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Abstract Erdös and Selfridge first showed that the product of consecutive integers cannot be a perfect
power. Later, this result was generalized to polynomial values by various authors. They demonstrated
that the product of consecutive polynomial values cannot be the perfect power for a suitable polynomial.
In this article, we consider a related problem to the product of consecutive integers. We consider all
sequences of polynomial values from a given interval whose products are almost perfect powers. We
study the size of these powers and give an asymptotic result. We also define a group theoretic invariant,
which is a natural generalization of the Davenport constant. We provide a non-trivial upper bound of
this group theoretic invariant.
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1. Introduction

In [10], Erdös and Selfridge solved a long standing conjecture by showing that the product
of consecutive integers cannot be a perfect power. In particular, they proved that for a
fixed non-negative integer t,

(n+ d1)(n+ d2) · · · (n+ dk) = xl, (1)

where 1 = d1 < d2 < · · · < dk ≤ k + t and l > 1, has only finite number of solutions. If
t =0 then equation (1) has no solution. After Erdös and Selfridge’s work, similar results
were studied in an arithmetic progression. In [24], Saradha extended their result for an
arithmetic progression. She proved that for integers (n, d) = 1, 1 ≤ d ≤ 6, k ≥ 3, l ≥ 2,
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n ≥ 1 and y ≥ 1 the equation:

n(n+ d) · · · (n+ (k − 1)d) = yl, (2)

has no integral solution. Later, Saradha’s result was improved by extending the ranges
of d, k and l. Ultimately, Bennett and Siksek gave a complete solution to equation (2) in
[3]. Specifically, they showed that, for a large positive integer k, there are at most finitely
many solutions to equation (2) in the positive integers n, d, y, and l, where l ≥ 2 and
gcd(n, d) = 1.
A more general setting of this problem can be formulated as follows: Let P ∈ Z[x] with

positive leading coefficients. Consider the equation
m∏

k=1

P (k) = yl. (3)

The question is whether the Diophantine equation (3) has solution or not. Clearly, for
an arbitrary polynomial P(x ) the problem is wide open. For some particular polynomials
P(x ) the solutions of equation (3) are known. For example, in equations (1) and (1.2),
the cases of linear polynomials P (x) = x+n and P (x) = ax+ b are given. Also, solutions
of equation (3) are known for some non-linear polynomials P(x ) when the power l =2.
Cilleruelo investigated the quadratic polynomial P (x) = x2+1 in [6]. Following the result
in [6] many authors studied the problem and gave solutions for the polynomials 4x2 +1,
2x(x− 1) + 1, ax2 + bx+ c, and xl +ml for m ∈ N and l ≥ 2.
In [9], Erdös, Malouf, Sellfridge, and Szekeres considered a related problem to equa-

tion (3). They investigated when the product of integers from a given interval has perfect
power. They showed that in any interval of a certain length there are integers whose
product is perfect power. This naturally raises the question: if at an interval there are
sets of integers whose products are perfect powers, what is the maximal value of such a
power? More specifically, the problem can be formulated as follows: Let [1, N ] ⊂ N be a
given interval. Consider all possible integers x1, x2, x3, . . . , xm, y from the above interval,
and l ∈ N so that

x1x2x3 · · ·xm = yl. (4)

Let L(N ) be the maximum value of all l satisfied equation (4). So what will be the
supremum of L(N ) in terms of N ? In [25], Skalba first considered this problem and gave
upper and lower bounds for L(N). Later Goudout [13] improves the upper bound of L(N )
given in [25]. If we combine the Skalba and Goudout results, then one has

L(N) = N exp(−(
√
2 + o(1))

√
logN log logN),

as N → ∞.
In this article, we will consider sequences {xi}’s with certain restrictions. In particular,

we will take all sequences {xi}’s those are some polynomial values, but the product
of {xi}’s are perfect powers. We can rewrite this problem in the following way: Let
P (x) ∈ Z[x] be a polynomial with a positive leading coefficient. Then for any given
interval [1, N ] ∩ N we consider all possible products of the form:

