholesterol reductase Cholesterol biosynthesis Hs01023087_m1

FDFT1 Squalene synthase Cholesterol biosynthesis Hs00926054_m1

FDPS Farnesyl diphosphate synthase Cholesterol biosynthesis Hs01578769_g1

HMGCR 3-Hydroxy-3methylglutaryl-CoA reductase Cholesterol biosynthesis Hs00168352_m1

HMGCS1 3-Hydroxy-3-methylglutaryl-CoA synthase 1 Cholesterol biosynthesis Hs00940429_m1

INSIG1 Insulin-induced gene 1 Cholesterol biosynthesis Hs01650979_m1

LSS Lanosterol synthase Cholesterol biosynthesis Hs01552331_m1

SCAP Sterol regulatory element binding cleavage activating protein Cholesterol biosynthesis Hs00378725_m1

CPT1A Carnitine palmitoyltransferase 1A Fatty acid metabolism: β-oxidation Hs00912671_m1

CPT2 Carnitine palmitoyltransferase 2 Fatty acid metabolism: β-oxidation Hs04188816_m1

ECI1 Enoyl-CoA delta isomerase 1 Fatty acid metabolism: β-oxidation Hs00157239_m1

SLC25A20 Solute carrier family 25 member 20 Fatty acid metabolism: β-oxidation Hs00386383_m1

ACSL1 Acyl-CoA synthetase long-chain family member 1 Fatty acid metabolism: intracellular transport Hs00960561_m1

FADS1 Fatty acid desaturase 1 Fatty acid metabolism: long-chain PUFA pathway Hs00203685_m1

FADS2 Fatty acid desaturase 2 Fatty acid metabolism: long-chain PUFA pathway Hs00927433_m1

ACACA Acetyl-CoA carboxylase α Fatty acid metabolism: synthesis Hs01046047_m1

FASN Fatty acid synthase Fatty acid metabolism: synthesis Hs01005622_m1

SCD Stearoyl-CoA desaturase Fatty acid metabolism: synthesis Hs01682761_m1

SORL1 Sortilin related receptor 1 Lipoprotein metabolism Hs00268342_m1

LDLR LDL receptor Lipoprotein metabolism Hs01092524_m1

MYLIP Myosin regulatory light chain interacting protein Lipoprotein metabolism Hs00203131_m1

SORT1 Sortilin-1 Lipoprotein metabolism Hs00361760_m1

VLDLR Very low-density lipoprotein receptor Lipoprotein metabolism Hs01045922_m1

ABCA1 ATP-binding cassette, sub family A, member 1 Reverse cholesterol transport Hs01059118_m1

ABCG1 ATP-binding cassette, sub family G, member 1 Reverse cholesterol transport Hs00245154_m1

SCARB1 Scavenger receptor class B member 1 Reverse cholesterol transport Hs00969821_m1

CD36 CD 36 molecule Scavenger receptor Hs00169627_m1

MSR1 Macrophage scavenger receptor 1 Scavenger receptor Hs00234007_m1

NR1H3 Nuclear receptor subfamily 1 group H member 3 Transcription factor targeting lipid genes Hs00172885_m1

SREBF1 Sterol regulatory element binding transcription factor 1 Transcription factor targeting lipid genes Hs01088691_m1

SREBF2 Sterol regulatory element binding transcription factor 2 Transcription factor targeting lipid genes Hs01081778_m1
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postprandial effects are presented as means and standard errors
of 2−DDCT values. The Benjamini−Hochberg procedure (false
discovery rate correction) was used to correct for the number
of genes tested (n 33) for all variables in the linear mixed-model
analysis, and Benjamini−Hochberg adjusted P values are pre-
sented. For genes that were differentially expressed between
the meals, Spearman’s rank-correlation coefficient (r) was esti-
mated for change in gene expression and circulating lipids
from 0 to 4 h with both groups combined. P values <0·05
were considered significant. Statistical analyses were conducted
with SPSS version 24.0 and Benjamini−Hochberg adjustment
was performed in Excel.

