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ON THE CONSTRUCTION PROBLEM FOR
SINGLE-EXIT MARKOV CHAINS

P.K. POLLETT

I shall consider the following problem: given a stable, conservative, single-exit g-
matrix, Q, over an irreducible state-space S and a p-subinvariant measure, m,
for Q, determine all Q-processes for which m is a p-invariant measure. I shall
provide necessary and sufficient conditions for the existence and uniqueness of such
a process.

1. INTRODUCTION

The problem of constructing a Markov chain from its g-matrix of transition rates
can be traced back to the work of Doob [4] in the late nineteen-forties. Since then, the
problem has been considered by a number of authors. The major work was carried out
in the fifties and early sixties by Feller ({5, 6]), Chung ([1, 2}), Reuter ([16,17,18]) and
Williams ({24, 25]) (see also [3, 4, 10, 11, 12 and 20]). This work culminated in the
solution, by Williams [25], of the classical construction problem formulated by Feller in
[6). The problem is as follows : given a stable, conservative g-matrix, Q = (¢:j,1,7 € §),
over a countable state-space S, construct all Q-processes, that is identify all standard,
time-homogeneous, continuous-time Markov chains taking values in S, with transition
rates @. The Feller minimal process provides an example of one such process. But, it is
the possibility that this process might explode by performing infinitely many jumps in
a finite time that creates interest in the construction problem, for, as Doob [4] showed,
certain simple rules for restarting the process after an explosion give rise to an infinity
of @-processes.

The Feller minimal process is the unique @Q-process if and only if Q is regular, that
1s the equations

(1) Zq;,-zj = fz.-, 1 € S,

JjES

have no bounded, non-trivial solution (equivalently, non-negative solution), z, for some
(and then for all) ¢ > 0 ([16]). When this condition fails there are infinitely many
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Q-processes, including infinitely many honest ones ([16]), and the dimension, d, of the
space of bounded vectors, z, on $ satisfying (1) (a quantity which does not depend
on {), determines the number of “escape routes to infinity” available to the process.
Williams [25] was able to provide a construction of all Q-processes under the assumption
that d is finite, following on from the work of Reuter ([17, 18]) who considered the
single-exit case, d = 1.

If d is not assumed to be finite, little is known and the problem of finding all
Q-processes appears to be very difficult, and remains unsolved. However, recently the
problem has re-emerged and now attention is focused on finding one @Q-process which
satisfies a prescribed set of conditions. For example, it is of interest to know whether or
not there exists an honest @-process and, then, whether or not it is the unigque honest
Q-process. This question was first considered by Kendall [7] (see also Kendall and
Reuter [8]) who used elegant but simple arguments based on the Hille-Yosida theorem
from functional analysis. The most recent work centres on the assumption that one
is given an invariant measure for the g-matrix. The problem is then to construct a
process with m as its invariant measure. It has particular significance if Y m; < o0,
for then one is looking for a process, which of necessity is honest, whose stationary
disiribution has been specified in advance. In this paper I shall provide necessary and
sufficient conditions for there to exist a single-ezit process for which a given measure,
m, is p-invariant. Thus, although I shall deal with only a restricted class of processes,
the invariance condition shall be weakened to g-invariance. The important special case
of when g = 0 is subsumed by the present study, although it was considered earlier in
some detail (see [15]).

I hope that this work will provide some insight into how one should proceed in
the more general setting, where the assumption that @ be a single-exit @Q-matrix is
relaxed. I shall begin by collecting together various results on continuous-time Markov

chains.

2. PRELIMINARIES

I shall refer to a set P(-) = (pi;(-),1,7 € S), of real-valued functions defined on
[0,00), where S is a countable set, as a standard transition function if

(2) pii(t) >0, i,7€8,t>0,
(3) Yomit)<1, ieSt>o0,
j€s
(4) Pij(‘ + t) = ZPih(‘)ij(t)s i’j € S’ 512 0,
kES
(5) pii(0) = &;; = lfg,lpij(f), $,jES.
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I shall refer to P as being honest if equality holds in (3) for all : € S. Condition (5)
guarantees that, for all 3,7 € S, pi; is uniformly continuous, as well as guaranteeing
the existence of right-hand derivatives

. Ppij(t) — &
@; = pi;(0) =lim pilt) = 8y

€10 t ’

with the property that 0 < ¢55 < o0, i#44,7€S,

and qu,- € —¢ii € 00, 1€ S,
i#

the set Q@ = (qij,i,j € S) being called a g-matrix.
Henceforth I shall suppose that Q is specified and I shall assume that Q is stable,
that is ‘

gi '= —gqi; < 00, i€ S,
and conservative, that is Z gi; =0, i€ S.
j€S

For simplicity, any standard transition function, P, that satisfies
pij(0) =g, €S,

will be called a Q-function. Under the conditions I have imposed, any @Q-function, P,
satisfies the backward differential equations,

pii(t) = ) qunmas(t),
keSS

forall ¢, € S and t > 0. The so-called Feller construction provides for the existence
of a minimal solution, F(-) = (fi;(-),i,5 € S), to these equations, minimal in the sense
that f;;(t) < pij(t) forall t > 0 and all 4,5 € S, where P(-) = (pi;(-),i,5 € §) is any
Q-function. F is also a Q-function and it satisfies the forward differential equations,

p(t) = pa(t)ans,

kes

for all i, € S and t > 0.

