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Abstract

In the last two decades, category theory has become one of the main tools for the denotational
investigation of programming languages. Taking advantage of the algebraic nature of the
categorical semantics, and of the rewriting systems it suggests, it is possible to use these
denotational descriptions as a base for research into more operational aspects of programming
languages.

This approach proves to be particularly interesting in the study and the definition of
environment machines for functional languages. The reason is that category theory offers a
simple and uniform language for handling terms and environments (substitutions), and for
studying their interaction (through application).

Several examples of known machines are discussed, among which the Categorical Abstract
Machine of Cousineau et al. (1987) and Krivine's machine. Moreover, as an example of the
power and fruitfulness of this approach, we define two original categorical machines. The first
one is a variant of the CAM implementing a X.-calculus with both call-by-value and call-by-
name as parameters passing modes. The second one is a variant of Krivine's machine
performing complete reduction of X-terms.

Capsule review

This paper significantly extends the original work of Cousineau et al. (1987) in using the
framework of a cartesian closed category to define and reason about the architecture of an
abstract machine (the CAM) capable of reducing terms of a lambda-calculus. The paper
provides a formal, yet easily accessible account of Mauny's extension of the CAM to perform
lazy evaluation, and of an elegant, previously unpublished abstract machine first described by
Krivine.

In a more technical second part, intended primarily for specialists, the paper describes two
further extensions to the CAM. One is a machine able to reduce a calculus with mixed strict
and lazy evaluation rules; the other is a machine that implements strong reduction (reduction
inside the bodies of abstraction terms). The mechanism for realizing substitutions is treated in
detail. Correctness and termination proofs are given for this machine.

This paper demonstrates the applicability of a categorical framework to express detailed
reasoning about rather complex computational structures, yet to do so in a manageable way.
It should be of interest to those interested in applying formal methods to computer
architecture, as well as those interested in abstract machines as models for compiler design.
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24 A. Asperti

0 Introduction

In 1985, Cousineau et al. (1987) presented, under the name of Categorical Abstract
Machine (CAM), a new environment machine computing weak head normal forms
of functional expressions (Mauny, 1985; Cousineau et al., 1987). This machine was
directly inspired by the categorical semantics of the ^.-calculus, passing through an
intermediate system of categorical combinators (Curien, 1986). The CAM was the
first relevant application of the philosophy we mentioned in the abstract, and its
interest is not merely theoretical: a complete ML-implementation based on this
abstract machine (CAML) has been developed at INRIA-Rocquencourt, under the
direction of G. Huet (Cousineau and Huet, 1989).

In this paper we pursue this approach, trying to show that the denotational
description of programming languages, when properly formalized in a sufficiently
algebraic framework (in our case, category theory), can provide a direct hint towards
the implementation. The relevance for computer science is evident, since by reducing
the gap between denotational and operational semantics, we greatly simplify the
correctness proof of the implementation.

This approach proves to be particularly interesting in the study and definition of
environment machines for functional languages. Indeed, category theory offers a
simple and uniform language for handling terms and environments (substitutions),
and for studying their interaction (through application).

The theoretical foundation of the CAM is provided by Curien's Categorical
Combinators (Curien, 1986), that is, roughly, a rewriting system inspired by the
algebraic formalization of a Cartesian closed category (an abstract notion of model
for the simple typed ^.-calculus). We shall not pursue this direction in our paper (i.e.
we shall not investigate any new combinatorial system), but shall proceed directly to
the definition of abstract machines. Our motivation is that a combinatorial system
eventually reflects & fixed notion of model, which in turn is related to specific features
of the programming language (as, for instance, the evaluation strategy). Since a
model of P-i> (call by value) is different from a model of (3-« (call by name), we should
derive different combinatorial systems. In the same way, if we are just interested in
the computation of weak head normal forms, we can presumably define a simpler
combinatorial system than in the case of strong reduction.

There is an important point to be clarified here. A combinatorial system is directed,
that is, dynamic. On the contrary, we shall stick to the static (equational) theory. The
main consequence is that we shall be unable to investigate all dynamic properties of
an implementation, and in particular termination.

We shall thus restrict our attention to what we call ' the categorical soundness' of
the abstract machines, i.e. a mapping ST from machine states to categorical terms that
defines an invariant during the computation. If S^> S', then 3T(S) = &~(S') w.r.t. the
equatorial theory defined by the suitable categorical abstract notion of model for the
calculus under investigation.