Results

Subject characteristics

Characteristics of the thirteen subjects with FH and the four-
teen control subjects are presented in Table 2. There was no
significant difference in age, sex and BMI between the
groups(11). Subjects with FH had significantly higher total chol-
esterol and LDL-C levels compared with controls(11). There
was no significant difference in the postprandial response
(incremental AUC) of TAG, total cholesterol or LDL-C
between meals or groups as previously shown(11). At baseline
(0 h), FH compared with control subjects had significantly
lower expression of genes involved in fatty acid metabolism
(ACACA, CPT1A and FADS1), cholesterol biosynthesis
(FDPS), the gene coding for the scavenger receptor MSR1
and genes involved in the transcription of lipid genes
(NR1H3 and SREBF2) (0·001≤ P≤ 0·02) (Supplementary
Table S1). There was no significant difference in the postpran-
dial response of percentage distribution of plasma total SFA,

MUFA, n-6 PUFA and n-3 PUFA between meals or groups
(0·10≤ P≤ 0·76; data not shown).

Postprandial responses in peripheral blood mononuclear cell
gene expression levels

We found no significant effect of period (order of the meals;
0·10≤ P≤ 0·95) and no significant interaction between time
and meal (0·73 ≤ P≤ 0·92) and between time and group
(0·98≤ P≤ 0·99), thus these are not included in the final
model. There were no significant interactions between meal
and group (0·19 ≤ P≤ 0·95), except for the scavenger receptor
MSR1 (P= 0·03), where intake of SFA compared with n-6
PUFA induced a larger reduction in gene expression in con-
trols only (P = 0·01, Table 3). Significant differences between
meals were found for seven out of thirty-three genes, inde-
pendent of group. Intake of SFA compared with n-6 PUFA
induced larger reductions in expression levels of LDLR
(Table 3) and genes involved in fatty acid desaturation
(FADS1, FADS2; Table 3), and smaller increases in expres-
sion levels of genes involved in cholesterol biosynthesis
(INSIG1; Table 3) and fatty acid synthesis (FASN; Table 3)
(P = 0·01 for all). Moreover, intake of SFA compared with
n-6 PUFA induced larger increases in expression levels of
genes involved in reverse cholesterol transport (ABCA1,
ABCG1; P = 0·01 for both; Table 3).
FH compared with control subjects had significantly larger

postprandial increases in expression levels of genes involved
in β-oxidation (CPT1A), fatty acid desaturation (FADS2),
cholesterol biosynthesis (HMGCS1) and transcription of
lipid genes (SREBF2), independent of meal (0·01 ≤ P≤ 0·02;
Table 3). Postprandial expression of genes that did not change

Table 2. Subject characteristics

(Medians and 25th–75th percentiles; percentages)

FH (n 13) Controls (n 14)

SFA meal PUFA meal SFA meal PUFA meal

Median

25th–75th

percentiles Median

25th–75th

percentiles Median

25th–75th

percentiles Median

25th–75th

percentiles P*

Age (years) 0·76
Median 25·0 24·5
25th–75th

percentiles

21·0–28·5 23·0–28·0

Female (%) 61·5 64·3 1·0
BMI (kg/m2) 0·24
Median 22·9 22·1
25th–75th

percentiles

21·5–25·3 20·5–23·8

TAG (mmol/l) 1·3 0·8–1·7 0·9 0·7–1·3 0·8 0·7–1·0 0·8 0·6–1·2 0·08
Total cholesterol

(mmol/l)

7·2 6·5–8·7 7·9 6·5–9·0 4·1 3·9–4·4 4·1 3·6–4·5 <0·001

LDL-cholesterol

(mmol/l)

5·7 5·3–7·4 6·3 5·4–7·5 2·4 1·8–2·9 2·3 1·8–2·8 <0·001

Neutrophils (%) 44 41–55 49 41–56 47 43–52 47 43–58 0·98
Lymphocytes (%) 40 34–46 37 33–43 40 35–43 38 27–44 0·87
Monocytes (%) 9 7–11 10 8–12 10 8–12 9 7–11 0·46
Eosinophils (%) 2 2–3 3 2–5 3 2–6 2 2–5 0·62
Basophils (%) 0 0–1 2 0–2 0 0–2 0 0–2 0·26
FH, familial hypercholesterolaemia.

