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We report on the mobility and orientation of finite-size, neutrally buoyant, prolate
ellipsoids (of aspect ratio Λ = 4) in Taylor–Couette flow, using interface-resolved
numerical simulations. The set-up consists of a particle-laden flow between a rotating
inner and a stationary outer cylinder. The flow regimes explored are the well-known Taylor
vortex, wavy vortex and turbulent Taylor vortex flow regimes. We simulate two particle
sizes �/d = 0.1 and �/d = 0.2, � denoting the particle major axis and d the gap width
between the cylinders. The volume fractions are 0.01 % and 0.07 %, respectively. The
particles, which are initially randomly positioned, ultimately display characteristic spatial
distributions which can be categorised into four modes. Modes (i) to (iii) are observed in
the Taylor vortex flow regime, while mode (iv) encompasses both the wavy vortex and
turbulent Taylor vortex flow regimes. Mode (i) corresponds to stable orbits away from the
vortex cores. Remarkably, in a narrow Ta range, particles get trapped in the Taylor vortex
cores (mode (ii)). Mode (iii) is the transition when both modes (i) and (ii) are observed.
For mode (iv), particles distribute throughout the domain due to flow instabilities. All
four modes show characteristic orientational statistics. The focus of the present study is
on mode (ii). We find the particle clustering for this mode to be size-dependent, with two
main observations. Firstly, particle agglomeration at the core is much higher for �/d = 0.2
compared with �/d = 0.1. Secondly, the Ta range for which clustering is observed depends
on the particle size. For this mode (ii) we observe particles to align strongly with the local
cylinder tangent. The most pronounced particle alignment is observed for �/d = 0.2 at
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around Ta = 4.2 × 105. This observation is found to closely correspond to a minimum of
axial vorticity at the Taylor vortex core (Ta = 6 × 105) and we explain why.

Key words: rotating turbulence, particle/fluid flow

1. Introduction

Particle-laden flows are ubiquitous in both nature and industrial applications. For example,
in rivers, where the deposition of large grains can influence the solutal and nutrient
exchange processes (Ferdowsi et al. 2017). Or in oceans, where prediction for the
accumulation of large plastic debris remains a topic of ongoing research (Cózar et al.
2014). In industrial applications the accumulation of particles in turbo-machineries can
reduce the efficiency and even damage rotor or stator blades (Hamed, Tabakoff &
Wenglarz 2006). Another example is in the paper-making industry, where the orientation
of the fibres in the pulp suspension determines the mechanical strength of the final
product (Lundell, Söderberg & Alfredsson 2011). Given the importance of particle-laden
flows, understanding phenomena such as transport and clustering is key for optimising
engineering applications.

Studies of particle-laden flows (Salazar & Collins 2009; Toschi & Bodenschatz 2009;
Balachandar & Eaton 2010; Mathai, Lohse & Sun 2020), in general, have shown a rich
phenomenology and can be broadly grouped into two categories. The first focuses on the
flow response due to the presence of the particles. Most frequently, these particles are
assumed to be spherical. Examples of these studies include investigations into the influence
of particles on turbulent structures (Wang et al. 2018; Ardekani & Brandt 2019; Ramesh,
Bharadwaj & Alam 2019; Yu et al. 2021), drag (Andersson, Zhao & Barri 2012; Niazi
Ardekani et al. 2017; Bakhuis et al. 2018; Spandan, Verzicco & Lohse 2018; Wang, Xu
& Zhao 2021) and the turbulent energy budget (Peng, Ayala & Wang 2019; Olivieri et al.
2020). The second category focuses on explaining the dynamics of particles in these flows
themselves. This becomes particularly interesting for non-spherical particles. For instance,
on how shape influences particle rotation (Byron et al. 2015; Zhao et al. 2015) or how
particles cluster and preferentially align (Henderson, Gwynllyw & Barenghi 2007; Ni,
Ouellette & Voth 2014; Uhlmann & Chouippe 2017; Voth & Soldati 2017; Majji & Morris
2018; Bakhuis et al. 2019).

A review of the existing literature reveals that for spherical particles the particle
dynamics in wall-bounded shear flows is reasonably well understood. However, apart
from some recent work (Bakhuis et al. 2019), little is yet known about the interactions
of non-spherical particles in turbulent flows with curvature effects. The objective of
this work is to fill this gap. Questions we ask are, for instance, how do non-spherical
particles respond to shear flow with large-scale flow structures (due to different lift/drag
forces), and do they exhibit preferential clustering or alignment? Another unresolved
question regards the relation between the particle size compared with that of the flow
features in the fluid phase. In particular, we want to work out the underlying physics. The
answers to these questions can provide valuable insight into the underlying mechanism for
particle-/bubble-induced drag reduction in wall-bounded turbulent flows, where particle
geometry might affect momentum transport.

As a very well controlled shear flow, we choose Taylor–Couette (TC) flow and then
study the two-way coupled dynamics of finite-size inertial anisotropic particles in this
flow. TC flow is convenient for the following reasons. First, the flow regimes of TC flow
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are well understood and documented (Andereck, Liu & Swinney 1986; Fardin, Perge &
Taberlet 2014; Grossmann, Lohse & Sun 2016). Second, it is a closed system with exact
balances (Eckhardt, Grossmann & Lohse 2007) that is very accessible, both numerically
and experimentally, due to its relatively simple geometry and symmetries.

To fully resolve the motion of the ellipsoidal particles and their two-way interaction with
the surrounding fluid, we employ the immersed boundary method (IBM) using the moving
least squares algorithm (Vanella & Balaras 2009; de Tullio & Pascazio 2016; Spandan et al.
2017). The IBM is computationally advantageous for this application since the underlying
grid is fixed and no computationally expensive remeshing is needed (Breugem 2012).
Secondly, it is straightforward in the IBM to vary the size of the particles. The disadvantage
of the IBM is that interparticle and particle–wall collisions need to be modelled. Here,
we adopt the collision model of Costa et al. (2015), which has been widely tested and
employed in studies for particle-laden flows (e.g. Niazi Ardekani et al. 2017; Yousefi,
Ardekani & Brandt 2020).

The present work is structured as follows. In § 2, we describe the TC set-up and give an
overview of the investigated flow regimes. In § 3, we present the details of the numerical
method describing the dynamics of the fluid and particles. In § 4, we present the spatial
distributions of particles and categorise them into modes (i) to (iv). Then, we compare the
modes for the two simulated particle sizes via the joint probability density function (p.d.f.)
of the particle radial position versus the driving of the TC system. In § 5, we investigate the
particle orientations with respect to the local cylinder tangent for the categorised modes.
Here, we observe a strong particle alignment, which we correlate to the axial vorticity of
the Taylor vortices. Finally, in § 7, we summarise our results.

2. Taylor–Couette set-up in the Taylor vortex flow regime

The TC set-up, as employed here, comprises a confined fluid layer between a coaxially
rotating inner cylinder and a fixed outer cylinder (see figure 1a for a schematic). The
dimensionless parameters characterising this system are the ratio of the inner radius ri and
outer radius ro of the cylinders, i.e. η ≡ ri/ro, the aspect ratio of the domain, Γ ≡ L/d,
and the Reynolds number of the inner cylinder, Rei ≡ riωid/ν. Here, L denotes the axial
length of the cylinders, d ≡ ro − ri the gap width, ωi the angular velocity of the inner
cylinder and ν the kinematic viscosity of the fluid. We set Γ = 2π/3 to allow one pair
of Taylor vortices to fit within the domain (Ostilla-Mónico, Verzicco & Lohse 2015)
and η = 5/7 to match the experimental T3C set-up (Bakhuis et al. 2019). No-slip and
impermeability boundary conditions are imposed on both cylinder walls. In the azimuthal
and axial directions, periodic boundary conditions are used. We employ a rotational
symmetry of order 6 to reduce computational cost such that the streamwise aspect ratio
of our simulations Lϕ/d = (2πri/6)/d = 2.62. The resulting streamwise domain length is
sufficient to capture the mean flow statistics (Ostilla-Mónico et al. 2015).