Our point is that categorical soundness is a useful guide to implementation. Having
a simple but informative invariant during the computation is a good way of
improving our confidence in the machine, and an easy tool for checking errors.
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The paper is structured in three parts. In the first part we revisit some known
devices (the CAM, its lazy version, Krivine's machine). Our aim is to stress the
relevance of the categorical formal approach to the ^.-calculus, that provides an
accurate framework for describing the computation, and in particular the substitution
process. Indeed, in real implementations, substitutions are never coupled with the 0-
rule, but they are delayed and explicitly recorded. Moreover, substitution steps are
interleaved with P-reductions, preventing us from looking at the substitution phase as
a subroutine call. The need for a decomposition of the substitution process has been
pointed out by several authors, and many different formalisms have been proposed
with this aim. Most of them have been inspired by the ^.-calculus (see Revesz, 1985;
Kennaway, 1984; Sleep, 1985), maybe adopting De Bruijn notation (Balsters, 1986).
The main idea of all these works is that the B-reduction rule and the rules for handling
substitutions have the same logical status, requiring a formal language in which
substitutions have a proper syntactical representation. Category theory provides such
a language (Curien, 1986 was the first to put in evidence the operational relevance of
this aspect of category theory.) The most recent formalisms aiming to the integration
of code and environment (Curien, 1988; Abadi et al., 1990; Hardin and Levy, 1990)
have actually been developed under the direct influence of the categorical approach
(see also Hardin, 1987, for a comparison between categorical combinators and
previous investigations).

The main original contribution of this part is a semantic explanation of the
implementation of lazy evaluation on the top of the CAM due to M. Mauny (the
general idea going back to Plotkin, 1975).

The idea is to interpret laziness by means of a retraction A < A*, where A*
intuitively represents the collection of'lazy values' of A. The retraction arrows freeze:
A-*A* and unfreeze: A*^>-A define the main categorical combinators for lazy
evaluation. This new ' semantical' understanding of the lazy CAM allows us to make
a more direct comparison with Krivine's machine (see Curien, 1988). As a matter of
fact, Krivine's ' combinators' can be naturally understood as the result of integrating
Curien's with the two combinators for lazy evaluation 'freeze' and 'unfreeze' (see
section 3).

The second part of the paper is devoted to the definition of an abstract machine
implementing a variant of the ^.-calculus, where the user can choose between call-by-
value and call-by-name for passing parameters to functional expressions (^,,-calculus,
see Asperti, 1990). Our approach (close to the Algol 60 parameters passing mode) is
essentially based on the existence of two different kinds of variables: the strict and the
lazy ones. By abstracting over a strict variable we get call by value (strict abstraction);
in the other case, we have call by name (lazy abstraction). The implementation
requires a run time test, which is performed when an actual parameter M is passed
to a procedure Xx.P in some environment £,: if x has been declared 'lazy', the
evaluation of M is frozen, saving on the environment a closure (£; freeze(Af));
otherwise we start the reduction of M in £. Handling this test correctly is not
completely evident, and passing through the categorical denotational semantics is the
best way for getting the right implementation (or, at least, for improving our
confidence in its correctness).
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26 A. Asperti

Finally, Part III is devoted to the problem of strong reduction, i.e. of pursuing
evaluation up to the computation of the normal form. In this case, the need of a clear
theoretical integration between code and environment becomes even stronger, since
with typical safe reduction strategies based on the computation of head normal forms
we must be able to handle closures as part of the code (in order to share reductions).
This requires a uniform syntactical setting for all these notions, which is naturally
provided by category theory.

The main problem of strong reduction is due to the propagation of substitutions
across ^.-abstractions, since the environment must be suitably 'shifted'. Our abstract
machine is based on the introduction of explicit shift combinators, in the spirit of
Abadi et al. (1990), in order to support environment sharing. This machine seems to
have a close relation to Cregut's machine (Cregut, 1990), but we have so far been
unable to formally clarify this correspondence.

The paper is essentially self-contained and requires only very elementary notions of
category theory.

PART I

This part of the work is devoted to a discussion of some existing environment
machines for the evaluation of functional expressions. In particular, in section 1 we
shall consider the Categorical Abstract Machine of Cousineau et al. (1987); in section
2 we discuss its lazy version (Mauny, 1985); sections 3 and 4 are devoted to Krivine's
machine (never published by the author). For all of them we will stress the strong
relation between their operational behaviour and category theory. This is well known
in the case of the CAM, but not for the two other machines (some preliminary results
in this direction are in Asperti, 1990). The relation between the previous machines and
category theory is essentially based on the definition of a map from states to
categorical terms (in an abstract categorical notion of ^.-model). The main property
of this map is that it defines an invariant during the computation, that is, if we pass
from a state S to a new state 5", then their categorical interpretation is equal.
Henceforth, we shall refer to this property as the (categorical) soundness of the
machine.