* P values for group differences (mean of the two visits) from the Mann−Whitney test or χ2 test.
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significantly different between meals or groups is presented in
Supplementary Table S2.
Furthermore, we correlated the change from 0 to 4 h

(2−DDCT ) in expression of the genes that were significantly dif-
ferent between meals (ABCA1, ABCG1, FADS1, FADS2,
FASN, INSIG1, LDLR and MSR1) with the change from 0
to 4 h in circulating LDL-C and TAG levels. However, there
were no significant correlations between the changes in gene
expression of the selected genes and circulating LDL-C and
TAG levels after any of the two meals (−0·26 ≤ r≤ 0·39;
0·05 ≤ P≤ 0·96; data not shown).

Discussion

In the present study, we found that intake of SFA compared
with n-6 PUFA modulated the expression of several key

genes in lipid metabolism including a larger reduction of
LDLR, smaller increase of INSIG1 and larger increases of
ABCA1 and ABCG1 in PBMC. These effects may contribute
to the explanation of some of the unfavourable effects induced
by SFA compared with n-6 PUFA intake on circulating chol-
esterol levels.
Intake of SFA has consistently been shown to increase

circulating cholesterol levels in dietary intervention studies(2,3,6).
However, the molecular mechanisms remain to be completely
understood. Few studies have investigated the impact of fat
quality on LDLR gene expression in humans. In the present
study, a larger reduction in postprandial gene expression level
of LDLR in PBMC was found after intake of SFA compared
with n-6 PUFA. Decreased LDLR gene expression has also
been shown in a previous postprandial study after SFA v.
MUFA intake(19). Long-term human studies exploring gene

Table 3. Postprandial changes in gene expression in peripheral blood mononuclear cells that were significantly different between meals or groups*

(Mean values with their standard errors)

SFA PUFA

4 h (2−ΔΔCT) 6 h (2−ΔΔCT) 4 h (2−ΔΔCT) 6 h (2−ΔΔCT)