The control parameter for the TC flow is Rei and we vary the values in the range Rei =
[1.6 × 102, 8.0 × 103]. The outer cylinder is fixed. For ease of comparison with existing
numerical studies, we also define the Taylor number as

Ta ≡ (1 + η)6

64η4 Re2
i , (2.1)

with the corresponding values to the Rei range being Ta = [3.9 × 104, 9.8 × 107]. An
overview of the cases is presented in table 1. This range of Ta covers the regimes known
as Taylor vortex, wavy vortex and turbulent Taylor vortex flow (Grossmann et al. 2016).
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Figure 1. (a) Schematic of the TC configuration and geometrical definitions of the particle (not to scale).
(b) The standard deviation of the normalised vertical velocity averaged over the domain and time versus Ta.

Within the chosen Ta range, the flow experiences a series of transitions. The lowest
simulated Ta is chosen to lie slightly above the regime of circular Couette flow. The onset
from circular Couette flow to Taylor vortex flow is estimated to occur at Ta ≈ 1.0 × 104,
which is determined from the critical Reynolds number Rei,cr(η) = (1 + η2)/{2ηα2[(1 −
η)(3 + η)]1/2} with α = 0.1556 for a resting outer cylinder (Esser & Grossmann 1996).
The transition point from Taylor vortex to wavy vortex flow has been investigated by
numerous authors (Ahlers, Cannell & Lerma 1983; Jones 1985; Langford et al. 1988).
Under current conditions it is empirically found to lie at around Ta = 3 × 106, by tracking
the time- and volume-averaged standard deviation of the vertical velocity uz as a function
of Ta (see figure 1b). The visualisations of the aforementioned flow regimes are shown in
figure 2.

3. Governing equations and numerical methods

3.1. Carrier phase
The velocity field is obtained by solving the incompressible Navier–Stokes equations in
cylindrical coordinates. The continuity and momentum equations read (see e.g. Landau &
Lifshitz 1987)

1
r
∂r(rur) + 1

r
∂ϕuϕ + ∂zuz = 0 (3.1)

and

∂tuϕ + (u · ∇)uϕ + uruϕ

r
= −1

r
∂ϕp + 1

Re

(
�uϕ + 2

r2 ∂ϕur − uϕ

r2

)
+ fϕ, (3.2a)

∂tur + (u · ∇)ur − u2
ϕ

r
= −∂rp + 1

Re

(
�ur − 2

r2 ∂ϕuϕ − ur

r2

)
+ fr, (3.2b)

∂tuz + (u · ∇)uz = −∂zp + 1
Re

�uz + fz, (3.2c)

where (u · ∇) = ur∂r + r−1uϕ∂ϕ + uz∂z and � = r−1∂r(r∂r) + r−2∂ϕ2 + ∂z2 . The last
terms (fϕ , fr, fz) on the right-hand side of (3.2a–c) denote the IBM forcing (see Appendix A
for details).
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Figure 2. (a–e) Instantaneous snapshots of the azimuthal flow field (arrows denote ur, uz) for various Ta.
( f – j) Corresponding time-averaged velocity fields. Here, the flow regimes are (a–c) Taylor vortex flow,
(d) wavy vortex flow and (e) turbulent Taylor vortex flow.

We employ a fractional step method to numerically solve (3.1) and (3.2a–c).
The velocity field is discretised using a conservative spatial, second-order, central
finite-difference scheme and a temporal third-order Runge–Kutta scheme, except for
the viscous terms that are treated implicitly with a Crank–Nicolson scheme. In the
wall-normal direction, the grid is stretched with a clipped Chebychev type of stretching
(cf. Ostilla-Monico et al. 2015). The grid is uniform in the azimuthal and axial directions.
For more details, we refer the reader to Verzicco & Orlandi (1996). The grid resolution
for the fluid phase is based on Ostilla et al. (2013), with the note that the grid aspect ratio
here is 1.0 at mid-gap. This criterion is used to ensure sufficient nodes for the IBM, which
is discussed in § 3.2. The time step is variable and satisfies the condition CFL = 0.3; this
restrictive limit is used owing to the explicit coupling of the particles to the fluid phase.

3.2. Particles
We use prolate ellipsoids as the dispersed phase in the TC flow. The control parameter
for the particle is the ratio of particle size to the gap width, �/d, with � the major axis of
the ellipsoid (figure 1a). For our study, �/d = 0.1 or 0.2. The aspect ratio of the ellipsoid
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Ta Rei Nϕ × Nr × Nz 0.1d/ηk 0.2d/ηk

3.90 × 104 1.60 × 102 320 × 128 × 240 1.3 2.6
1.00 × 105 2.56 × 102 320 × 128 × 240 1.9 3.8
1.78 × 105 3.42 × 102 320 × 128 × 240 2.3 4.5
3.16 × 105 4.56 × 102 320 × 128 × 240 2.8 5.5
3.51 × 105 4.80 × 102 320 × 128 × 240 2.9 5.7
4.23 × 105 5.27 × 102 320 × 128 × 240 — 6.1
5.62 × 105 6.08 × 102 320 × 128 × 240 3.4 6.7
7.99 × 105 7.24 × 102 320 × 128 × 240 — 7.5
1.00 × 106 8.10 × 102 320 × 128 × 240 4.1 8.1
1.39 × 106 9.55 × 102 320 × 128 × 240 — 9.0
1.91 × 106 1.12 × 103 320 × 128 × 240 5.0 9.9
2.68 × 106 1.33 × 103 320 × 128 × 240 5.6 11.1
3.80 × 106 1.37 × 103 360 × 144 × 280 6.7 12.4
6.00 × 106 2.08 × 103 360 × 144 × 280 7.2 14.3
9.52 × 106 2.50 × 103 480 × 192 × 320 13.5 27.0
9.75 × 107 8.00 × 103 768 × 256 × 480 — 33.9

Table 1. Summary of simulation parameters. The first two columns denote the driving, expressed as either
Ta or Rei. The third column presents the grid resolution for �/d = 0.2. The simulated cases corresponding
to �/d = 0.1 were performed on a 640 × 256 × 480 grid. The Ta (Rei) cases for which no �/d = 0.1 were
considered are indicated with (—). Here 0.1d/ηk and 0.2d/ηk denote the particle size to the Kolmogorov scale
for �/d = 0.1 and �/d = 0.2, respectively.

is Λ ≡ �/b = 4, with b the minor axis of the particle. The exact value of Λ = 4 was
chosen to deviate significantly from spherical whilst maintaining a particle length that was
small compared to the gap width as well as to maintain computational viability. Indeed a
systematic study of Λ may yield other interesting insights but this was outside the scope
and computational costs of the present work. Sixteen particles are used in each simulation,
yielding volume fractions of 0.01 % and 0.07 % for �/d = 0.1 and 0.2, respectively. The
reported Stokes number is obtained via (cf. Voth & Soldati 2017)

St ≡ τp

τv

, with τp = Γ

18
b2

ν

Λ ln(Λ + √
Λ2 − 1)√

Λ2 − 1
and τv = ν

u2
τ

. (3.3)

Here, the density ratio is kept at Γ = 1 and the friction velocity is defined as uτ =√
ν∂r〈uϕ〉A,t|ri (average over time and inner cylinder).
The rigid particle dynamics is obtained by integrating the Newton–Euler equations. The

governing equations and numerical methods regarding the particle translation, rotation and
collisions are provided in Appendix A.

