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ON THE CONSTRUCTION PROBLEM FOR
SINGLE-EXIT MARKOV CHAINS

P.K. POLLETT

I shall consider the following problem: given a stable, conservative, single-exit g-
matrix, Q, over an irreducible state-space S and a /i-subinvariant measure, m,
for Q, determine all Q-processes for which m is a /x-invariant measure. I shall
provide necessary and sufficient conditions for the existence and uniqueness of such
a process.

1. INTRODUCTION

The problem of constructing a Markov chain from its g-matrix of transition rates
can be traced back to the work of Doob [4] in the late nineteen-forties. Since then, the
problem has been considered by a number of authors. The major work was carried out
in the fifties and early sixties by Feller ([5, 6]), Chung ([l, 2]), Reuter ([16,17,18]) and
Williams ([24, 25]) (see also [3, 4, 10, 11, 12 and 20]). This work culminated in the
solution, by Williams [25], of the classical construction problem formulated by Feller in
[6]. The problem is as follows : given a stable, conservative g-matrix, Q = (qij,i,j £ S),

over a countable state-space 5 , construct all Q-processes, that is identify all standard,
time-homogeneous, continuous-time Markov chains taking values in S, with transition
rates Q. The Feller minimal process provides an example of one such process. But, it is
the possibility that this process might explode by performing infinitely many jumps in
a finite time that creates interest in the construction problem, for, as Doob [4] showed,
certain simple rules for restarting the process after an explosion give rise to an infinity
of Q-processes.

The Feller minimal process is the unique Q-process if and only if Q is regular, that
is the equations

(1) ^2qijXj = t*i, i e S,

have no bounded, non-trivial solution (equivalently, non-negative solution), x, for some
(and then for all) £ > 0 ([16]). When this condition fails there are infinitely many
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Q-processes, including infinitely many honest ones ([16]), and the dimension, d, of the
space of bounded vectors, x, on 5 satisfying (1) (a quantity which does not depend
on £), determines the number of "escape routes to infinity" available to the process.
Williams [25] was able to provide a construction of all ^-processes under the assumption
that d is finite, following on from the work of Reuter ([17, 18]) who considered the
single-exit case, d = 1.

If d is not assumed to be finite, little is known and the problem of finding all
Q-processes appears to be very difficult, and remains unsolved. However, recently the
problem has re-emerged and now attention is focused on finding one Q-process which
satisfies a prescribed set of conditions. For example, it is of interest to know whether or
not there exists an honest Q-process and, then, whether or not it is the unique honest
Q-process. This question was first considered by Kendall [7] (see also Kendall and
Reuter [8]) who used elegant but simple arguments based on the Hille-Yosida theorem
from functional analysis. The most recent work centres on the assumption that one
is given an invariant measure for the g-matrix. The problem is then to construct a
process with m as its invariant measure. It has particular significance if 53 m» < °° >
for then one is looking for a process, which of necessity is honest, whose stationary
distribution has been specified in advance. In this paper I shall provide necessary and
sufficient conditions for there to exist a single-exit process for which a given measure,
m, is //-invariant. Thus, although I shall deal with only a restricted class of processes,
the invariance condition shall be weakened to ji-invariance. The important special case
of when /x = 0 is subsumed by the present study, although it was considered earlier in
some detail (see [15]).

I hope that this work will provide some insight into how one should proceed in
the more general setting, where the assumption that Q be a single-exit Q-matrix is
relaxed. I shall begin by collecting together various results on continuous-time Markov
chains.

2. PRELIMINARIES

I shall refer to a set P(-) = [pij{-),i,j £ S), of real-valued functions defined on
[0, oo), where S is a countable set, as a standard transition function if

(2) Pij(i)2 0, i,jeS,t>0,

(3)
ies

(4) Pij(s +1) =

(5) paid) = Sa = Bm«,-(0, hi 6 S.

https://doi.org/10.1017/S0004972700029282 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700029282


[3] Single-exit Markov chains 441

I shall refer to P as being honest if equality holds in (3) for all i G S. Condition (5)
guarantees that , for all i,j G S, pij is uniformly continuous, as well as guaranteeing
the existence of right-hand derivatives

with the property tha t 0 ^ qij < oo, j ^ i,i,j G S,

and ^2 q^ < -qu < oo, t G 5 ,

the set Q = {qij,i,j G 5 ) being called a g-matrix.

Henceforth I shall suppose that Q is specified and I shall assume that Q is stable,
that is

qt •- -qu < oo, ie S,

and conservative, that is ^ - . . — 0 j g S.