Target gene n Mean SE Mean SE Mean SE Mean SE Pmeal Pgroup

ABCA1 98 0·01† 0·44
FH 1·75 0·18 1·62 0·19 1·45 0·16 1·29 0·13
C 1·57 0·13 1·29 0·08 1·20 0·09 1·25 0·17

ABCG1 98 0·01† 0·73
FH 1·47 0·13 1·42 0·14 1·27 0·04 1·22 0·11
C 1·57 0·14 1·37 0·11 1·30 0·13 0·92 0·10

CPT1A 95 0·42 0·01§
FH 1·32 0·15 2·11 0·25 1·24 0·09 1·67 0·11
C 0·89 0·12 1·32 0·10 1·03 0·08 1·30 0·07

FADS1 104 0·01‡ 0·12
FH 0·93 0·05 0·90 0·06 1·01 0·10 1·02 0·09
C 0·71 0·04 0·70 0·04 1·02 0·10 0·89 0·07

FADS2 104 0·01‡ 0·01§
FH 1·06 0·08 1·13 0·11 1·30 0·13 1·13 0·08
C 0·72 0·08 0·80 0·07 1·03 0·10 1·00 0·07

FASN 96 0·01‡ 0·15
FH 1·13 0·10 1·26 0·14 1·34 0·11 1·30 0·09
C 0·95 0·06 1·07 0·06 1·16 0·09 1·17 0·06

HMGCS1 100 0·23 0·01§
FH 1·30 0·10 1·14 0·10 1·14 0·08 1·20 0·12
C 0·81 0·03 0·81 0·07 1·09 0·09 0·97 0·05

INSIG1 94 0·01‡ 0·55
FH 1·19 0·06 1·01 0·07 1·26 0·11 1·26 0·11
C 1·11 0·08 0·96 0·07 1·15 0·07 1·13 0·07

LDLR 95 0·01‡ 0·44
FH 0·78 0·05 0·84 0·11 0·99 0·08 0·89 0·06
C 0·76 0·07 0·74 0·08 1·21 0·09 1·05 0·08

MSR1 104 C 0·01‡,
FH 0·26

SFA 0·15,
PUFA 0·37

FH 1·06 0·11 1·03 0·10 0·90 0·07 0·85 0·06
C 0·81 0·04 0·87 0·06 1·09 0·10 1·07 0·10

SREBF2 98 0·22 0·02§
FH 1·10 0·11 1·03 0·11 1·06 0·08 1·10 0·09
C 0·80 0·07 0·67 0·04 0·89 0·04 0·80 0·04

CT, cycle threshold; n, number of subjects × 2 meals × 2 times (4 and 6 h); Pmeal, P value for change after the SFA v. PUFA meal; Pgroup, P value for change in FH v. control
subjects; ABCA1, ATP-binding cassette, subfamily A, member 1; FH, familial hypercholesterolaemia; C, control; ABCG1, ATP-binding cassette, subfamily G, member 1;

CPT1A, carnitine palmitoyltransferase 1A; FADS1, fatty acid desaturase 1; FADS2, fatty acid desaturase 2; FASN, fatty acid synthase; HMGCS1, 3-hydroxy-3-methylglutaryl-

CoA synthase 1; INSIG1, insulin-induced gene 1; LDLR, LDL receptor; MSR1, macrophage scavenger receptor 1; SREBF2, sterol regulatory element binding transcription factor 2.

* Data are presented as fold change from baseline (0 h) and reference genes (ACSL3 and ACSL4) (2−ΔΔCT). P values are Benjamini−Hochberg adjusted P values from a linear

mixed model. There was a significant interaction between meal and group for MSR1 (P = 0·03); thus, P values are presented stratified by group and meal.

†SFA > PUFA.

‡SFA < PUFA.

§ FH > control.
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expression in PBMC have shown increased LDLR expression
after replacing intake of SFA with PUFA(20), increased LDLR
expression after decreasing intake of SFA(16) and decreased
LDLR expression after increasing intake of SFA(21).
Recently, also a tendency towards lower PBMC gene expres-
sion of LDLR was observed after 3 weeks of a low-
carbohydrate/high-fat diet (P= 0·06)(22). Moreover, previous
results in animals show that PUFA up-regulate LDLR protein
and mRNA levels, and that SFA decrease LDLR activity, pro-
tein and mRNA abundance and alter LDL composition and
size(17,23–25). Collectively, these studies suggest that high intake
of SFA affect the gene expression of LDLR, which may, at
least partly, explain the established long-term cholesterol-
raising effect of an SFA-rich diet.
Since a significant down-regulation of LDLR was seen

already 4–6 h after a single meal rich in SFA compared with
n-6 PUFA, this unfavourable effect may potentially be even
larger if meals rich in SFA are ingested several times daily
for a longer period of time. The short duration of the study
may explain why we did not observe any postprandial change
in LDL-C levels after any of the meals in either the FH or con-
trol group(11). Thus, the impact on LDLR gene expression
should be investigated in larger long-term studies where SFA
are replaced with n-6 PUFA in order to elucidate mechanisms
supporting the current nutritional recommendations of
replacing intake of SFA with PUFA(26). Furthermore, many
FH subjects are characterised by a reduced number of
functional LDLR. Thus, if intake of meals rich in SFA
further reduces LDLR expression, dietary fat quality could
in the long run have an even greater impact on circulating
LDL-C levels in persons with FH than in normolipidaemic
individuals.
The effect of SFA compared with PUFA on LDLR was