The ratio of the particle size to the Kolmogorov scale is estimated based on the global
exact balance for TC flow (Eckhardt et al. 2007)

ηK/d = (σ−2Ta[Nuω − 1])−1/4, where σ = (1 + η)4/(16η2), (3.4)

and the non-dimensional response parameter Nuω = Jω/Jω
lam, the Nusselt number, which

directly relates to the torque required to keep the angular velocity constant. The angular
velocity flux is Jω = r3(〈urω〉A,t − ν∂r〈ω〉A,t) and Jω

lam = 2νωir2
i r2

o/d2 its value for the
laminar case (Eckhardt et al. 2007). Here, we have used the Nusselt number as the
dimensionless parameter to measure the transport of angular velocity flux because of
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the analogy between Rayleigh–Bénard and TC flow (see e.g. Grossmann et al. 2016). For
all Ta, we estimate �/ηk based on (3.4) (see table 1).

To initialise the simulations, the single-phase flow is first advanced in time until a
statistically stationary state is attained. Once this state has been achieved, the particles are
inserted at random positions, with zero velocity within the domain, whilst ensuring that
their initial distribution is spatially homogeneous. The initial orientations of the particles
are also randomised. After inserting the particles, the simulations are run for at least 50
full inner cylinder rotations before collecting statistics. Between15 and 25 grid points per
� are used to ensure the boundary layers over the particles be sufficiently resolved. The
particle Reynolds number is estimated as Rep ≡ γ̇ �2/ν and ranges from O(0.1) to O(60),
with γ̇ the average radial derivative of the azimuthal velocity in the bulk.

4. Spatial distributions of particles

4.1. Observed spatial modes
We examine the statistics of the particle positions. In particular, we select the cases Ta =
3.9 × 104, 3.2 × 105, 1.9 × 106, 9.5 × 106 and 9.8 × 107 with particles (see also the
single-phase flow fields in figure 2). In figure 3 we present the time-averaged particle
distribution, after the initial transients, projected onto the r–z plane for both particle sizes:
�/d = 0.1 and �/d = 0.2. Figure 3 reveals four distinct spatial patterns, which depend on
both �/d and Ta. The characteristics of these flow different ‘modes’ are as follows.

a. Mode (i): steady large orbits (figure 3a,b, f ).
b. Mode (ii): steady orbits, with particles spiralling closely around the vortex cores

(figure 3d,h).
c. Mode (iii): a combination of modes (i) and (ii) (figure 3c,g).
d. Mode (iv): unsteady orbits, with particles distributed quite homogeneously

throughout the domain (figure 3e,i, j).

For mode (i), the rotational particle dynamics shows no stable alignment, but instead,
a tumbling type of motion is observed. At this Ta, the base flow is slightly above the
transition point from the circular Couette flow to a Taylor vortex flow regime. We stress
that the particles were released at random locations after the flow was fully developed –
therefore, on release, each particle undergoes an inertial migration process before reaching
its stable orbit.

For mode (ii), particle orbits are observed to cluster closely around the vortex cores
and remain at a (small) finite distance away from the vortex core. The most pronounced
example from figure 3 is at Ta = 1.9 × 106 for �/d = 0.2 (figure 3h). Remarkably, the
particle concentration at the core is much higher for the larger particles, thus indicating
that this is definitely a finite-particle-size effect. Mode (ii) is accompanied also by a stable
particle alignment, which is addressed in detail in § 5.

Mode (iii) consists of a combination of modes (i) and (ii). This regime is the transition
between stable (limit-cycle-type) orbits and preferential clustering at the core. This mode
is observed at Ta = 1.0 × 106 for �/d = 0.1. Interestingly, for �/d = 0.2, mode (iii) is
observed at a lower value of Ta = 3.2 × 105. Hence, it appears that both particle clustering
as well as the transitions to various particle orbit regimes are functions of �/d. In § 4.2, we
study the regime transitions as a function of �/d.

One key feature of modes (i) to (iii) is the relative steadiness of the orbital regions
as the particles trace their path through the domain. Note here that modes (i) to (iii) show
orbits within a finite region of the domain and do not perfectly overlap each revolution (the
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Figure 3. Probability density function of the particle distribution. The average is taken over time and azimuthal
direction. (a–e) Particles of size �/d = 0.1 and ( f – j) particles of �/d = 0.2. The coloured circles on top of
the contour plots denote distinguishable regimes of particle dynamics, which correspond to those in figures 4
and 6.

pathline of a particle does not perfectly follow a streamline). The thickness of this stable
region of the orbit is induced by multiple factors such as particle inertia and aperiodic
angular dynamics (see § 5). Moreover, the orbital steady regions that a particle is observed
to trace out are subject to the initial position of the particle. The steady orbital regions
occur at a unique set of conditions and can be linked to two fundamental features of
the Taylor vortices. Firstly, the background flow is completely steady and time-invariant.
Secondly, the Taylor vortices are axisymmetric about the cylindrical axis (see § 2). The
comparison with the background flow for modes (i) to (iii) is justified by noting that the
flow state was not considerably altered by the particles. This observation is supported by
the fact that Nuω was altered by just 0.02 % when ellipsoidal particles with �/d = 0.2 are
added to the flow at Ta = 1.9 × 106, which indicates that the overall transport properties
and flow state are unaltered. This observation confirms that the influence of the particles
on the flow is limited for the parameter range in which modes (i) to (iii) are observed.

For mode (iv), we now observe unsteady dynamics caused by unsteady Taylor
vortices. For instance, as shown in figure 2(e), the flow corresponds to the wavy Taylor
935 A7-8
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Figure 4. Joint p.d.f. of the particle normalised radial position versus Ta. Particles with size ratio (a) �/d = 0.1
and (b) �/d = 0.2, and (c) spheres with identical volume to ellipsoids with �/d = 0.2. For reference, the modes
addressed in § 4.1 are indicated with (i)–(iv) in the coloured top bar and the colour coding corresponds to the
one used in figures 3 and 6.

vortex regime. Due to the unsteadiness of the wavy Taylor vortices, particles experience
spatial and temporal variations of the hydrodynamic loads. These variations prevent any
stable orbits from happening. For Ta = 9.5 × 106 and �/d = 0.2, particle trajectories tend
to maintain some coherence (see figure 3i) and appear to trace out the complete vortex.
However, for the same Ta and �/d = 0.1 (figure 3e), as well as at larger Ta for �/d = 0.2
(figure 3i), the coherence observed for mode (ii) is lost and the particles distribute nearly
homogeneously throughout the domain. The number of collisions is very limited for mode
(iv) due to the homogeneous distribution. The distributions for the latter combinations of
Ta and �/d are reminiscent of those for spheres and fibres in TC flow (Majji & Morris
2018; Bakhuis et al. 2019).

4.2. The transition from stable orbits to clustering at the core is size-dependent
In § 4.1, in some cases particles are observed to preferentially cluster at the vortex core.
Now, we will examine the clustering behaviour in more detail. The Ta range for which
clustering occurs is investigated via the p.d.f. of the particle radial distributions P(rp), with
rp being the particle radial position. Distribution P(rp) is plotted versus Ta in figure 4.
From this figure, two main observations can be made. (1) We observe that the modes,
indicated by the colours at the top of the figures, do not occur exactly at the same Ta when
comparing �/d = 0.1 and �/d = 0.2. (2) The magnitude of the peak is much more intense
for �/d = 0.2, suggesting that clustering is enhanced for the larger particles. These two
effects are discussed below.