P (x1)P (x2) · · ·P (xm) = yω, (5)
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where P (xi)’s are taken from the interval [1, N ]∩N. Let ωP (N) be the maximum value of
all ω satisfies equation (5). What are the infimum and supremum of ωP (N)? In general
finding such bounds for a general polynomial P(x ) are difficult.
Here we will obtain such bounds for some specific polynomials. First, we consider the

following product:

P (x1)P (x2) · · ·P (xm) = byω, (6)

for integers P (xi), y, b in [1, N ] and gcd(b, y) = 1.
Let ωP (N) be the maximum value of all ω satisfies equation (6). Our first result is

an asymptotic of ωP (N) when P(x ) is a linear polynomial generate integers those are in
arithmetic progression.

Theorem 1.1. Let a and q be two integers with (a, q) = 1 and P (x) = ax + q. Let
ωP (N) be the largest possible integer so that

P (x1)P (x2) · · ·P (xk) = byωP (N),

when P (xi), b, and y are integer in [1, N ], and gcd(b, y) = 1. Then uniformly for,

log q ≤ c
√
logN log logN,

we have

ωP (N) ∼ N

q exp((
√
2 + o(1))

√
logN log logN)

,

as N → ∞.

In our next result, we give bounds for ωP (N) when P(x ) is not a linear polynomial
but some other suitable polynomials.

Theorem 1.2. Let ωP (N) be the largest possible integer so that

P (x1)P (x2) · · ·P (xk) = byωP (N),

for P (xi), b, and y are in teger in [1, N ] and gcd(b, y) = 1.

(1) Let a and q be two fixed positive integer and P (x) = x(ax+ q). Then for any ε> 0,
there exist constants C 1 and C 2 depends on ε, a, and b such that

C1N
1−ε

logN
≤ ωP (N) ≤ C2N

1−ε.

(2) Let P (x) = x2 + 1. Then there exist constants C 1 and C 2 depends on ε such that

C1N
30
179−ε

logN
≤ ωP (N) ≤ C2N

179
328−ε.
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(3) Let P (x) = (x+1)(x+2) · · · (x+ l) for some positive integer l. Then for sufficiently
large N there exist a constants C 1 and C 2 depends on ε and l such that

C1N
1−exp(−1/l)−ε

logN
≤ ωP (N) ≤ C2N

1+exp(−1/l)−ε,

provided none of the P (xi) has any common factors.

2. Preliminaries

2.1. Davenport constant

Our argument depends on the Davenport constant, which is a group-theoretic invariant.
Let G be a finite abelian multiplicative group with the identity element 1. Then the
Davenport constant D(G) of the group G is the minimal integer such that every sequence
of length D(G) from G has a sub-sequence whose product is equal to the identity elements
of the group. A trivial bound of the Davenport constant is D(G) ≤ |G|. Due to its various
implications, from the decomposition of irreducible integers in the ideal class group (see
[8]) to the proof of the infinitude of Carmichael numbers (see [1]), a great deal of work
has been done on obtaining the best possible bound of the Davenport constant. Let Mn

denote the cyclic group of order n. Then any finite abelian group G can be written as
G = Mn1

×Mn2
× · · · ×Mnd

where n1, n2, . . . , nd are unique integers with n1 ≥ 2 and
ni | ni+1 for 1 ≤ i ≤ d. Here, the integers d and nd are the rank and the exponent of the
group G, respectively. If G = Mn is a cyclic group, then D(G) = n. This can be seen by
just considering the sequence (a, a, · · · , a) where a is a generator of G. In [21, 22], Olson
proved that if G is a finite p-group then

D(G) = (n1 + n2 + · · ·+ nd)− d+ 1, (7)

and D(G) = n1 + n2 − 1 when the rank of G is 2. It is still unknown whether the
equality equation (7) holds for any finite abelian group of rank greater than 2. Boas [27]
and Gao [12] showed that equality equation (7) holds for a wide class of finite abelian
groups of rank 3. In particular, finding the right size of Davenport constant is still an
open problem. In [20], Narkiewicz conjectured that D(G) ≤ (n1 + n2 + · · · + nd). The
best upper bound of D(G) is

D(G) ≤ exp(G)

(
1 + log

|G|
exp(G)

)
, (8)

which is due to Van Emde Boas and Kruyswijk [26], Meshulam [19], and Alford,
Granville and Pomerance [1]. Here exp(G) is the the exponent of the group G. Various
generalizations of the Davenport constant are studied in the literature.
Now we will define a generalization of the Davenport constant.