3. THE CONSTRUCTION PROBLEM

As mentioned in the introduction, I shall restrict my attention to the case where Q
is a single-exit g-matrix and so, henceforth, I shall suppose that the space of bounded,
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non-trivial, non-negative solutions to (1) has dimension 1. Under this condition, Reuter
[17] identified all transition functions with a specified conservative g-matrix; for the
non-conservative case see [18] and [26]. The problem is to determine for which of these
transition functions is a specified measure p-invariant. In particular, I shall suppose
that m = (mj, j € S) is a specified u-subinvariant measure for @, that is a collection
of strictly positive numbers which satisfy

Y migi; <-pmj, €S
i€S
For simplicity, I shall suppose that S is irreducible for the minimal process, and, hence,
for any other Q-process. For a p-subinvariant measure to exist, one must have that
0 < p € Ar, where Af is the decay parameter of § for F', the minimal @Q-function
(see [23] and [14]). The main result of the paper establishes necessary and sufficient
conditions for there to exist a unique @Q-function, P, such that m is g-invariant for P,
that is
D mapij(t) = e *'mj,
iES
for all j € § and t > 0; note that m is said to be p-subinvariant for P if
> mipi(t) < e*my,
i€S
forall j€S and ¢t > 0.
It will be convenient to present my results using Laplace transforms. Let P be an

arbitrary standard transition function and define the resolvent, ¥(-) = (v;;(-), ¢,j € 5),
of P by

) #ii(e) = [ T py(t)dt, i e S

this integral converges for all a > —Ap, where Ap is the decay parameter of S for P
(see [9]). Analogous to (2)—(5), ¥ satisfies

(7) 1/),'1'(0) 20, i,j € S,a >0,
(8) zad’l’j(a) <1, i€ S5,a>0,
JES

(9) the “resolvent equation”

bij(@) — $ii(B) + (@ — B) D_ ar(@)¥si(B) =0,  i,j € S,a,8>0,

kES
(10) ah_'ngoa'/’ij(a) = 6:')" ,2¢€ S’
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and, any ¥ which satisfies (7)—(10) is the resolvent of a standard transition function;
for an elegant proof of this characterisation see [17] (see also [19]). Thus, there is a one-
to-one correspondence between resolvents and standard transition functions. Further,
(8) is satisfied with equality for all i € S and a > 0 if and only if P is honest, in which
case the resolvent is said to be honest. The g-matrix of P can be recovered from ¥
using the following identity:

(11) gij = lim a(atij(@) - &;)-

And, a resolvent that satisfies (11) is called a Q-resolvent. Explicit analogues of the
backward and the forward equations will not be needed here. It will suffice to note
that there is a one-to-one correspondence between Q-resolvents and @-functions and
that the resolvent, ®(-) = (¢i;(:),3,7 € S), of the minimal Q-function, F, has itself
a minimal interpretation (see [16] and [17]); for this reason ® is called the minimal
Q@-resolvent.

The following result summarises Reuter’s [17] construction:

THEOREM 1. If Q is a stable, conservative, single-exit gq-matrix and if ¥ is the

resolvent of an arbitrary Q-function, P, then either ¥ = &, the minimal Q-resolvent,
or otherwise ¥ must be of the form

(12) ¥ij(a) = ¢ij(a) + zi(a)yj(a), 4,7 € S,a>0,
where zi(a) =1- Z adij(a), 1€ S,a>0.
JjES

The quantity y(a) = (y;(a),j € S) must be of the form

(13) yile)=—2__ iesaso,
c+ :.%:s an(a)

where ¢ 2> 0 and n(a) = (nj(a),j € S) is a non-negative vector that satisfies

(14) an(a) < o0, a> 0’
kes
and
(15) ni(a) —n;(B) + (e — B) ) m(a)$i(B) =0,  j€S,a,8>0.
kES
W is honest if and only if ¢ = 0.

REMARKS: The theorem states that the resolvents of all processes with g-matrix
@ must be of the form (12). Indeed, once 7 is specified, a family of Q-processes (exactly
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one of which is honest) is obtained by varying c. Thus, the problem of determining those
Q-processes which satisfy a specified criterion amounts to determining which choices of
1 and c are admissible.