In § 4.1 we defined four modes characterised by the particle distributions in the flow
field. We highlighted these regimes in figure 3 with four colours at the top; the colours
correspond to those used in figure 4. Mode (i) corresponds to the stable particle orbits,
resulting in helical particle trajectories. For this regime, we observe a preferential particle
concentration away from the vortex centre, as is evident by the light-blue regions at
(rp − ri)/d around 0.2 and 0.8 in figure 4. In this regime, particles in the Taylor vortex
are found to move further outwards. Beyond this regime for even larger Ta, we observe
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mode (iii), which is the mixed regime in which both modes (i) and (ii) are observed
simultaneously. Beyond this, mode (ii) is encountered; particles cluster at the central
region of the Taylor vortices as evidenced by the peak in the p.d.f. at (rp − ri)/d ≈ 0.5. On
average we found for mode (ii) that a particle at �/d = 0.2 translates around one Deq per
10 full inner cylinder rotations for mode (ii). Here, Deq refers to the equivalent diameter
of a sphere. For the particles of size �/d = 0.1 the translation time increased to one Deq
per 20 full inner cylinder rotations. Finally, beyond this regime, particles move outwards
again and distribute more homogeneously when the Taylor vortex starts to destabilise
into the wavy regime. When comparing figures 4(a) and 4(b), the transition between the
regimes shifts to lower Ta for larger particles. Since there is this clear size dependence,
it is, therefore, instructive to compare the corresponding particle time scale τp, which is
set by the particle size, with the fluid shear time scales, τν : effectively, we compute the
Stokes number St for the particles as defined earlier in (3.3). When considering St as
the governing parameter, we observe that mode (iii) (transition to clustering) occurs at
St ≈ 0.7 for �/d = 0.1 and St ≈ 1.0 for �/d = 0.2, suggesting that St is of a similar order
of magnitude for mode (iii). However, the reason why we urge caution is that, aside from
the small numerical parameter space, TC flows are inherently three-dimensional because
of curvature effects. Therefore, particle dynamics becomes sensitive to spatially varying
hydrodynamic forces (Trevelyan & Mason 1951). Curvature effects on particles in TC
flow can be straightforwardly investigated by examining Jeffery solutions (Jeffery 1922)
for prolate ellipsoids in the Couette regime. In Appendix B evidence is provided that
curvature effects on the particle rotation rate are already observed at Taylor numbers as
low as Ta = 1.0.

Comparing clustering for the two different particle sizes, we observe a much higher
magnitude of P(rp) in figure 4 for �/d = 0.2 than for the case �/d = 0.1. The clustering is
weaker for smaller �/d for the following reason: the clustering regime of �/d = 0.1 falls
together with the onset of the wavy Taylor vortex regime, while particles of �/d = 0.2
start to cluster around Ta ≈ 4 × 105 (Taylor vortex regime).

4.3. A comparison with volume-equivalent spheres
In § 4.2, we found clustering to be much more pronounced for �/d = 0.2 compared with
�/d = 0.1. Here, we ask whether the clustering is due to the larger size or to a specific
feature of the ellipsoidal particle shape. To clarify this issue we simulate 16 spheres with
the same volume as ellipsoids with �/d = 0.2, using the same initialisation procedure
and simulation settings. Interestingly, P(rp) does not indicate strong clustering for the
spheres (cf. figure 4c). Note that the obtained results for spheres closely resemble the
experimental work by Majji & Morris (2018). However, we emphasise that in the range
of Ta = 3.2 × 105 to Ta = 1.9 × 106 the orbit of few spheres is close to the vortex core,
which results in a p.d.f. that is comparable with the one observed in figure 3(b) where most
particles spiral to the edge of the vortex. Since the spheres have comparable St with the
ellipsoids with �/d = 0.1, we conclude that the particle shape has a pronounced influence
on the p.d.f. of the particle positions.

5. Statistics of the particle orientation

5.1. Angular dynamics
Up to this point, the spatial statistics of particles have been examined. A number of regimes
were found, one of which is of specific interest since ellipsoidal particles were found to
cluster at the central region of Taylor vortex cores. Additionally, clustering is observed to
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Figure 5. (a) Definition of the angle θz between the pointing vector pi and the tangent along the cylinder.
By symmetry of the particle, θz ∈ [−π/2, π/2]. (b) Angular time signal of a particle within a stable orbit
(light-blue line, Ta = 3.9 × 104; cf. figure 3 f ) and for mode (ii) (yellow line, Ta = 1.9 × 106; cf. figure 3h).
(c) Definition of the width of the p.d.f. P(θz). The width is measured for the highest peak of P(θz) at half-height.

enhance when the particle size is increased from �/d = 0.1 to �/d = 0.2. As a follow-up,
we examine the statistics of particle orientations, corresponding to the identified spatial
modes. We examine the angle θz (see figure 5a) between the particle pointing vector pi
and the local tangent of the cylinder (cf. Bakhuis et al. 2019). Here, we make use of the
symmetry of the particle and let θz ∈ [−π/2, π/2].

Two typical time signals of θz are given in figure 5(b) for particles of size �/d = 0.2. The
signal for Ta = 3.9 × 104 belongs to a particle travelling along a stable orbit. Interestingly,
the particle orientational dynamics in the steady Taylor vortex regime still shows a
Jeffery-like character. These Jeffery-like features have been observed in a variety of cases
that also do not strictly fulfil the criteria of Jeffery’s equations (Wang et al. 2018; Kamal,
Gravelle & Botto 2020). In contrast, the time signal of θz for Ta = 1.9 × 106 shows an
interesting, nearly constant angle θz. This may be visualised as if the axis of revolution
always aligns with the local cylinder tangent. The particle does not flip but oscillates only
relatively mildly. This case corresponds to preferential particle concentration at the vortex
core (mode (ii); see figure 3h).

For illustration purposes eight particles of size �/d = 0.4 at Ta = 1.9 × 106 are
simulated (subject to same grid resolution for the corresponding case �/d = 0.2). This
larger particle displays mode (ii), too, with a slightly larger oscillatory character (see
figure 5b). This indicates that finite-size effects remain visible for even larger particles,
but nonlinear effects come into play, which are out of the scope of this study.

The statistics of θz are discussed in the following and linked to the spatial distribution
regimes of § 4.1.

5.2. Angular statistics corresponding to the observed spatial distributions
Typical p.d.f.s of θz for various Ta and for �/d = 0.1 and �/d = 0.2 are given in
figure 6(a,b). The shown cases correspond to the spatial distributions in figure 3.
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Figure 6. The p.d.f. of θz for various Ta. (a) Particles with size �/d = 0.1 and (b) particles with size �/d = 0.2.
(c) Decomposition of the orientational statistics for mode (iii), showing the origin of the two peaks. A fraction
of the particles is close to the vortex core, whereas other particles are within a stable orbit. For reference, the
experimental observations from Bakhuis et al. (2019) are added (cf. Ta = 9.5 × 1010). The colour coding of
the plots corresponds to that of figures 3 and 4.