accompanied by a smaller increase in gene expression of
INSIG1, an important factor in the sterol regulatory element
binding cleavage activating protein–sterol regulatory element
binding protein (SCAP–SREBP) regulation of cholesterol
homeostasis. The INSIG–SCAP–SREBP complex serves as
an intracellular sterol sensor, where SREBP is a transcription
factor targeting genes involved in intracellular cholesterol
homeostasis(27,28). In an intracellular cholesterol-deprived
state, e.g. when LDLR is reduced, the SCAP–SREBP complex
dissociates from INSIG1, and SREBP is transferred to the
nucleus for transcription of its target genes. Thus, the combin-
ation of low gene expression of LDLR and INSIG1 may lead
to increased intracellular cholesterol production.
In line with others, we found a significantly larger increase in

the gene expression of ABCA1 and ABCG1 after intake of
SFA compared with PUFA(29). This has been found by others
after intake of SFA compared with MUFA(19). ABCA1 and
ABCG1 are known to play an important role in the cholesterol
efflux from macrophages to HDL(30,31). Thus, our results may
indicate an increased cholesterol efflux possibly due to
INSIG-induced intracellular cholesterol production, which
may lead to increased HDL levels. The physiological explana-
tions behind these changes in gene expressions are not under-
stood. However, since cholesterol is an important membrane
component(32) and the fatty acid content of phospholipids is

prone to dietary changes(33), the present changes in gene
expression may play a role in membrane stability.
As expected, we found larger reduction in expression levels

of genes involved in fatty acid desaturation (FADS1, FADS2)
and smaller increase in expression level of a gene involved in
fatty acid synthesis (FASN) after the SFA-rich compared with
the n-6 PUFA-rich meal. This finding is in line with previous
studies(34–36). Furthermore, intake of SFA compared with n-6
PUFA induced a larger reduction in the gene expression of
MSR1 in controls only. MSR1 encodes the scavenger receptor
protein SR-A1 which has been shown to have a role in athero-
sclerosis by mediating uptake of modified LDL (primarily
acetylated LDL); however, the underlying mechanisms are
not yet fully elucidated. Recent evidence also points to import-
ant roles for SR-A1 in inflammation and innate immunity(37).
Thus SR-A1 has been suggested to have either anti-
atherogenic or pro-atherogenic effects(37). The expression of
MSR1 has been suggested to be differently modulated under
different genetic backgrounds and during macrophage differ-
entiation(37). The expression of the scavenger receptors
CD36 and SR-A1 are regulated by the nuclear receptor
PPARγ. PUFA are known ligands of PPARγ; thus, one may
speculate that PUFA might regulate SR-A1 through a PPAR
mechanism, potentially explaining the larger reduction in
expression after intake of SFA compared with n-6 PUFA in
healthy controls(38).
Post-transcriptional alterations in LDLR may potentially

explain the lower number of functional LDLR and hence
the higher circulating level of LDL-C in FH patients(7), and
may also explain the similar baseline gene expression level of
LDLR observed among subjects with and without FH in
this study. Furthermore, we found lower baseline expression
levels of genes involved in cholesterol biosynthesis (FDPS)
and transcription of lipid genes (NR1H3 and SREBF2) in
FH subjects compared with controls. However, there was a
larger postprandial increase in the expression of genes
involved in cholesterol biosynthesis (HMGCS1) and transcrip-
tion of lipid genes (SREBF2) in FH subjects compared with
controls. Thus, the postprandial changes in HMGCS1 and
SREBF2 may result in increased cholesterol biosynthesis in
FH subjects compared with controls.
This is a double-blind, randomised and controlled crossover