1 The Categorical Abstract Machine

It is well known that it is possible to give semantics to the type free lambda calculus
over a reflexive object A in a Cartesian Closed Category (CCC) C (see, for instance,
Asperti and Longo, 1991). Remember that an object V is reflexive if there exists a
retraction pair (\\i: AA->A,§: A^AA). In case this retraction is an isomorphism, we
get an extensional ^.-model.

Let Mbe a term of ^pn with FV(M) £ A = {xv...,xn). Let t be the terminal object
in the CCC C. The interpretation [M]^eC[An,A], where A" = (...(txA) x ...) xA
with n copies of A, is defined as follows (we use the two projections fst and snd in a
' polymorphic' fashion, omitting their indexes):

= evalo<<|>o[M]A,[2V]A>
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This categorical interpretation suggests a very simple and yet efficient implementation
of the lambda calculus (Mauny, 1985; Cousineau et al., 1987). The implementation
is based on a call-by-value, leftmost strategy of evaluation. The first step toward the
implementation is the compilation of lambda calculus in a language of categorical
combinators.

Note that [MN]& = evalo<<|)o[M]A,[Af]A> = A"1^) o <[M]4, [N]^, where A" 1 ^ ) :
AxA^-A is just the application u of the underlying combinatory algebra. We shall
write app instead of A"1^). Moreover let cur(/) = foA(/) , and write f;g instead of
gof. Then, the equations which define the semantic interpretation of the lambda
calculus are rewritten as follows:

M A = fst;... fst; snd where fst appears n — i times

This provides a ' compilation' of the lambda calculus in a language where all the
variables have been replaced with ' access paths' to the information they refer to (note
the analogy with De Bruijn notation).

One of the main characteristics of the categorical approach is that we can use
essentially the same language for representing both the code and the environment. An
evaluation of the code C in an environment £ is then the process of reduction of the
term \; C. The reduction is denned by a set of rewriting rules. The general idea is that
the environment should correspond to a categorical term in some normal form
(typically, a weak head normal form). The reductions preserve this property of the
environment, executing one instruction (i.e. one categorical combinator) of the code,
and updating at the same time the program pointer to the following instruction. The
computation starts with an empty environment (i.e. the identity).

For fst and snd we have the following rules, whose meaning is clear:

<a,p>;(fst;C1)=>«;C1,

<a,p>;(snd;C1)=>P;C1.

In the left hand side of the previous rules, <oc, p> is the environment and the rest is
the code. We shall use parentheses in such a way that the main semicolon in the
expression will distinguish between the environment at its left, and the code at its
right.

For cur(C\) we use the associative law of composition and delay the evaluation to
another time:

The structure (^;cur(Ci)) corresponds to what is usually called a closure.
The right time for evaluating a term of the kind cur(C) is when it is applied to an

actual parameter a. Then, we have:

<G; cuKQ)), o>; (app; C2) => <£, a>; (Cx; C2).
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28 A. Asperti

The previous rule is just a rewriting of the equation

o $, a> = eval o < A(CX) o $, a> = Ct o <£, a>

that proves the semantical soundness of the previous rule.
Finally, we must consider the evaluation of a term of the kind (C^C^^C^. We

have the formal equation:

but we cannot simply use it for denning a reduction, since we want also to reduce \; C1

and £; C2. We must first carry out independently the reductions of £; C1 and £; C2, and
then put them together again building the new environment.

A simple solution on a sequential machine may be given by using a stack and
working as follows: first save the current environment £ by a push operation, then
evaluate E,; c1 (that yields a new environment ^ ) ; next swap the environment £x with
the head of the stack (i.e. with ^); now we can evaluate ^ ; C 2 obtaining £2; finally,
build a pair <^j,^2)

 w ' t r i t n e head of the stack ^ and the current environment £2 (that
is a cows operation). An interesting and elegant property is that if we just write at
compile time (C^C^ as 'push; Cx;swap; C2; cons', then the above behaviour is
obtained by a sequential execution of this code.

Remark The compilation of ^.-terms in linear code creates some problems in proving
the soundness of the machine, since during evaluation the current code cannot be any
longer interpreted as a categorical term (we loose the well balancing of pairing).
However, the soundness is clear if we express the rule governing pairing by means of
a conditional rewriting rule of the kind:

with M and N in normal form.
The CAM is nothing else than a particular implementation, based on a stack, of

this rule.