Definition 2.1. Let A be a subgroup of G and e be the identity element of G. We
define the A-relative Davenport Constant of G by the least positive integer ` such that
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every sequence (x̄1, · · · , x̄`)of G/A of length ` has a non-trivial sub-sequence (x̄i1 , · · · , x̄ir )
such that

∏r
j=1 x̄ij = ē.

In the rest of the paper, we will use the notation D(A)(G) for the A-relative Davenport
constant. Note that, D(A)(G) = D(G) when A = {e}.

In the next lemma, we will give a non-trivial upper bound of D(A)(G).

Lemma 2.2. Let G be a finite abelian group and A be a subgroup of G. Then one has

D(A)(G) ≤ exp(G)

(
1 + log

|G|
exp(G)

− D(A)− 1

exp(G)

)
.

Proof. It is enough to prove for a non-trivial subgroup A of G. Let e be the identity
element. We will show that

D(A)(G) ≤ D(G)−D(A) + 1. (9)

Let (a1, a2, · · · , am) be a sequence from A of length D(A) − 1 such that there is no
sub-sequence whose product is e. To arrive a contradiction, we consider D(A)(G) >
D(G)−D(A)+1. Note that, by the definition D(A)(G) ≤ D(G). Let (x1, x2, · · · , xl) be a
sequence of length D(A)(G)−1 such that there is no sub-sequence whose product is in A.
Next, we consider the sequence (a1, a2, · · · , am, x1, x2, · · · , xl). Since this sequence has
length at least D(G) then there exists a sub-sequence (as1 , as2 , · · · , asq , xr1 , xr2 , · · · , xrt)
such that

as1as2 . . . asqxr1xr2 . . . xrt = e.

This shows xr1xr2 . . . xrt ∈ A. This gives us a contradiction. Combining equation (9)
with equation (8) we have the result of the lemma. �

2.2. Smooth polynomial values

Consider the set of y-smooth integers

S(x, y) = {n ≤ x : p+(n) ≤ y},

where p+(n) denotes the largest prime factor of n. It is well known that the cardinality
of the set S(x, y), which is denoted by Ψ(x, y), is

Ψ(x, y) = (1 + o(1)) ρ(u)x,

where u = log x
log y and ρ is the Dickman-de Brujin function satisfies the following differential

equation:

uρ′(u) + ρ(u− 1) = 0.

We need the following asymptotic results. The most important special case of smooth
number estimate is (see [16, p. 270])
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Lemma 2.3. Let L(x) = exp(
√
log x log log x). Then

ψ(x, L(x)c) =
x

L(x)1/2c+o(1)

as x→ ∞.

One generalization of y-smooth number is polynomial values having prime factor no
greater than y. Consider the polynomial ring Z[x]. Let P (x) ∈ Z[x] and define the set

SP (x, y) = {n ≤ x : p+ (P (n)) ≤ y}.

Let ΨP (x, y) denote the cardinality of the set SP (x, y). For a linear polynomial P (x) =
ax+ q Chowla and Vijayaraghavan [5] and Buchstab [4] gave an estimate of ΨP (x, y) for
a fixed f and u. Later, Ramaswami [23] gave an uniform version of Buchstab’s results.
Fouvry and Tenenbaum [11] and Granville [14, 15] made significant improvement of
Ramaswami’s uniform result. The following result can be found in [11, 14, 15]. See also
Hildebrand and Tenenbaum [18, Sec. 6]

Lemma 2.4. Let (a, q) = 1 and P (x) = ax+ q. Then

ΨP (x, y) =
x

quu+o(u)
,

for x ≥ 3, 1 ≤ u ≤ ec
√
log y, and q ≤ ec

√
log y.

