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ABSTRACT

The orbital inctability and forming of outer part of
Asteroidal belt has been studied earlier in the Circular case.
Here the same problem is studied in elliptic case.

FORMULATION OF THE PROBLEM

Here the case of planer restricted three~body problem
will be considered.The mass of central body P, supposed as
the unit, and the mass of perturbing body P' as u << 1. The
semi-major axis of P' will be considered as a unit of length,
hit a unit of time will be selected so that the gravitational
constant would become unity. For the Kepler elements of pas-
sive gravitating point we shall be using the well known terms
hut all elements of P' will be different.

Let us consider the first type of resonances. Thus ini-
tially we have:the condition:

[2.n - ®+n)n'] < 0 u), Q)

where % is a simple integer. Then we can introduce the Delamay
anomaly as

S = 2.M - Q)M - ) | 2)
vhere ¢V =w-w'.

Then we carry out the expansion of perturbed function R over
the fast variables M and M' and neglecting higher order terms
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in e ad e'. Ve shall obtain

R = Bo +e12_L cos S + e! B, cos(SH ). 3)
— (0)
where Eo =ynu/2 Ll @)
B = u/2 [2(1+1)L1(“1)(a) +a g?Ll(“l’ @)l,
41
B, = u/2l (2z+1)1.1(9“+“(a) +a ?E-Ll( )@

+ 2a Gze'], 61 =1, GJL = 0 with £ # O,

(2+1)

If we change our problem to circular problem (e' = 0),
we have the following integral

are the Laplace coefficients.

Yy = a4 - T=e?)? @)

At present the solution of this problem obtained with the
Weierstrass-functions [2]. Sme trajectories are shown in
Figure 1.

On the lower part of range takes place the separatrix and
trajectories types, but on the upper some results of mumerical
integration.

Stationary solutions of the problem are marked as € s ey

. It's belmviour depending on the values of Y have been
shown in Figure 2,

From the conditions of first type trajectonies there fol-
lows the impossibility of an approaching of asteroid and Jupi-
ter in aphelion although that trajectories are in the instabi~
lity range according to EHill [3]. Other trajectories in this
case would be unstable.

Mow we consider the following problem: What are the tra-
jectories near the separatrix which change with variation to
elliptic problem?

At first let us prove the existance of ergodic layer in
this case in which the turbing of orbit type are happening.
The method given in [ 6] is being used here.
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Figure 1: (a) The resalts of mumerical integration.
(b) Separatrix S and some types of trajectories.

THE PROOF OF ERGODIC LAYAR EXISTANCE

For first type layar trajectories, if we mark the mean
motion n; of e solution for
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Figure 2: Behaviours of .stationary solutions e rey,r ey depernd ~
ed on the value of vy

An=n—nl is

(5)

(An)2 =.c + 2e. cos S,

1
where c is a constant, g, = %— 7-2 Be |

Then, since 5 = L4n, for the second derivative we have

"S = - g sin S, (6)
or, with e' # 0,
s = - €; sin § - e, sin(S#y)

Substitute the new variahle V = Té, where 1 = € s
obtain the equation (7) in the following form:

TV = - sin § - € sin(S + ).

Here it is supposed ¢ = ez/el.

We make use of Hamiltonian of unpertur bed motion:

Ly? _os s, (9)

H=2
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and bring in new variables I=-action and y-fases

1 _'8 2,
I=2T §VdS—.n-[E’0~‘K,)K]
(1 0)

[+

S

<
fl
%)

’

1
where S = z—TngSV.
Here K,E-are first and second type full integrals with
module k = —;—H- .
If perturbations are absent (£ = 0),then equations of
motion would become

I=0, ¢y = Q(I), 1)
where @ is a frequency and

a-l@E. L 1L 02)

Rut, if perturbations are present, then

1oL (B LBy | e o
I_d—_(a V+BSS)— V sin(S + ¢) as3)

t2Q

Let us define the spectrum of speed V in the case when
-the perturbations are aksent (¢ = 0)., S far as V = Tk(n-nl),
then with k > 1 we have to wite [4]:

Vv + 2k cnfu,k), Ls)

where u = R,T-lt is the newvariahle. Or, if we substitute

the new variable q = exp (~nrk'/k), where k' = k(/1-k?), and
expand it in Fourier-series, then we have the following form:

© n-=% ’
V =8Q1r I ‘I——Zchos [(2n-1)Qt as)
n=l 1l+g

We shall consider the motion near the separatrix. In
this case we have

419

https://doi.org/10.1017/50252921100066318 Published online by Cambridge University Press


https://doi.org/10.1017/S0252921100066318

1 32
k+1, g -1, K xi- 1n i=g "’ K'k%—,
16)
m
2 I n expl -m-Q1]

1-H

Then, in the right hand side of equation (13) pick out
some resonant term.Taking into account y o Bt we have the

following resonant condition: v
_ Bt
T8 (IN) = R ’ (17)
vhere N is an odd mnumber and I,, is an action by that reson-

N
ance,.

In the case of BT V1 we have T (IN) v 1/N, hut near

the separatrix tQ << 1,therefore (17) would be carried out -
just for N >> 1. Let the distance between resonances N and
(N+2) be

- - 2 2
Ry = (L) - 2(I,,) v I 9% (1) (18)

Then, the stochastic condition will have the following form:

| (EQ (IN)
| dI

ST >> Ry 192 (IN), a9

where GIN is the maximum variation of particle's action in
the N~resonmance.

Assaming the variation of frequency have safficiently
amall range, we have

an
| ﬁ(IN)I §I, << QI (20)

After integration of (13) over time-interval, such that 2 Tr
in the range of N-resonance we shall have
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1y~ L ——gis @)
l1+q TNl |51
it g v 1,therefore
2ea(zy |12
GIN n - (22)
aq (IN)

dIr

Thas, the stochastic condition will be obtained in the foom:

_1l]an - 2e dQ
L"Rldxl“‘ 23 >> 1 (23)
Bit near the separatrix we have
d1 32n )
and
1? - e:p( ) >> 1 (24)

The boundary of stochastic case is approximately defined from
such condition: L 2 1, that is within the frequency range
0< Q< T,
-— N
= —1 —— (25)

ln =—
T €

From (16) we find the stochastic boundary of energy such as

- 2¢
1-H% Tm € (26)
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DEFINITION OF THE WIDTH OF SEPARATRIX SPLITTING

Let us define the range of separatrix splitting. In the
case of elliptic prohlem, we have

Y = 28/3 e' E, sin(s#) (27)
Therefore on the separatrix § << {, then
- B
Y = Y, + gcos®).

Using the analvtic form for 8’[4].we have to count the value
&y

= +
Y Yo * &y
Take that for 2 =1, e' = 0,048, e = 0,14, yu =1/ 1047 and
for the other comditions corresponding to [11].
We observe from Figure 3 that as vy changes it's value

from 0.64 to 0.652, that to 0.18, the right bourdary of pro-
jecting will be changed from 0,2 to 0.26.

0.28}

~0.128¢

~0128 0 0128

Figure 3: Variation of e,-solution depending on the variation
of 0.64 < vy < V.652, X = ey cos S, Y= €3 sin 5.
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Anmalogous change of K = YY are slown in Figure 4. Our
future plan is to apply this method for asteroids of Gilda's
group and in particular, for asteroid o .334, wiose motion
lave been investigated by Smbart [5].
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Figure 4: Variation of K = YY according to 0.64 <y < 0.652,
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