Definition 1.1
The compilation by means of categorical combinators of a X-term M in a ' dummy'
environment A = (... (nil, xt),...), xn) is inductively defined as follows:

) ^ _x) = snd

=fst\<6a,*n

= push; <&a,m(M)A; swap; ̂ a^N)^; cons; app

Examples
1. The closed term M = Ix. xx has the following compilation:

. xx)nll =

= cur(push; <ga*n(x\Bnt x); swap; <ga*n(x\Blhx); cons; app)

= cur(push; snd; swap; snd; cons; app).
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2. The term (kx.x)(kx.x) is so compiled:

%>a,m((kx.x)(kx.x))mi = push;%>a*n(kx.x)aii; swap; <&a*n(\x.x)ml; cons; app

= push; cur(<£«*«(x)(nI1 x)); swap; cw(<ga,™(x){nnx)); cons;

app

= push; cur(snd); swap; cur(snd); cons; app.

Definition 1.2
The reduction of the compiled code is summarized in table 1:

Table 1

Environment

<«,P>
<a> P>

Before

Code

fst;C
snd;C
cur( CJ;C2

app;C2

push;C
swap; C
cons; C

Stack

S
S
S
S
S

S2 '

Environment

a

P

^2

<s,,s,>

After

Code

C
C

c2

C
C
C

Stack

5
S
5

s-s
Si--S

Example
The code 'push; cur(snd); swap; cur(snd); cons; app' corresponding to the X-term
(Xx.x)(Xx.x) gives rise to the following computation:

ENV. = id
CODE = push; cur(snd); swap; cur(snd); cons; app
STACK = 0

ENV. = id
CODE = cur(snd); swap; cur(snd); cons; app
STACK =id

ENV. =id;cur(snd)
CODE = swap; cur(snd); cons; app
STACK =id

ENV. = id
CODE = cur(snd); cons; app
STACK =id;cur(snd)

ENV. =id;cur(snd)
CODE = cons; app
STACK =id; cur(snd)
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ENV. = <id; cur(snd), id; cur(snd)>
CODE = app
STACK = 0

ENV. = <id, id; cur(snd)>
CODE = snd
STACK = 0

ENV. = id; cur(snd)
CODE =
STACK = 0 .

Note that 'cur(snd)' is the compilation of Xx.x.

2 Lazy evaluation

The relevance, in actual programming, of a lazy evaluation mechanism (call-by-
name + sharing) is well known. In particular, it may avoid useless computations and,
if properly combined with recursion, it allows the manipulation of infinite structures.

The aim of the next two sections is to attempt a categorical explanation of these
'intentional' aspects of the computation, providing in this way a semantical
justification for the completely lazy CAM described in Maung (1985). In particular,
in this section we face the problem of giving a semantical interpretation to two
combinators for 'freezing' and 'unfreezing. These two combinators are the basic
operations for dealing with lazy evaluation; even abstract machines as Krivine's,
where freezing and unfreezing operations do not explicitly appear, can be profitably
understood in terms of these combinators (see Section 3).

The main operational property of ' freeze' and ' unfreeze' is that unfreeze o freeze
= id, or, in categorical terms, that they define a retraction. Since in this paper we are
mainly interested in semantics as a tool for guiding the implementation, we adopt a
semantical approach nas naive as close to the operational intuition, 'explaining'
laziness by means of retraction A < A*, where A* intuitively represents the collection
of ' lazy values' of A.

A more accurate approach, suggested by P. L. Curien, will be briefly discussed at
the end of this section.

Remark
A canonical, natural, choice for A* is the exponent A1, where t is the terminal object
of the category. As the reader can easily by himself, this choice suggests a simple
simulation of Mauny's lazy abstract machine in the CAM, that is essentially the old
idea of embedding call-by-name in a call-by-value paradigm by protecting the
parameters with a ^.-abstraction (see Plotkin, 1975).

Suppose we have an object A*, such that A < A*, and let (freeze: A^A*, unfreeze:
A*->A) be the retraction pair.
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An elementary but interesting property of retractions is that they are inherited in
higher order objects.

Lemma 2.1
If A < A* via {freeze, unfreeze), then AA < A^"1 via

0 = A(eval o id x unfreeze): AA -> A(At),

*F = A(evalo idx freeze) :A(At)-*AA.