For degree 2 polynomial Balog ans Ruzsa [2] gave bounds of ΨP (x, y).

Lemma 2.5. Let a, b ∈ Z and P (x) = x(ax+ b). Then for all α> 0

ΨP (x, x
α) �P,α x.

For degree 2 irreducible polynomial we have little weaker result. Dartyge [7] showed
that

Lemma 2.6. Let P (x) = (x2 + 1) and α > 149
179 . Then

ΨP (x, x
α) �α,P x

holds for all large x.

Now, if P (x) ∈ Z is a completely reducible polynomial of any degree then Hildebrand
[17] computed bounds of ΨP (x, y). In particular, Hildebrand [17] proved the following. A
set A ⊂ N is said to be stable if for each fixed t ∈ N, n ∈ A ⇒ tn ∈ A. Define the lower
asymptotic density of the set A by

d(A) = lim inf
x→∞

1

x
#{n ≤ x : n ∈ A}.

Then
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Lemma 2.7. Let k ≥ 2 be an integer and αk = k−2
k−1 . Then any stable set A ⊂ N with

d(A) > αk satisfies

d({n : n+ i ∈ A, i = 0, 1, 2, . . . , k}) > 0.

In particular if we take

A = {n : p+(n) > y},

then for P (x) = (x+ 1)(x+ 2) · · · (x+ k) and α > e
− 1

k−1 one has

ΨP (x, x
α) �α,P x (10)

for all large x.

3. Proof of Theorem 1.1

3.1. Lower bound

Let Q+ be the set of all positive rational numbers and

Qω
+ = {qω : q ∈ Q+}

for some positive integer ω which will be chosen later. Then Q+/Qω
+ form a multiplicative

group. Let y be a fixed positive integer and {p1, p2, · · · , pt} are primes in [1, y]. Clearly,
t = π(y). Let us denote pi be the image of the prime pi in the quotient group Q+/Qω

+ and
G be the finite abelian subgroup of Q+/Qω

+ generated by the elements {p1, p2, · · · , pt}.
Hence,

G ∼= Cω × Cω × · · · × Cω︸ ︷︷ ︸
ttimes

., (11)

where Cω is the cyclic group of the order ω> 2. Let S be the set of all y-smooth integer
from [1, N ] and SP = S ∩ {P (n) : 1 ≤ n ≤ N}, where P (x) = ax + q. Let us consider

SP = {P (n1), P (n2), · · · , P (ns)}. Note that P (ni) ∈ G. Now we choose ω such that

(ω − 1)y logN ≤ s. (12)

Clearly for large N, one has s ≥ ωπ(y) log(ω)− 1 = ωt log(ω)− 1 ≥ D(A)(G) for some
non-trivial subgroup A of G. Then by Lemma 2.2, there exists a subgroup A of G such
that
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P (nr1) · P (nr2) · · ·P (nrk) = b

for some b ∈ A and hence

P (nr1) · P (nr2) · · ·P (nrk) ∈ bQω
+.

Therefore

P (nr1) · P (nr2) · · ·P (nrk) = blω,

for some integer l with gcd(b, l) = 1. Now, form the right side of equation (12), one has

logω ≥ log s− log y − log logN.

From the lemma 2.4 we can choose y = exp(
√
logN log logN/2) and hence log s =

logN − log q − (u+ o(u)) log u. Therefore

logω ≥ logN − log q − (u+ o(u)) log u−
√
logN log logN/2− log logN

≥ logN − log q − logN

log y
(log logN − log log y)−

√
logN log logN/2

− log logN + o(u) log u

≥ logN − log q −
√
2 logN log logN + o(

√
logN log logN).

In the penultimate step above we have used the definition

u =
logN

log y
.

Hence, we obtain

ω ≥ N

q exp((
√
2 + o(1))

√
logN log logN)

.