For simplicity, any standard transition function, P, that satisfies

Pi;(0) = 9<ii hJ G S,

will be called a Q-function. Under the conditions I have imposed, any Q-function, P,
satisfies the backward differential equations,

Jfees

for all i,j G 5 and t ^ 0. The so-called Feller construction provides for the existence
of a minimal solution, F(-) = (fij{-),i,j G S), to these equations, minimal in the sense
that fij(t) < p,,(t) for all t> 0 and all », j G 5 , where P ( ) = (p,j(),i , i G 5) is any
Q-function. F is also a Q-function and it satisfies the forward differential equations,

kes

for all i,j G S and t ^ 0.

3. THE CONSTRUCTION PROBLEM

As mentioned in the introduction, I shall restrict my attention to the case where Q
is a single-exit g-matrix and so, henceforth, I shall suppose that the space of bounded,
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non-trivial, non-negative solutions to (1) has dimension 1. Under this condition, Reuter
[17] identified all transition functions with a specified conservative g-matrix; for the
non-conservative case see [18] and [26]. The problem is to determine for which of these
transition functions is a specified measure /{-invariant. In particular, I shall suppose
that m = (m.j, j 6 5) is a specified /x-subinvariant measure for Q, that is a collection
of strictly positive numbers which satisfy

3 G 5.

For simplicity, I shall suppose that 5 is irreducible for the minimal process, and, hence,
for any other Q-process. For a /i-subinvariant measure to exist, one must have that
0 < fj. < XF, where Xp is the decay parameter of 5 for F, the minimal Q-function
(see [23] and [14]). The main result of the paper establishes necessary and sufficient
conditions for there to exist a unique Q-function, P, such that m is /x-invariant for P,

that is

t€S

for all j €. S and t ^ 0; note that m is said to be /i-subinvariant for P if

t € 5

for all j G S and t ^ 0.
It will be convenient to present my results using Laplace transforms. Let P be an

arbitrary standard transition function and define the resolvent, \P(-) = (il>ij(-), i,j G S),
of P by

(6) tuia) - / e-at
Pij(t)dt, i,j

Jo
5;

this integral converges for all a > — Xp, where Xp is the decay parameter of 5 for P

(see [9]). Analogous to (2)-(5), * satisfies

(7) fcj(«)>0. i,i 6 5, o > 0 ,

(8) $ ] « f e ( « ) a , ieS,a>0,
its

(9) the "resolvent equation"

kes

(10) Urn ajpij(a) = % i,j e S,
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and, any $ which satisfies (7)-(10) is the resolvent of a standard transition function;
for an elegant proof of this characterisation see [17] (see also [19]). Thus, there is a one-
to-one correspondence between resolvents and standard transition functions. Further,
(8) is satisfied with equality for all i € 5 and a > 0 if and only if P is honest, in which
case the resolvent is said to be honest. The ^-matrix of P can be recovered from 9
using the following identity:

(11) qtj = lim a(ai>ij(a) - 6ij).
a—>oo

And, a resolvent that satisfies (11) is called a Q-resolvent. Explicit analogues of the
backward and the forward equations will not be needed here. It will suffice to note
that there is a one-to-one correspondence between Q-resolvents and Q-functions and
that the resolvent, $(•) = (4>ij[-),*,j £ S), of the minimal Q-function, F, has itself
a minimal interpretation (see [16] and [17]); for this reason $ is called the minimal
Q-resolvent.

The following result summarises Reuter's [17] construction:

THEOREM 1. If Q is a stable, conservative, single-exit q-matrix and if $ is the
resolvent of an arbitrary Q-function, P, then either \P = $ , tie minimal Q-resolvent,
or otherwise $ must be of the form

(12) tl>ij(ct) = <t>ij(a) + zi(a)yi(a), i,j G S,a > 0,

where z i ( a ) = 1 ~ y j a & i ( a ) > t G 5, a > 0.

Tie quantity y(a) — (yj(a),j G 5) must be of the form

tes

where c > 0 and »/(a) = {t}j{a)ij £ $) JS a non-negative vector that satisfies

(14) 5Z»;Jfe(a)<oo, a > 0,
kes

and

(15) W(a) - Vj{0) + (« " P) £ mHtkjW) = 0, jeS,a,0> 0.

tf is honest if and only if c = 0.