Several interesting features can be observed in the distribution of P(θz). In particular, we
find that these features correlate to the different spatial particle distributions described
earlier in § 4.1 as listed below.

a. Mode (i): steady large orbits. A positive preferred orientation (maximum of P(θz)
occurs at θz > 0).

b. Mode (ii): orbits spiralling closely around the core. A sharp peak for P(θz) located
at θz ≈ 0.

c. Mode (iii): a combination of modes (i) and (ii). Angular dynamics show modes (i)
and (ii) on the border between clustering and stationary orbits.

d. Mode (iv): unsteady dynamics, particles distribute throughout the whole domain.
A non-homogeneous distribution of θz with the maximum of P(θz) occurring at
negative θz.

For mode (i), the flow is in the steady Taylor vortex flow regime (Ta = 3.9 × 104).
From figure 6, for both �/d = 0.1 and �/d = 0.2 the angular statistics display a
non-homogeneous distribution, with a positive preferred angle. For mode (ii), particles
agglomerate at the Taylor vortex cores. Remarkably they show a strong preferential
alignment at Ta = 1.9 × 106 as confirmed by the sharp peaks of the alignment probability
of figure 6. The more defined peak of P(θz) observed for �/d = 0.2, as compared with
�/d = 0.1, is related to the enhanced clustering (see § 4.2) and correlates with the result
of stronger preferential alignment, thus indicating that the particle size plays a predominant
role in the phenomenon. Tails of P(θz) can also be observed, for example at Ta = 1.9 × 106

in figure 6(a,b). These tails are the result of particles precessing in a stable orbit visible
in the particle distribution in figure 3(d,h). Our explanation as to why particles may
still intermittently exhibit behaviour akin to ‘stable orbits’ is because particles collide
throughout these simulations at this Ta (O(5) for all particles per full inner cylinder
rotation). Observations from such events indicate that collisions cause the particles to end
up further away from the vortex core in a meta-stable orbit, which eventually decays to the
stable preferential alignment at the vortex core.

For mode (iii), two peaks are observed for P(θz), as shown by the green curves in
figure 6(a,b). These two peaks originate from the two spatial modes (i) and (ii), shown
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in figure 3(g). The contribution from the two modes can be explained by disentangling the
two angular statistics, which we illustrate in figure 6(c). First, we separate the two spatial
modes by taking a subsample of particles close to and far from the vortex cores. Next, the
angular statistics of these subsamples are computed, resulting in two p.d.f.s of θz (black
dashed lines in figure 6c). These separate p.d.f.s illustrate that particles close to the vortex
core show preferential alignment at θz ≈ 0, whereas those in a stable orbit far from the
core peak at θz ≈ 0.09π. It is highlighted that this particle behaviour forms the transition
point between stable orbits and clustering (mode (iii) in figure 4), and occurs within a very
narrow Ta range.

For mode (iv), particles distribute homogeneously throughout the domain due to the
instabilities and unsteadiness of the flow. The preferential alignment observed with
axisymmetric Taylor vortices (mode (ii)) cannot exist when the flow undergoes a transition
to wavy Taylor vortex flow. For P(θz) this results in a distribution that is flatter. However,
some statistical preferential alignment persists. Bakhuis et al. (2019) reported a difference
of 40 % between the lowest and highest values of P(θz) at Ta = 1.0 × 1012 for cylinders
of aspect ratio Λ = 5. Within this work, at Ta = 9.8 × 108, the difference is about 67 %
which suggests that the tendencies for particles to preferentially align are stronger at lower
Ta. We also highlight that, while the Ta values are much lower in our set-up than in Bakhuis
et al. (2019), there is a general tendency for the peaks to shift for increasing Ta towards
negative θz and lower P(θz). Indeed, the incipient trend is consistent with the distributions
in Bakhuis et al. (2019). Further studies at larger Ta in the simulations will be necessary
to verify this trend.

5.3. The most pronounced alignment of particles
In § 5.2, preferential alignment of the particle angle θz is observed in the case when
particles agglomerate near the vortex core. Here, the objective is to determine the
conditions for which alignment is strongest. For all P(θz), the width w of the p.d.f. around
the highest peak is calculated and taken at half-height (see figure 5c). The plot of w
versus Ta is given in figure 7. Remarkably, w has a very pronounced minimum (note
the double-logarithmic scale) with respect to Ta, occurring at around Ta = 7 × 105 for
�/d = 0.1 and at Ta = 4 × 105 for �/d = 0.2. This minimum corresponds to a particle
that oscillates the least with respect to the local tangent of the cylinder. Intriguingly,
the minimum is even more pronounced for �/d = 0.2 compared with �/d = 0.1. In
the remainder of this work, we discuss the origin of this minimum in w and offer an
explanation for why this is observed in the investigated configuration.

6. The role of axial vorticity at the vortex core

6.1. The link between strong alignment and minimum axial vorticity
From our analysis in the preceding sections, we observed that at specific Ta values particles
tend to get trapped within the vortex core and have a preferred orientation. Now, we aim to
answer the question: Why do the particles align at this Ta value? In the following, we show
that the preferential alignment is linked to the TC flow state which exhibits a minimum in
the shear gradient at the Taylor vortex core. In particular, we base our analysis on the axial
component of the vorticity of the flow, which is shown to be the key metric determining
the preferential alignment.

In the spirit of Jeffery’s equation for the rotation of an ellipsoid, we formulate an
area average of the axial vorticity, ωz = r−1∂r(ruϕ) − r−1∂ϕur evaluated in the r, z plane,
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Figure 7. Width, w, of the p.d.f. P(θz) versus Ta. The definition of w is sketched in figure 5.
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Figure 8. The average vorticity, 〈|ωz|〉/ωi, is computed for the single-phase flow situation. The area covered
for the average vorticity, ωz, is a circle centred at the vortex core with radius b and 2b, where b denotes the
particle minor axis with �/d = 0.2. The analysis for a patch with radius 3b is performed in the presence of
particles of size �/d = 0.2. The inset shows an instantaneous ϕ–r slice of ωz for the single-phase flow and
two-phase flow cases, highlighting the perturbed vorticity fields due to the presence of particles.

based on the premise that a particle aligns with the local cylinder tangent. This vorticity
component is held responsible for rotational flipping events of the ellipsoidal particle
around the z axis. To compute the axial vorticity, it is first instructive to identify a region
of interest where particles would presumably cluster. Taking heed from the clusterings
observed in figure 3, this region can be reasonably and safely assumed to coincide with
the central regions of the Taylor vortices. Therefore, the average of ωz is taken for each r–z
plane over a circular patch positioned at the vortex cores. The patch has a radius assigned
with cross-section dimensions similar to those of the particle. Here, we select a circle with
radius i · b, with b the minor axis of the particle. The Taylor vortex cores are identified by
a local minimum of the meridional velocity, u2

r + u2
z . Note that for the single-phase flow

in the Taylor vortex regime, the vorticity in the r, z plane is stationary and, due to the axial
symmetry of the flow, independent of the coordinate ϕ. The averaged ωz is normalised by
the rotational velocity of the inner cylinder ωi and plotted in figure 8 versus Ta.

A minimum of 〈|ωz|〉 can be clearly observed at Ta ≈ 6 × 105. This minimum implies
that, roughly close to this Ta value, the fluid torque applied to the body (following Jeffery’s
equations) will be the smallest. Indeed, comparing this minimum with the previously
acquired most pronounced alignment in figure 7, a very good agreement is found: the
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preferential alignment of the particle at Ta = 4.2 × 105 and the minimum of average
vorticity for the single-phase flow occurs at Ta = 6 × 105. Additional calculations with
a larger nominal diameter equal to 2b (red circles in figure 8) also find the minimum to
occur around this Ta, which shows that this metric is quite robust.