Proof

"P o 0 = A(eval o id x freeze) o A(eval o id x unfreeze)

= A(eval o id x freeze o A(eval o id x unfreeze) x id)

= A(eval o A(eval o id x unfreeze) x id o id x freeze)

= A(eval o id x unfreeze o id x freeze)

= A(eval)

= id. •

Lemma 2.2
evalo® x freeze = eval:AA x A^ A.

Proof

eval o 0 x freeze = eval o A(eval o id x unfreeze) x freeze

= eval o A(eval o id x unfreeze) x id o id x freeze

= eval o id x unfreeze o id x freeze

= eval o id x (unfreeze o freeze)

= evalo id x id

= eval. •

Corollary 2.3
Let M, N be two X-terms with free variables in A, and let [_] be the categorical
interpretation defined in the previous section. Then [MN]& = eval o <0 o<)> o[M]A, freeze

Proof

[MW]A = eval o <(|> o [M]A,[M]A>

= eval o 0 x freeze o <(j) o [M]A, |7v*]A>

= eval o <0 o <j> o [M]A, freeze o [iV]A>. •

We define now a new interpretation [_] for the ^-calculus. By this semantics, a term
Mof A.pT| such that FV{M) £ A = {xx,... ,xn} will not be interpreted as an arrow from
A" to A, but as an arrow from (A*)71 to A. The intuition should be clear: since we wish
to give semantics to a lazy calculus, a term M must take values in a lazy environment
(A*y.
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32 A. Asperti

Definition 2.4
Let A and A* as before. The lazy interpretation of a X-term M is inductively defined as
follows:

[x(]A = unfreeze o sndofst o... ofst where fst appear n — i times

\MN\A = evalo-U-Q o 4> o \M\Jreeze o |[JV]|A>

The relation between the two interpretations is expressed by the following theorem:

Theorem 2.5
Let M be a term of Xfii] such that FV(M) £ A = {xu...,xj. Then [M]A = |[A/jAo
idt xfreeze x ... xfreeze.

Proof
By induction on the structure of M.
— case M = x.

[xJAoidt xfreeze x ... x freeze =

= unfreeze o snd o fst o... o fst o id( x freeze x ... x freeze

= unfreeze o freeze o snd o fst o. . . o fst

= snd o fst o.. . o fst

— case M =Xx.N

fXx. M]A o id( x freeze x ... x freeze

= i|/ o ¥ o A([MJA y {xj) o id, x freeze x ... x freeze

= *P o A(eval o id x freeze) o A([MJA v {x}) o id, x freeze x ... x freeze

= 4*0 A(evaloid x freezeo A([MJA„{x)) x id)oid, x freeze x ... x freeze

= *P o A(eval o A( |M]A u {xj) x id o id x freeze) o id, x freeze x ... x freeze

= *P o A([M]]A y {x} o id x freeze) o id, x freeze x ... x freeze

= *F o A([MJA y {x} o id x freeze o (id, x freeze x ... x freeze) x id)

= *F o A(IMJA y {x) o (id, x freeze x ... x freeze x freeze))

— case M = PQ

id( x freeze x ... x freeze =

= eval o <0 o 4> o Ii*JA, freeze o [ 2 D ° idt x freeze x ... x freeze

= eval o <0 o 4> o {P\A o id, x freeze x ... x freeze, freeze o [Q]A o

id, x freeze x ... x freeze)

= eval o <0 o 4) o [P]A, freeze o [Q]A)

•
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Corollary 2.6
Let M be a closed term ofk$T\. Then [M] = [A/].

Let us come to the implementation. We define a new set of categorical combinators
for lazy evaluation. One of our combinators will be unfreeze: A* -»• A; for freezing, we
introduce a combinator freeze(_), with the following intended interpretation:

freeze(/) = freeze of: (A*)n -+A*, where f:(A*)n -> A.

Moreover, in the same way the isomorphism $:A^*AA and vy: AA->A are
' incorporated' in the intended semantics of app and cur, we can avoid an explicit
handling of 0 : AA ^>-A{A*\*¥: AiA"'^-AA (remember that app = evalod> xid, and
cur(/) = \f o A(/)). Then, we have two combinators lazy_app and lazy_cur(_) such
that:

lazy_app = eval o (0 o <j>) x id: AxA'^-A

lazy_cur(/) = v|/o4'oA(/): (A*)n->A. where f:(A*)n+1^A.