study, presenting secondary outcomes defined prior to study
initiation. A major limitation of the study is the relatively
low number of subjects, albeit in line with previous similar
studies(19,29,39). The clinical relevance of the findings is at pre-
sent not clear due to the explorative nature of the study, thus
larger studies are needed. Another limitation of this study, and
most human studies, is that liver biopsies are not readily avail-
able and we therefore have to extrapolate results obtained
from PBMC. However, PBMC have been shown to be a
good model system reflecting hepatic regulation of cholesterol
metabolism(13–15).
Intake of SFA compared with n-6 PUFA induced changes in

gene expression of cholesterol influx and efflux mediators in
PBMC including a larger reduction of LDLR and larger
increases of ABCA1/G1, possibly, at least partly, explaining
some of the cholesterol-raising effects of a high SFA intake
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(for a graphical summary, see Fig. 2). These data support the
current dietary guidelines of replacing SFA with n-6 PUFA and
underscore the importance of recommending reduced SFA
intake in FH patients with less functional LDLR.

Supplementary material

The supplementary material for this article can be found at
https://doi.org/10.1017/jns.2019.25

Acknowledgements

We would like to thank all the subjects participating in this
study. We also thank Anne Randi Enget, Ingunn Jermstad,
Anne Marte Wetting Johansen and Navida Akhter Sheikh
for excellent technical assistance.
This study was supported by the University of Oslo, Oslo,

Norway, the Norwegian National Advisory Unit on Familial
Hypercholesterolemia, Oslo University Hospital, Oslo,
Norway, the Throne-Holst Foundation for Nutrition
Research, Oslo, Norway, the South-Eastern Regional
Health Authority, Oslo, Norway and Mills AS (PO
Box 4644, Sofienberg, 0506 Oslo, Norway). Mills AS was

involved in the design of the study, but K. B. H. and
S. M. U. had the final responsibility of the design. Mills AS
was involved in conducting the trial and provided oils for
the trial. None of the employees at Mills AS was involved in
the statistical analysis.
The present study was designed by L. K. L. Ø., M. P. B.,

S. M. U. and K. B. H.; the research was conducted by
L. K. L. Ø., I. N. and P. H.; L. K. L. Ø., M. T. and
M. B. V. performed the data analysis. All authors contributed
to the interpretation of the data. The paper was drafted by
L. K. L. Ø., I. N., M. P. B., S. M. U., K. B. H. and all authors
critically reviewed the paper. K. B. H., L. K. L. Ø. and
I. N. hold primary responsibility for the content.
S. M. U. has received research grants and/or personal fees from

MillsAS,TineDAandOlympic Seafood, noneofwhich is related to
the content of this paper.M. P. B. has received research grants and/
or personal fees from Amgen, Sanofi, MSD and Aegerion, none of
which is related to the content of this paper. K. B. H. has received
research grants and/or personal fees from Tine DA, Mills AS,
Olympic Seafood, Amgen, Sanofi, Kaneka and Pronova, none of
which is related to the content of this paper. The other authors
have no conflicts of interest to disclose.

Fig. 2. Graphical summary. Hypothetical impact of postprandial gene expression in cholesterol homeostasis after SFA v. n-6 PUFA intake. Intake of SFA v. n-6 PUFA

induces a larger reduction in the gene expression of LDL receptor (LDLR) and a lower increase of insulin-induced gene 1 (INSIG1) which in combination may poten-

tially result in decreased cholesterol influx, increased circulating cholesterol and increased cholesterol biosynthesis. Furthermore, intake of SFA v. n-6 PUFA induces

larger increases in the gene expression of ATP-binding cassette, subfamily A, member 1 (ABCA1) and ATP-binding cassette, subfamily G, member 1 (ABCG1) which
may potentially result in increased cholesterol efflux. Grey arrows indicate hypothetical impact of results. SCAP, sterol regulatory element binding cleavage activating

protein; SREBP, sterol regulatory element binding protein; HMGCS1, 3-hydroxy-3-methylglutaryl-CoA synthase 1; FH, familial hypercholesterolaemia; C, control;

SREBF2, sterol regulatory element binding transcription factor 2. The figure is based on free images from ServierMedical Art (https://smart.servier.com).
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