For completeness, we further analyse the effect on 〈|ωz|〉 with particles for �/d = 0.2. In
contrast to the single-phase flow, the presence of particles introduces velocity gradients in
their vicinity because of the formation of viscous boundary layers at the particle surface.
Therefore, 〈|ωz|〉 is determined at a slightly larger patch with radius 3b in order to filter out
spurious vorticity magnitudes with particles. Here, the volume occupied by the particle is
excluded from the calculation. Patches smaller than 3b are possible although they result
in larger variances due to the closer proximity to the wakes shed by the particles. This
trend of 〈|ωz|〉 including the particles is shown in figure 8 with black symbols. As can be
seen from the figure, the trend is closely followed, but when particles agglomerate near
the vortex core, the metric becomes very sensitive to particle-induced gradients and skews
the picture. We find the lower values of 〈|ωz|〉 to occur in parts of the domain in which
the particle is absent. The pronounced results of 〈|ωz|〉 for the single-phase flow served
as a good guideline in our understanding of strong alignment. However, distilling similar
results with particles is challenging.

6.2. Lagrangian statistics of particle rotational energy
In this analysis we investigate the effect of ωz on the particle dynamics in relation to the
particle position. Here, we select a single representative particle (�/d = 0.2) from cases
Ta = 1.0 × 105 and Ta = 5.6 × 105. For the purpose of our discussion we refer to these as
case 1 and case 2, respectively. Note that each case is highlighted with a circle at the top
of figure 8. Case 1 corresponds to a particle exhibiting a final spatial distribution with a
stable orbit far from the vortex core, whereas case 2 converges to a strong alignment mode
in the vicinity of the vortex core. For both cases the rotational kinetic energy is tracked
over time (translational energy is left out of the analysis). Here, because of the tumbling
motion of the particle, it is assumed that its rotational energy provides a reasonable metric
of the particle Lagrangian dynamics. The particle selected for case 1 initially started out
close to the vortex core, whereas that for case 2 initially started at the edge of the vortex
and subsequently spiralled inwards.

The particle rotational energy, Er, is given by

Er = 1
2 ω̂T Ipω̂, (6.1)

with ω̂ = ωp/ωi the normalised rotational velocity and Ip its moment of inertia tensor
of the particle. The two cases are illustrated in figure 9. We observe local regions where
the rotational kinetic energy is highest, which correspond to particle tumbling events. The
distinct difference between cases 1 and 2 is when Er is examined at the vortex core. In fact,
for case 2, the value of Er at the core is negligibly small and is well correlated with the low
〈|ωz|〉 value shown in figure 8. This local minimum, interestingly, only holds for a specific
region close to the core, whereas outside of the core, the rotational kinetic energy is finite.
This picture, therefore, illustrates that strong alignment occurs only when particles are
within the local vorticity minimum of the core. In contrast, case 1 clearly shows tumbling
events that can still be found at the vortex core. This phenomenon, therefore, illustrates the
importance of axial vorticity in determining the preferential alignment of ellipsoids in TC
flow.

Based on our findings for the vorticity statistics, this secondary mechanism appears
also to be a crucial factor that determines preferential alignment, in addition to the Stokes

935 A7-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

11
34

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.1134


M.P.A. Assen and others

2.0

1.5

1.0
0 0.5 1.0 0 0.5 1.0 0 0.5 1.0

2.0

1.8

1.6

1.4

1.2

1.0

Er
0.25

40

20

–20

–40

0

0.20

0.15

0.10

0.05

0

z/d z/d

(r–ri)/d (r–ri)/d (r–ri)/d

Ta = 1.0 × 105 Ta = 5.6 × 105 Ta = 5.6 × 105

(ẍ
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Figure 9. The dimensionless space–time evolution of the rotational energy, Er, of a particle (�/d = 0.2) for
(a) Ta = 1.0 × 105 (case 1) and (b) Ta = 5.6 × 105 (case 2). In (a), the particle eventually spirals outwards
and does not display mode (ii). In (b), the particle spirals inwards towards the core. The starting and ending
positions of the particle are denoted by × and ©, respectively. Large magnitudes of Er correspond to tumbling
events of the particle. The arrows denote the (ur, uz) velocity field. (c) Accelerations ẍ for case 2 relative to the
single-phase case. The black arrows indicate the single-phase fluid accelerations u̇.

number effect discussed in § 4.2. Simply put, while clustering can be controlled by varying
St (or �/d), the unique nonlinear axial vorticity fields at different Ta establish a nominal
limit for which preferential alignment can occur for a given �/d. We emphasise that this
mechanism is present only in the regime of Taylor vortex flow.

6.3. The clustering mechanism for ellipsoids
The observation that the particle alignment and clustering depend on the particle geometry
(§ 4.3) raises the important question: what drives the migration of these ellipsoids? Since
we observe the migration to the centre of the vortex core only for prolate ellipsoids,
we know it is a geometrical effect. To further understand the underlying physics, we
hypothesise that the particle acceleration ẍ closely resembles the single-phase fluid
acceleration u̇ (cf. (3.2a–c)). This assumptions is based on the observation that the
particles have negligible influence on the flow (see § 4.1). In figure 9(c), we present the
particle accelerations ẍ and single-phase fluid accelerations u̇ (black arrows) for case 2.
We find that 〈(ẍ − u̇)/u̇〉 ≈ 10 %, confirming the strong correlation between ẍ and u̇.
Interestingly, from figure 9(c), the particle experiences a net acceleration towards the
core in the plume ejecting area (around z/d ≈ (1.2, 1.5), towards the outer cylinder).
However, at the same time, the analysis also shows the particle to accelerate away from
the core in the plume impacting area (z/d ≈ (1.5, 2), towards the inner cylinder). This
seems to be the general picture for all steady vortex flow cases; a fine balance appears
between the two respective effects, which depend on Ta. The particle Reynolds number,
Rep ≡ �‖ẋ − u‖/ν, depends on Ta and the location with respect to the vortex. For case 2
we find Rep of O(0.1) at the vortex core and O(1) at the edge of the vortex. Interestingly,
the region where the particle shows a net acceleration towards the vortex core overlaps
with the region of tumbling events induced by inertial effects (see § 6.2). Therefore, we
note that the clustering may indeed emerge from tumbling events.

7. Conclusion

In this study, we investigated finite-size, neutrally buoyant, prolate ellipsoids (aspect
ratio Λ = 4) in TC flow. The explored flow regimes are governed by pure inner-cylinder
driving and comprise the following regimes: Taylor vortex, wavy vortex and turbulent
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Taylor vortex flow. The fluid phase is simulated using direct numerical simulation,
whereas particles are represented through an IBM approach. Two particle size ratios
were considered: �/d = 0.1 and �/d = 0.2 for volume fractions 0.01 % and 0.07 %,
respectively. Here, � denotes the particle major axis and d the gap width.

Upon releasing the particles at initially random location and orientation, we observe,
after a transient, various distinctive particle distributions (figure 3). These distributions
are according to the flow regime and particle spatial distributions categorised in modes (i)
to (iv) (see § 4.1). Modes (i) to (iii) are observed in the Taylor vortex flow regime. Here,
mode (i) corresponds to steady large orbits away from the core. Remarkably, for higher
Ta in the Taylor vortex flow regime, particles get trapped in the vortex core. This particle
distribution is denoted as mode (ii) and it is the focus of this work. Interestingly, the Ta
range corresponding to mode (ii) is different for �/d = 0.1 and �/d = 0.2. Moreover, the
particle concentration for mode (ii) was observed to be much higher for �/d = 0.2 than
for �/d = 0.1 (figure 4). Mode (iii) is a transition in which mode (i) as well as mode (ii)
are observed. Mode (iv) corresponds to particle distributions in the wavy vortex regime
and turbulent Taylor vortex regime. Here, particles distribute throughout the domain due
to the instabilities in the flow.