The lazy interpretation in 2.4 suggests now the following compilation:

Definition 2.7
The (completely) lazy compilation of a X-term M in a 'dummy' environment A =
(...(nil,x1),...),xn) is inductively defined as follows:

= snd; unfreeze

= push; <6e(M)li;swap; freeze C^XA^)A); cons; lazy_app

We now come to the evaluation of the generated code C in an environment £. Note
that since we are working lazily, the environment in this case will not be an arrow
from the terminal object to a suitable power of A, but an arrow of the kind %: t^
t x (A*)n. The reduction is defined by the following set of rewriting rules.

For fst and snd we have the usual rules:

<o,p>;(fst; C J ^ a j Q

<a,p>;(snd;C1)=>P;C1.

For lazy-CurtCj), we work as for cur, using the associative law of composition and
delaying the evaluation to another time:

\; (lazy-curCQ); C2) => ft; lazy-curCQ)); C2.

The closure (^; lazy_cur(Cx)) is opened when it is applied to an actual parameter a.
We then have:

<ft; lazy.curCQ)), a>; (lazy_app; C2) => < ,̂ o>; (Cx; C2).

2 FPR2
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The previous rule is justified by the following semantical equation:

evalo(0o<t>)xido<voToA(C1)o^,a> = evalo<A(C1)o^,a> = C , o ^ , a ) .

Also the rule for freeze is essentially analogous to the one for cur: we do not proceed
in the evaluation, but we delay it until an unfreeze operation is met:

%; (freezeCQ); C2) => (%; freeze(C1)); C2

(^freezeCQ)); (unfreeze; C2)=»5; {C.-C,).

The first rule does not need to be semantically justified: it is just an application of the
associative law. As for the soundness of the second rule, it is an obvious consequence
of the fact that freeze and unfreeze are inverse of each other.

The rules for push, pop and swap are the usual ones.
Since lazy_cur and lazy_app behave exactly like cur and app, we shall omit in the

following the prefix 'lazy'.
The previous rules are summarized in the following table:

Definition 2.8
The completely lazy abstract machine is described by table 2:

This machine was described for the first time in Mauny (1985), where it was derived
from operational intuition.

Remark
(For Categoricians) P. L. Curien suggested that, instead of focusing on a retraction,
a comonad could provide a more appropriate account of the relation between lazy and
strict evaluation (Theorem 2.5 is not very informative). The idea of using a comonad
is essentially suggested by the following two facts:

1. freeze(_) is an unary combinator, and it seems unnatural to rely on a 0-ary
combinator freeze.

2. We do not actually need a retraction unfreeze o freeze = id; it suffices to have the
weaker equation

(I) unfreeze o freeze(/) = /

Suppose that the functor (_)* taking an object A to the collection A* of lazy values
of type A is a comonad ((_)*, 8, e). Then unfreeze = EA:A*-+A, freeze(/) = 5o(/)*,
and (J) results from the comonad equation &AoeAt = id.

Consider now a monoidal, cartesian category (C, ®, x) closed w.r.t. the monoidal
product ® (a simple example is the category pSet of sets with partial functions). Let
us call e and t the identity-objects for (x) and x, respectively. By the categorical
semantics of linear logic (Girard, 1986; Seely, 1987), if T is a comonad over C, and

1. T{t) = e
2. T{A xB) = T(A) ® T(B)

then the co-Kleisli category associated with Tis cartesian closed (with <S> as cartesian
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Table 2

Environment

<«,P>
<a»P>

Si

Before

Code

fst;C
snd;C
cur(Cx); C2

app;C2

freeze^); C2

unfreeze; C2
push; C
swap; C
cons; C

Stack

s
S

s
s
s
s
s
£,2.S

Environment

a

P

<4,a>
%; freezeCQ
\
\

^ 2

After

Code

C
C

c2
c\>ct

c,
C
C
C

Stack

S
S
S
S

s
s
e.s
5

product), i.e. a model of P — n (call by name). By adding 'sufficient information' on
the monoidal product ®, we may turn C from a model of a linear calculus into a
model of P — v (call by value). The idea would be to use some well known
formalization of categories with partial maps (see, for instance, Robinson & Rosolini,
1988; Curien and Obtulowicz, 1989). However, by adding this information about C,
we may presumably relax some of the previous assumptions. Moreover, it is not clear
yet if a lifting would not provide a more intuitive description than a simple comonad.
For instance, a lifting, being left adjoint to an inclusion functor, would preserve
limits, and eqns. (1) and (2) above would be automatically satisfied. Note that as soon
as we have a lifting, we also have a retraction A < A*, but the naturality condition
of the comonad (or the lifting) seems to be essential to prove more informative results
than Theorem 2.5.