Expression (12) specifies ¥(a) for all @ > 0. However, the expression is valid for
all o in the domain of ¥, namely a > -Ap.

In order to identify which Q-functions have a given u-invariant measure, it will
be necessary to explain how p-invariant and p-subinvariant measures can be identified
using resolvents. If P is an arbitrary Q-function with resolvent ¥ and m = (m;j,j € §)
is a p-subinvariant measure for P, where of necessity u < Ap (see Lemma 4.1 of [22]),
then, since the integral (6) converges for all @ > —Ap, we have that, forall j in § and
a>0,

(16) > miais(a - p) < mj,

i€ES

with equality for all 7 and o if m is p-invariant for P. One may, therefore, refer to
m as being p-subinvariant for ¥ if (16) is satisfied and p-invariant if it is satisfied
with equality. The following result establishes a characterisation of pu-invariance and
p-subinvariance for P in terms of ¥.

LEMMA 1. Let m be a measureon S and let P be a standard transition function
with resolvent ¥. Then, if m is p-subinvariant for P, it is p-subinvariant for ¥ and
strictly p-invariant for ¥ if it is p-invariant for P. Conversely, if p < A\p and m is
p-subinvariant for ¥, then m is u-subinvariant for P and strictly p-invariant for P if
it is p-invariant for ¥,

PROOF: We need only show that the u-subinvariance and, then, g-invariance of

m for ¥ implies that the same is true for P. So, suppose that m is y-subinvariant for
¥, where g € Ap, and define ¥* by

(a) = %’Tf‘ﬁ‘—") i,j€S,a>0.
Then, it is easy to verify that ¥* satisfies (7)-(10). Condition (10) is immediate.
Conditions (7) and (9) hold because it is clear, from the definition of ¥, that ¥ satisfies
(7) for all @ > —Ap and (9) for all &, > —Ap. And, Condition (8) is satisfied by
virtue of (16). Thus, ¥* is the resolvent of a unique (standard) transition function,
P*. Now define P(-) = (pi;(),i,5 € S) by

pij(t) = ¥

;psilt ..
'———""p"(), i,j€S,t>0,

m;
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and ¥() = ($5i(),ij € S) by

o0
Fis(e) = / e Fs()dt,  iyj € Sya>0.
0

Then, for all ¢, € § and a > 0,

bij(a) = /ooo e“""‘)‘———m":::(t)dt
_ mivji(a—p)
mg
= ."j(“)-

Thus ¥ = ¥* , and hence, from Reuter’s characterisation, P = P*. Since P* satisfies
(3), it follows immediately that m is p-subinvariant for P. Further, we see that m is
p-invariant for P if and only if P* is honest. Thus, if m is g-invariant for ¥, then ¥*
is honest and so the ensuing honesty of P* implies that m is p-invariant for P. 0

I shall now suppose that m is a prescribed p-subinvariant measure for @ and then,
using Theorem 1, I shall determine for which Q-functions, P, other than F', can m be
a p-invariant measure; notice that if m is p-invariant for a Q-function, then, by the
minimality of F, it is u-subinvariant for F' and so, by Proposition 1 of [21], it must be
p-subinvariant for Q.

THEOREM 2. Let @ be a stable, conservative, single-exit q-matrix over an ir-

reducible state-space, S, and suppose that m is a p-subinvariant measure on S for
Q. Let ®(-) = (¢ij(-),%,7 € S) be the resolvent of F, the minimal Q-function. Define

2() = (z(-)i€ §) by

zi(a) =1- Zatﬁ.'j(a), 1€ S,a> —Af,

JES
and d(-) = (di(-),i € S) by
(17) di(a) =mi — Y mj(a+p)djia), i€ Sa>—p
jES

Then there exists a Q-function, P, for which m is p-invariant if and only if d = 0 or,
otherwise,

(18) (a : #) Y di(a) <Y mizi(a) < oo,

i€s i€S
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for all @ > —u. When such a Q-function exists it is unique and its resolvent, ¥(-) =
(¢5i('),isj € S), is given by

(@) = gus(a z(a)d; () y
(19) 1/’*]( ) ¢'J( )+ (a+") Zkesmkzk(a), ) € S°

It is then the unique honest Q-function for which m is p-invariant if and only if

(20) () Tta) = ¥ minta),

€S i€S

for all a > —p.

REMARK: The condition d = 0 is essentially known (see [21] and [13]). If d # 0
then d(-) = (di(-),i € S) gives the deficit in the p-subinvariance of m for &; notice
that if m is p-invariant for P then, by the minimality of F', it must be sirictly p-
subinvariant for F and, hence, for ®, and so d;(a) > 0 for all i and for all a > —pu.

PROOF: First observe that, since m is p-subinvariant for Q, Proposition 2 of [21]
implies that m is p-subinvariant for F and so, by Lemma 1, it is p-subinvariant for
®. Thus di(a) > 0 for all i € S and a > —u. Further, since m is p-subinvariant for
F, it follows, from Lemma 4.1 of [22], that x < Ap.