Furthermore, we find distinctive particle orientations for each mode. Let θz denote the
angle between the particle axis of revolution and the local cylinder tangent. We find for
mode (ii) a sharp peak around θz = 0 in the p.d.f. P(θz) (figure 7). The ability of particles to
align is found to depend on three factors. Firstly, the gradient in the flow. We find the most
pronounced alignment for particles with �/d = 0.2 to occur at Ta = 4.2 × 105. This was
observed to closely match the axial vorticity minimum at the vortex core (Ta = 6 × 105).
In comparison, the axial gradient at Ta = 1 × 105 (mode (i)) is observed to be two orders
of magnitude higher. From the particle Lagrangian dynamics a stable alignment was not
observed (cf. figure 9a). Secondly, the ability of particles to cluster. Figure 9(b) indicates
that a stable particle alignment (absence of rotational energy) only occurs once a particle
is in the near vicinity of the vortex core. Lastly, the onset of instabilities in the flow. We
observed in the transition from steady to wavy vortex flow that particles spread throughout
the domain (cf. figure 3e,i, j). The corresponding spatial distributions (mode (iv)) become
significantly flatter than the ones of mode (ii) (cf. figure 6).

Our results collectively indicate that shear, large-scale structures induced by the
curvature of the domain, particle shape and particle size play an important interlinked role
in the dynamics of the particles themselves. The TC flow is known for its rich variety
of flow structures. By adding particles, we observed that the particle dynamics alters
significantly when the driving parameter Ta is varied. Furthermore, we expect the effect
of particle anisotropy, as expressed here by the parameter Λ, on particle dynamics to be of
importance for the clustering behaviour and alignment statistics. It is suspected that oblate
ellipsoids (Λ < 1) will not experience strong alignment in the vortex cores, since in that
case an alignment of the pointing vector with the direction of the vorticity will lead to
enhanced tumbling behaviour. A study of the effects of anisotropy would be an interesting
extension of the present work.
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Appendix A. Numerical method particles

A.1. Newton–Euler equations
The dynamics of rigid particles is governed by the Newton–Euler equations:

1
rp

d
dt

(r2
pϕ̇p) = 6

π

∫
(τ · n)ϕ dS + Fϕ,

r̈p = 6
π

∫
(τ · n)r dS + rpϕ̇

2
p + Fr,

z̈p = 6
π

∫
(τ · n)z dS + Fz.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(A1)

Equations (A1) are non-dimensionalised with the length scale Deq (volume-equivalent
diameter of a sphere) and velocity of the inner cylinder ωiri. The terms Fϕ , Fr and
Fz denote the collision force due to short-range particle–particle and particle–wall
interactions (see Appendix A.2 for details).

The term
∫
(τ · n)i dS is computed as

∫
(τ · n)i dS ≈ −

Nl∑
l=1

clVlf l
i + d

dt

∫
V

ui dV +
∫

V
ki dV, i = ϕ, r, z, (A2)

where −∑Nl
l=1 clVlf l

i is the force integrated over the shell of the particle. The ratio between
the Lagrangian volume Vl and Eulerian volume Ve associated with a single Lagrangian
marker with index l is denoted as cl = Vl/Ve. The hydrodynamic load in (A2) has in
contrast to Cartesian coordinates (cf. Breugem 2012) an additional term ki stemming from
the centrifugal component of (3.2a–c). The term ki is derived by integrating (3.2a–c) over
the volume of the particle and observing that from (3.2a–c) the terms uruϕ/r and −u2

r /r
are non-vanishing. Here, ki ≡ (kϕ, kr, kz)

T with kϕ = uruϕ/r, kr = −u2
ϕ/r and kz = 0. A

similar argument for the torque results in∫
∂V

r × (τ · n) dS = d
dt

∫
V

r × u dV −
∫

r × f dV +
∫

r × k dV. (A3)

The orientation of the particle, described in a Cartesian frame, follows

Ip
dωb

p

dt
+ ωb

p × (Ip · ωb
p) = R ·

∫
r × (τ · n) dS + R · T (A4)
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and is solved in a local body frame (Allen & Tildesley 1989) by employing a quaternion
description of the orientation. Here R represents the rotation matrix that converts the
torque to the local body frame and is obtained via

R =

⎛
⎜⎜⎝

q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 + q0q3) 2(q1q3 − q0q2)

2(q1q2 − q0q3) q2
0 − q2

1 + q2
2 − q2

3 2(q2q3 − q0q2)

2(q1q3 + q0q2) 2(q2q3 − q0q1) q2
0 − q2

1 − q2
2 + q2

3

⎞
⎟⎟⎠ , (A5)

with qi the four quaternion components describing the orientation of the particle. Then,
after (A4) is solved for, the quaternions are updated for each particle with

d
dt

⎛
⎜⎝

q0
q1
q2
q3

⎞
⎟⎠ = 1

2

⎛
⎜⎝

q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0

⎞
⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

0

ωb
x

ωb
y

ωb
z

⎞
⎟⎟⎟⎟⎟⎠

. (A6)

The IBM, here, uses a moving least squares (MLS) approach to perform the
interpolation and spreading of forces (Vanella & Balaras 2009; Spandan et al. 2017).
The MLS approach is beneficial because the transfer functions formulated using MLS
conserve momentum on both uniform and stretched grids. At the same time, MLS also
retains reasonable accuracy for conserving the exchange of torque between the Eulerian
and Lagrangian mesh on slightly stretched grids (Vanella & Balaras 2009; de Tullio &
Pascazio 2016), which we employ in our study.

A.2. Short-range collisions: forces and torques
The collision force and torque, F = {Fϕ, Fr, Fz} and T , respectively, are obtained via a
lubrication and soft sphere model. A brief overview of the contact model is presented here
and for more details we refer the reader to Costa et al. (2015) and Ardekani et al. (2016).
The lubrication force Fl becomes active when the IBM fails to resolve the lubrication
interaction (see also Appendix A.4). In that case the collision force is corrected by
�Fl = −6πμRpuij,n(λ(ε) − (λ(ε�x)), with ε ≡ δij,n/Rp the normalised distance to the
radius, λ the Stokes amplification factor, ε�x the distance from which the model is applied
and δij,n the gap distance between particles i and j. Parameter Rp is locally calculated
for the ellipsoid via a Gaussian radius of curvature yielding the best fitting sphere
tangent to the surface. Here, ε�x = 0.075 for particle–wall collisions and ε�x = 0.025 for
particle–particle collisions. Following Costa et al. (2015) roughness is taken into account
for the lubrication model for distances 0 ≤ εσ < 0.001. The lubrication correction in this
range reads �Fl = −6πμRpuij,n(λ(εσ ) − (λ(ε�x)).