3.2. Upper bound

Let us consider

P (x1)P (x2) · · ·P (xm) = blω,

and p be the largest prime factor of lω. Clearly, pω is a factor of pνp(bl
ω). Here νp(x) is

the p-adic valuation of the integer x. Next we consider the set

A = {P (n) : P (n) ≤ N,P (n) is p-smooth, p | P (n)}.
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Hence |A| ≤ ψP (N/p, p). One can check if k is the largest value for which pk ≤ N then
k ≤ logN/ log p. Put all these information together with Lemma 2.4 we have

ω ≤ νp(bl
ω) ≤ ψP

(
N

p
, p

)
logN

log p

≤ 1

q
L(p), (13)

where L(p) = N
p v

−v+o(v) logN
log p and v = logN/p

log p . Now we will maximize the function L(p).
Note that

logL(p) = logN − log p

+

(
1− logN

log p

)
(log logN − log log p+ log(1− log p/ logN)) + o(v log v).

(14)

To maximize equation (14) one needs to choose p so that log p and

logN

log p
(log logN − log log p) ,

are of same size. Let us set

p = exp

((
1√
2
+ o(1)

)√
logN log logN

)
.

Therefore

log p+
logN

log p
(log logN − log log p) =

(
1√
2
+ o(1)

)√
logN log logN

+
logN

2 log p
log logN +O

(√
logN log logN

)
=

(√
2 + o(1)

)√
logN log logN. (15)

Hence from equations (14) and (15) we have

maxp L(p) = N exp
(
−
(√

2 + o(1)
)√

logN log logN
)
. (16)

Substituting equation (16) in equation (13) will give the required upper bound.

4. Proof of Theorem 1.2

Proof of Theorem 1.2 is similar to the proof of Theorem 1.1.
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Lower bounds: Consider the set S be the set of all y-smooth integers in [1, N ].
Let us define SP = S ∩ {P (n) : 1 ≤ n ≤ N} for a polynomial P(x ). Let us denote

SP = {P (n1), P (n2), · · · , P (ns)}. Clearly P (ni) ∈ G, where G is defined in equation (11).
Similar to the previous section we consider

(ω − 1)y logN ≤ s ≤ ωy logN. (17)

Hence s ≥ ωπ(y) log(ω)− 1 = ωt log(ω)− 1 ≥ D(A)(G) for some non-trivial subgroup A
of G. Then by Lemma 2.2 we have

P (nr1) · P (nr2) · · ·P (nrk) = b,

where b ∈ A Therefore there exists an integer l with gcd(b, l) = 1 such that

P (nr1) · P (nr2) · · ·P (nrk) = blω.

From the inequality equation (17) we have

logω ≥ log s− log y − log logN.

(1) Let us consider the polynomial P (x) = x(ax+ q). By Lemma 2.5 we have that for
all α> 0, s ≥ CαN when y = Nα. Therefore,

w ≥ Cα
N1−α

logN
.

(2) Next we consider the polynomial P (x) = x2 + 1. By Lemma 2.6 we have for all
α > 149/179, s ≥ CαN when y = Nα. Set α = 149

179 + ε. Therefore,

w ≥ Cε
N

30
179−ε

logN
.

(3) Lastly, we consider the polynomial of degree l defined by P (x) = (x+ 1)(x+ 2) . . .

(x+ l). From the equation (10) and for α > e
− 1

l−1 we have s ≥ CαN when y = Nα.

Take α = e
− 1

l−1 ε and one has

w ≥ Cε
N1−exp(−1/l)−ε

logN
.

Upper bounds: From the inequality equation (13) we find

ω ≤ ψP

(
N

p
, p

)
logN

log p
(18)
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for any polynomial P. From Lemmas 2.5, 2.6, and equation (10) one finds that the right

side of equation (12) maximizes when p = N
α

α+1 for a suitable α. Hence

w ≤ CαN
1

α+1 .

Now we choose any α> 0, α = 149
179+ε, and α = e

− 1
l−1+ε respectively for P (x) = x(ax+q),

P (x) = x2 + 1, and P (x) = (x + 1)(x + 2) . . . (x + l). This will give the desired upper
bounds and which completes the proof of the theorem.
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