We plan to provide a more convincing and complete account of the semantic
explanation of the relations between p — n and p — v in a forthcoming joint work by
P. L. Curien.

3 comparison with Krivine's machine

The aim of this section is to provide a comparison between the completely lazy CAM
and Krivine's abstract machine for lazy evaluation (unpublished, but implemented;
see Curien, 1988, for a detailed presentation, and a comparison with the TIM
machine of Fairbairn and Wray, 1987). Krivine's machine is a very simple
environment machine for implementing lazy evaluation. Both the term M to be
evaluated and the environment £ are represented by graphs; we have two points A
and B for accessing these graphs. The first graph remains fixed during the
computation, while the second one keeps growing. As usual, the recursive calls to the
evaluation are implemented by a stack, where we accumulate closures, that is, pairs
of pointers of the form (B, A).

The machine is so simple as to be self-explanatory, so we start straight away with
its formal definition. We suppose the term is represented in De Bruijn notation,

https://doi.org/10.1017/S0956796800000253 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000253


36 A. Asperti

adopting the syntax cur(M) for representing the abstraction, in order to make the
comparison with the completely lazy machine more explicit.

Definition 3.1
Krivine's lazy abstract machine is described by table 3

Table 3

Environment

<«,P>
a,(£;A0>
<a,p>
\

Before

Code

n + 1
0
0
cur(M)
MN

Stack

5
5
S
a.S
S

Environment

a

P
<4,a>

After

Code

n
N
END
M
M

Stack

5
S

0
S

The first striking difference with respect to the completely lazy abstract machine is the
lack of explicit freezing and unfreezing operations. As for the unfreeze combinator,
it is easily seen that in the code generated by the lazy compilation in Definition 2.7
it will be always preceded by snd, and conversely every snd is followed by an unfreeze
instruction. Thus, we can combine these two combinators in a new combinator snd'
= snd; unfreeze whose behaviour is then described by the following rule:

Environment Code Stack Environment Code Stack
<a,!;; freeze^)) snd';C2 S i, CltC2 S

This rule corresponds to the second rule in Krivine's machine.
As for the freeze(_) combinator, its existence is justified by the fact that the CAM

works on a linear code, while Krivine's machine operates on a graph representing the
term. Indeed, the freeze combinator is nothing but ' pair of brackets' limited the
extent of the linear code under consideration. The actual implementation of the
Krivine's machine, which is still based on a compilation into linear code, restores the
use of the explicit freeze(_) (as it was also suggested by the notation (N)M for MN,
which Krivine used for a while).

The second difference between the two abstract machines is in the evaluation order
for the terms in an application MN. We can easily define a new set of categorical
combinators which implements this kind of evaluation strategy, based on the
isomorphism Ax B s BxA. We encapsulate this isomorphism in cons, obtaining a
new combinator cons'.

The compilation of a term MN becomes now
(&f(MN)A = push; freeze(<<£,?(A0A) I swap; ^ (M)^ ; cons'; app

and the behaviour of cons' is described by the rule

Environment Code Stack Environment Code Stack
Z,i cons';C £,2.S (c^,^) C ^.S
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Now, Krivine's rule

Environment Code Stack Environment Code Stack
§ MN S % M (&;N).S

is the composition of three more elementary steps, namely the creation of a new
pointer to the current environment £, the definition of the closure (^; N) and storing
it on top of the stack. But this is exactly analogous to the sequential execution of the
free combinators push;freeze(C);swap. Indeed:

ENV. =\
CODE = push; freeze(Cx); swap; C2

STACK = 5

ENV. =%
CODE = freeze(C1); swap; C2

STACK =\.S

ENV. = ^;freeze(C1)
CODE = swap; C2

STACK =%.S

ENV. = £
CODE =swap;C2

STACK =^;freeze(C1).S

Gluing together these three elementary steps in a single operation we can obviously
save some machine instructions in an actual implementation, but up to now Krivine's
machine does not provide any real theoretical improvement with respect to the
completely lazy CAM. The big improvement is in the way the abstraction is handled.
Consider the evaluation of the term MN. M must reduce to something of the form
cur(P). The CAM builds a closure of this code with the current environment, but this
closure is immediately opened by an app operation! More explicitly, we have the
following typical sequence of reductions:

ENV. = $
CODE = cur(Cj); cons'; app; C2

STACK =a.S.

ENV. = ^ c Q
CODE = cons'; app; C2

STACK =a.S.