Once particles overlap, the contact model takes over. The contact model considers
normal F ij,n and tangential F ij,t forces, defined as

F ij,n = −knδij,n − ηnuij,n and F ij,t = min(‖ − ktδij,t − ηnuij,t‖, ‖ − μF ij,n‖)tij,
(A7a,b)

with tij = −(ktδij,t + ηtuij,t)/‖ktδij,t + ηtuij,t‖, and the coefficients

kn = me(π
2 + ln2 en,d)

(N�t)2 and ηn = −2me ln en,d

N�t
, (A8a,b)
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E
E

E′
E′ rp

rp
r′p

r ′p

δmax

δmin

δmin
δ max

ϕp

ϕp + π/2

(a) (b)

Figure 10. Overview of a particle and its ghost particle for two different configurations (not to scale). Here
δmin and δmax are used to calculate the shortest and longest distance between particle E to the inner and outer
cylinder, respectively. (a) Top view and (b) side view.

with me = (m−1
i + m−1

j )−1, and mi and mj the mass of particle i and j, respectively. The
coefficients for the tangential force read

kt = me,t(π
2 + ln2 et,d)

(N�t)2 and ηt = −2me,t ln et,d

N�t
, (A9a,b)

with me,t = 2me/7. The contact time scale is set to N = 8 time steps of the Navier–Stokes
solver. We set the coefficients en,d = 0.97, et,d = 0.39 and μ = 0.15 (cf. Costa et al.
2015). The collision force is computed via substepping with an incremental time step of
�t/50. For each substep, an iterative scheme is used that converges once the criterion
|xk

i − xk−1
i | < �z/100 is met, with xk

i the rotated major axis of the ellipsoid in the inertial
frame. Note that obtaining the shortest distance between an ellipsoid and a cylinder is a
non-trivial problem. In Appendix A.3 we extend the iterative scheme from Lin & Han
(2002) to solve this problem. In Appendix A.4 we validate the collision model with data
from available literature.

A.3. Collision of ellipsoids with the inner and outer cylinder
An important aspect of particle–particle or particle–wall collisions is the shortest distance
between the two geometries. In the case of non-spherical ellipsoid–ellipsoid interaction,
a successful approach has been demonstrated in Ardekani et al. (2016) by employing the
iterative scheme from Lin & Han (2002) to compute the shortest distance. Here, it is shown
how by introducing a ghost particle the same algorithm can be used to obtain the shortest
distance between an ellipsoid and a cylinder.

Given an ellipsoid E for which we would like to calculate the shortest distance to
the inner cylinder, we introduce ghost particle E′. The shortest distance is obtained by
positioning E′ such that the line of shortest distance connecting E and E′: (i) passes through
the centreline of the inner cylinder and (ii) is perpendicular to the revolution axis of the
inner cylinder. This is achieved as follows. Let ϕp denote the azimuthal position of E.
Then, E′ is located at ϕp + π. Let q = q0 + q1i + q2j + q3k denote the quaternion of E.
Then E′ should be rotated such that q′ = q0 − q1i − q2j + q3k. In figure 10 an overview
is given for two different configurations, which illustrates the definitions for the distance
computations.

The shortest distance δmin between E and E′ can now be found in the conventional way
as described in Lin & Han (2002). The shortest distance from E to the inner cylinder is
then obtained via 1

2 (δmin − 2ri).
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Figure 11. (a) Normalised force exerted on a sphere approaching a cylinder versus the shortest distance
between the geometries. The radius ratio is set to ri/rp = 200. The theoretical prediction is from Brenner
(1961). (b) A spherical particle falling on a flat plate at Ga = 130.4 and density ratio ρp/ρf = 8.34. The results
are compared with experimental data reported in Gondret et al. (2002) and numerical results from Costa et al.
(2015).

The distance to the outer cylinder can be obtained by finding the largest distance δmax
between E and E′. One obtains δmax by picking the second root from the second-order
polynomial in the algorithm. Effectively, δmax is obtained by interchanging the min and
max functions when computing the step size (cf. Lin & Han 2002, (2.2)), i.e.

t1 = min{t ∈ [0, 1] : (1 − t)c1 + tc2 ∈ E},
t2 = max{t ∈ [0, 1] : (1 − t)c1 + tc2 ∈ E′}.

}
(A10)

The particle distance to the outer cylinder is obtained via 1
2 (δmax − 2ro).

A.4. Collision validations
Here, we validate our code similarly to that performed in Costa et al. (2015). The validation
consists of two parts. First, we consider the force exerted on a single particle approaching
the inner cylinder and compare it with a theoretical prediction developed for a sphere
approaching a flat plane at creeping flow conditions (Brenner 1961; Jeffrey 1982). The
sphere has a diameter D such that D/x = 16 (uniform grid), and is positioned in a TC
configuration with particle diameter to gap width ratio d/D = 12. The inner cylinder to
particle radius complies with ri/rp = 200 and the particle Reynolds number is Rep = 0.1.
We position the sphere in a quiescent flow (cylinders are fixed) at a fixed distance and
impose a velocity on its surface in the radial direction (Reynolds number Rep = 0.1). We
then let the simulation run until a steady state is reached and report the final value of the
force fr acting on the sphere.

In figure 11(a) we report the shortest distance h versus normalised fr. The results we
observe are very similar to the results found in Costa et al. (2015), namely for distances
of h/rp � 0.03 the numerical values of fr are in close agreement with the theoretical
predictions. This figure shows that the simulation is not able to properly capture the
asymptotic behaviour for h/rp < 0.1 due to the insufficient grid resolution between the
sphere and cylinder.

The second validation is the replication of a sphere impacting on a flat wall, which
bounces up and down until it is at rest. The non-dimensional parameters of the particle in
relation to the fluid describing the problem are the Galileo number Ga = 130.4 and density
ratio ρp/ρf = 8.34, with Ga = UgD/ν. The characteristic gravitational velocity is defined
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Figure 12. Curvature effects related to particle size. The rotational velocity ωb of a single pinned (where
uϕ = 0) particle is tracked. The quantity is normalised with ωd = uw/d, with uw the wall velocity and d the
gap width. (a) Plane Couette flow and (b) TC flow. For comparison, the result derived by Jeffery is included
(Jeffery 1922).

as Ug = √|ρp/ρf − 1|gD. The computational domain is 30D in the vertical direction
and 10D in the horizontal direction. The top and bottom boundaries are walls with zero
velocity imposed on them. The side boundaries of the domain are periodic. A single sphere
(uniform grid D/�x = 16) is then moved at the expected terminal velocity (uz/Ug = 1.25)
for four particle diameters starting from the initial position of 29D above the bottom
surface. From then on, the particle is allowed to freely fall. For a close comparison, we
set the collision parameters equal to those reported in table II of Costa et al. (2015). Our
findings of the particle velocity, uz, are in close agreement with those reported in Gondret,
Lance & Petit (2002) and Costa et al. (2015) (see figure 11b).

Appendix B. Curvature effects

The effect of the TC curvature on the particle motion is examined here under conditions
where Jeffery’s equations are approximately valid. This is performed by comparing the
motion of a single particle in plane Couette flow with the motion of a particle in TC
flow. The TC configuration is taken as in the main study with a radius ratio of η = 5/7.
The inner and outer Reynolds numbers of the cylinders are Rei = −0.48 and Reo = 0.48,
respectively (Ta = 1.0). This flow is characterised as part of the circular Couette flow
regime. Curvature effects are assessed by varying the particle size. The particle is fixed at
the location where the flow satisfies uϕ = 0. In comparison, the plane Couette geometry is
subject to the same conditions with Rel = 0.48 and Reu = −0.48 for the lower and upper
wall, respectively. The particle is pinned at mid-gap.

The particle dynamics is presented in figure 12. The velocity gradient at the particle
centre is equal for both the TC system and plane Couette set-up. Two observations can be
made. First, the particle in TC flow is observed to rotate at a frequency ωb that is 22 %
slower compared with plane Couette flow. Second, the difference in rotation rate differs
more between particle sizes for TC flow (difference of 3.5 %) in comparison with plane
Couette flow (<1 %). The greater difference between different particle sizes for TC flow
is understood as a curvature effect.
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