Let P be an arbitrary @-function with resolvent ¥ specified by Theorem 1. I shall
show that the stated condition is necessary for m to be g-invariant for P. So, suppose
that m is p-invariant for P and, hence, for ¥. If P = F, then m is p-invariant for
® and it follows immediately that d = 0. To deal with the case P # F, first observe
that, by the minimality of F, m cannot be p-invariant for F, and so d;(a) > 0 for
all + and a. Too, neither z nor y in (12) is identically zero. If a > 0 then a — u lies
in the domain of ¥ since, of necessity, 4 < Ap. Thus, on substituting a — p for a in
(12), multiplying by am; and, then, summing over i € S, we find that

z m;z.-(a) < o0,

i€ES

for all @ > —pu, and, further, that

m; =Y miadij(a ~ p)+ayj(a—p) Y mizi(a - p),

i€S €S

for all & > 0. Hence, in view of (13), we require

(a+p)mi(e) _ _ dj(e)
(21) c+ Y ami(a) Y mizi(a)
kES i€ES
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for all @ > —u. But, since (14) must hold and because we require ¢ > 0, we must have

that
(a i #) ; di(@) < ) mizi(a),

€S

for all @ > —pu. Thus, (18) is necessary for m to be p-invariant for P when P # F.

Conversely, if d = 0 then m is y-invariant for ® and so, on recalling that u < Ap,
it follows, from Lemma 1, that m is g-invariant for F'; by the minimality of F', m is
p-invariant for no other Q-function. If d # 0 and (18) holds, then, in order to construct
the resolvent of a Q-function, P, for which m is u-invariant, define 5 by

ni(a) =dj(a), j€S,a>—p.

Clearly (14) is satisfied and, using the resolvent equation for &, it is easy to show that
(15) holds. Thus, in order to specify a Q-resolvent, it remains only to determine a value
of ¢ so as to be consistent with (13). This can be done as follows:

Using the resolvent equation for @, it is easy to show that z and d satisfy

zi(a) — zi(B) + (a = B) Y dir(a)zx(B) =0

k€S

for all a,8 > —AF, and

di(a) ~ di(B) + (e — B) Y _ di(a)$ui(B) = 0,

kES

for all a,f > —u. On multiplying the first equation by m; and summing over %, we
find that

(a+p)d mizi(a)— (B+p)Y_ miz(B) = (a— B) ) di(a)z(B),

i€S i€ES i€ES

for all a,8 > —p. Similarly, summing the second equation over i gives

a) di(a) =B di(B)=(a-B)Y_ di(a)z(B), B> -p.

€S €S i€ES

Thus

(a+p)) miz(a)—ad difa)=(B+p)Y mz(B) -8 di(B), B> -u,

€S i€S i€S i€Ss

and so, if the sums converge, then

(a+w) Y mizla) - a Y difa)

i€ES i€ES
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is the same for all & > —pu. Thus, since (18) is satisfied, we may set ¢ equal to this
quantity and then arrive at the specification (19) of a Q-resolvent which is valid for
all @ > —u. Multiplying (19) by (a + p)m; and summing over i shows that m is u-
invariant for ¥. Now, as the domain of ¥ must contain (u,o0) it follows that u < Ap,
where Ap is the decay parameter of P, and, hence, that m is u-invariant for P. To
see that P is the unique @Q-function for which m is p-invariant, observe that if m is
to be p-invariant for an arbitrary Q-resolvent, @, then, in view of (21), we must have
(in an obvious notation) that # = Kd for some positive scalar function K. Now, on
substituting # into (21) we find (again, using an obvious notation) that K(a)c = ¢ for
all «. Thus K is constant, and, moreover,

fj(a) _ dj(a)
3 kesam(a) (a+p) ieZs mizi(a)’

Thus, ¥ is the unique @-resolvent for which m is p-invariant.

Finally, the condition for the existence of a unique honest Q-function follows on
observing that ¥ is honest if and only if ¢ = 0. 0

I shall complete this section by looking at the important special case where m can
be normalised to produce a probability distribution over §; under certain conditions
m can then be interpreted as a quasistationary distribution (see, for example, [23]).

COROLLARY 1. A sufficient condition for the existence of a unique @Q-function
for which m is p-invariant is that

Em.- < 00.

i€S

It is honest if and only if p=0.

PROOF: First observe that, since zi(a) < 1, we have that

Z m;zi(a) < oo,

€S

for all @ > —p. On summing over i in (17) we find that (18) is satisfied and, in
particular, that

(a :.,,) Edi(a) = zm;z.-(a) - (aip) Zm‘_’

i€ES i€S i€ES

for all @ > —p. Finally, (20) holds if and only if u = 0. 0
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