REMARKS: The theorem states that the resolvents of all processes with ^-matrix

Q must be of the form (12). Indeed, once J\ is specified, a family of Q-processes (exactly
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one of which is honest) is obtained by varying c. Thus, the problem of determining those
Q-processes which satisfy a specified criterion amounts to determining which choices of
T) and c are admissible.

Expression (12) specifies \P(a) for all a > 0. However, the expression is valid for
all a in the domain of \P, namely a > — Xp.

In order to identify which Q-functions have a given /{-invariant measure, it will
be necessary to explain how /x-invariant and /x-subinvariant measures can be identified
using resolvents. If P is an arbitrary (J-function with resolvent 9 and m = (m/,j 6 S)
is a /x-subinvariant measure for P, where of necessity ft ^ Xp (see Lemma 4.1 of [22]),
then, since the integral (6) converges for all a > — Xp, we have that, for all j in S and
a>0,

(16) ^mjoVii,(a - /t) ^ mj,
ies

with equality for all j and a if m is /x-invariant for P. One may, therefore, refer to
m as being /x-subinvariant for * if (16) is satisfied and /x-invariant if it is satisfied
with equality. The following result establishes a characterisation of /x-invariance and
/i-subinvariance for P in terms of * .

LEMMA 1. Let m be a measure on S and let P be a standard transition function
with resolvent \P. Then, if m is /i-su bin variant for P, it is fi-subinvariant for \P and
strictly /i-invariant for 9 if it is fi-invariant for P. Conversely, if /x ^ Xp and m is
/x-subinvariant for * , then m is /x-su bin variant /or P and strictiy /x-invariant for P if
it is fi-invariant for ^.

PROOF: We need only show that the /i-subinvariance and, then, /t-invariance of
m for ^ implies that the same is true for P. So, suppose that m is /x-subinvariant for
* , where ft ^ Xp, and define \P* by

=

mi

Then, it is easy to verify that $* satisfies (7)-(10). Condition (10) is immediate.
Conditions (7) and (9) hold because it is clear, from the definition of \P, that 9 satisfies
(7) for all a > — Xp and (9) for all a,j3 > —Xp. And, Condition (8) is satisfied by
virtue of (16). Thus, \Sr* is the resolvent of a unique (standard) transition function,
P*. Now define ?(•) = (pij(),i,j 6 5) by
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and «(•) = (^•(•),»'.i € S) by

%(*)*, i,J€S,a>0./
JO

Then, for all i,j £ S and a > 0,

Jo m«

Thus $ = ** , and hence, from Reuter's characterisation, P - P*. Since P* satisfies
(3), it follows immediately that m is /x-subinvariant for P. Further, we see that m is
/x-invariant for P if and only if P* is honest. Thus, if m is /x-invariant for \Er, then "P*
is honest and so the ensuing honesty of P* implies that 771 is /^-invariant for P. D

I shall now suppose that m is a prescribed /x-subinvariant measure for Q and then,
using Theorem 1,1 shall determine for which Q-functions, P, other than F, can m be
a ^i-invariant measure; notice that if m is /x-invariant for a Q-function, then, by the
minimality of F, it is /x-subinvariant for F and so, by Proposition 1 of [21], it must be
/x-subinvariant for Q.

THEOREM 2 . Let Q be a stable, conservative, single-exit q-matrix over an ir-

reducible state-space, S, and suppose that m is a /x-subinvariant measure on S for

Q. Let $(•) = (&>•(•)>*>i £ S) be the resolvent of F, the minimal Q-function. Define

*(•) = (*(•).»€$) by

Zi{a) = 1 - ^2 a<f>ij(a), i€ S,a> -XF,

and d() = {di(),i £ S) by

(17) di(ct) = m ; - ^ m j { a + n)<j>ji(a), ieS,a> -fi.
jes

Then there exists a Q-function, P, for which m is fi-invariant if and only if d = 0 or,
otherwise,

(18) (-2-) £ *(a) < £ m,-«(a) < 00,
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for all a > —/x. When such a Q-function exists it is unique and its resolvent, \P(-) =
(iM-)>*iJ £ S), ^ given by

It is then the unique honest Q-function for which m is /x-invariant if and only if

(20) (-J-) £ *(«) = £ "**•(").

for all a > —fi.

REMARK: The condition d = 0 is essentially known (see [21] and [13]). If d ^ 0
then <£(•) = (<£<(•),i 6 S) gives the deficit in the /x-subinvariance of m for $; notice
that if m M /x-invariant for P then, by the minimality of F, it must be strictly fi-
subinvariant for F and, hence, for $ , and so d{(a) > 0 for all t and for all a > — ft.

PROOF: First observe that, since m is /x-subinvariant for Q, Proposition 2 of [21]
implies that m is /i-subinvariant for F and so, by Lemma 1, it is /x-subinvariant for
$ . Thus di(a) > 0 for all i £ S and a > —/x. Further, since m is /x-subinvariant for
F, it follows, from Lemma 4.1 of [22], that /x ^ \p.

Let P be an arbitrary Q-function with resolvent ^ specified by Theorem 1. I shall
show that the stated condition is necessary for m to be /x-invariant for P. So, suppose
that m is /x-invariant for P and, hence, for \t. If P — F, then m is /x-invariant for
$ and it follows immediately that d = 0. To deal with the case P ^ F, first observe
that, by the minimality of F, m cannot be /x-invariant for F, and so di(ct) > 0 for
all i and o. Too, neither z nor y in (12) is identically zero. If a > 0 then a — /x lies
in the domain of *$ since, of necessity, /x ̂  Xp. Thus, on substituting a — /x for a in
(12), multiplying by am,- and, then, summing over i £ 5 , we find that

^2 miZi(a) < oo,

for all a > —/x, and, further, that

aVj{a ~ t>)

for all a > 0. Hence, in view of (13), we require
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for all a > —ft. But, since (14) must hold and because we require c ^ 0, we must have
that

for all a > — ft. Thus, (18) is necessary for m to be /i-invariant for P when P ^ F.

Conversely, if d = 0 then m is /^-invariant for $ and so, on recalling that ft < Ap,
it follows, from Lemma 1, that m is /x-invariant for F; by the minimality of F, m is
/^-invariant for no other Q-function. If d ^ O and (18) holds, then, in order to construct
the resolvent of a Q-function, P, for which m is /x-invariant, define TJ by

Clearly (14) is satisfied and, using the resolvent equation for $ , it is easy to show that
(15) holds. Thus, in order to specify a Q-resolvent, it remains only to determine a value
of c so as to be consistent with (13). This can be done as follows:

Using the resolvent equation for $ , it is easy to show that z and d satisfy

zi(a) - ztf) + (a - 0) Y, M«)**(/3) = 0

for all a,/3 > — \p, and

di(a) - di{0) + {a-/3)Y, dh{a)4>ki{P) = 0,

for all a,/3 > — p. On multiplying the first equation by m,- and summing over t, we
find that

(a + /i)
i6S i€S «€S

for all a,/3 > — ft. Similarly, summing the second equation over i gives

a 53 di(a) - /3 53 di(/3) = (a - ^) 53 *(a)*(/9), a,(3 >-ft.
ieS ieS i€S

Thus

(a +/i) 53mi^(a) - a 53 *(a) = 09+ M) 53 ra**«('J)-^ 53*09). a,/

and so, if the sums converge, then

( a + M ) 5 3 TO<z»(a) ~a 5 3 * ( a )
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is the same for all a > —/x. Thus, since (18) is satisfied, we may set c equal to this
quantity and then arrive at the specification (19) of a Q-resolvent which is valid for
all a > — (i. Multiplying (19) by (a + /i)m,- and summing over i shows that m is y.-

invariant for $ . Now, as the domain of \8r must contain (/x, oo) it follows that /x ^ \p,
where Xp is the decay parameter of P, and, hence, that m is /x-invariant for P. To
see that P is the unique Q-function for which m is /x-invariant, observe that if m is
to be /x-invariant for an arbitrary Q-resolvent, V, then, in view of (21), we must have
(in an obvious notation) that rj = Kd for some positive scalar function K. Now, on
substituting rj into (21) we find (again, using an obvious notation) that K(a)c = 2 for
all a. Thus K is constant, and, moreover,

(a

Thus, ^ is the unique (J-resolvent for which m is /x-invariant.

Finally, the condition for the existence of a unique honest Q-function follows on

observing that \P is honest if and only if c = 0. D

I shall complete this section by looking at the important special case where m can
be normalised to produce a probability distribution over S; under certain conditions
m can then be interpreted as a quasistationary distribution (see, for example, [23]).

COROLLARY 1 . A sufficient condition for the existence of a unique Q-function

for which m is /x-invariant is that

y^rrij <oo.

It is honest if and only if fi = 0.

PROOF: First observe that, since Zi{a) ^ 1, we have that

liZi(a) < OO,

for all a > —/x. On summing over t in (17) we find that (18) is satisfied and, in
particular, that

for all a > -/x. Finally, (20) holds if and only if fi = 0.
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