ENV. =<^;
CODE =app;C 2

STACK =S.

ENV. =<^,oc>
CODE =C1;Ci

STACK = 5 .
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The idea is to encapsulate the three combinators cur(_); cons'; app; in a single new
combinator cur'(-), whose behaviour must be equivalent to the sequential execution
of the previous ones. The compilation of abstraction and application with this new
combinator is:

= push jfreezeCi^AOJ; swap ;

Moreover, it is not difficult to prove that at run time we cannot have any code
following an instruction of the form cur'(C). Then we have the following rule, which
is exactly the equivalent of Krivine's rule for cur(_).

Environment Code
cur'(C)

Stack
a.S

Environment
<£ , <x>

Code
C

Stack
S

4 The categorical nature of Krivine's machine

In the previous section we have provided a comparison between Mauny's lazy CAM
and Krivine's machine. However, this is not the best way to understand the
'categorical' features of the latter. As we have observed, Mauny's machine works on
linear code, while Krivine's machine operates on a graph representing the term. It is
thus unnatural to pass through CAM instructions when the purely categorical
description is much closer. We now define a very simple map £T from machine states
to categorical terms. The main property of this map is that if S-^S", then 2T{S) =
2T(S'} as categorical terms. This property is what we call the 'categorical soundness'
of the machine.

Recall that a state in Krivine's machine is a triple (£,, C, S), where \ is the current
environment, C is the current code, and S is the stack, containing closures.

We consider an integer n as an abbreviation for fst;... ;fst;snd, with n occurrences
of fst, and (MN) as an abbreviation for <M, N}; app. Note that in this way the
environment, the code and the items on the stack (the closures) can be all understood
as categorical terms.

Definition 4.1
The map &~(S) from machine states to categorical terms in a categorical model C, is
defined as follows:

, C,S) = *•'(£; C,S),

where:

ST'(M,0) = M

3"{M, N. S) = £T\{MN), S).

By the definition of 3T, it is evident that if a = (£, C, Xi, • • •, %r) and <r' = (£', C, %'v...,
X'r) are two states such that, t, = ^',C = C and, for any /, %t = %[, then 3T{G) = &~(o')
(where all the previous equalities are intended between categorical terms). The same
holds for 3T'.
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Theorem 4.2 (soundness)
\, C, S) "•(£', C, S'), then 9~(&, C, S) = ST{^', C, S') as categorical terms.

Proof
We only consider one step derivations. The proof is by case analysis of the operational
rules.

, P>; «
n, S)

2.

3. « a , p > , O , 0 ) ^ ( p , , 0 )
, p>, 0,0) = tf"«a, p>; 0,0)

4. & cur( M), a. S) -* «^, a>, M, 5).

, cur(M), a. S) = 9"<&; cur(M), a. S)

5. ( ^ ( ) , ) ( ^ , (

^ (MN), S) = 3-\%; (MN), S)

,(£;N).S). D

What is the relevance of the previous, easy theorem? The translation of X-
expressions into categorical terms is complete. However, in general, the result of the
evaluation that is a closure (£; P) is not syntactically equal to the interpretation of any
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^.-term. By unwinding the closure, that is, by resolving the code P against its
environment £,, we can find such a term (this is essentially the 'Real' function in
Cousineau et al., 1987, which can be rephrased in a purely categorical setting). In this
way, we obtain a X.-term in weak head normal form which is |3T| equivalent to the term
we started with. However, this simple approach based on the categorical equational
theory is of no help either in proving termination, nor more generally in proving that
the machine actually implements the desired evaluation strategy. If we are also
interested in these aspects of the machine, it is necessary to establish a more direct
correspondence between its operational rules and a directed categorical term rewriting
system (such as the theory of categorical combinators) instead of relying on the
equational theory.

There is, nevertheless, a particular but important case, where Theorem 4.2 easily
applies. Namely, in case the result of the computation is a constant. We have not dealt
with constants so far for the sake of simplicity, but in every real language they play
a central role. As a matter of fact, they are usually the only ' outputs' we are really
interested in. Adding constants to all previous machines is a straightforward task
(rule 3 in Krivine's machine is already meant with this purpose). Clearly, when we get
a constant c as a result of the evaluation, this is just the categorical interpretation of
the corresponding A.-term. We have thus the following simple corollary:

Corollary 4.3
If (id, C, 0 ) ->- (c, END, 0 ) where c is a constant, then C = Pl] c.

Proof
By Theorem 4.2, if (id, C , 0 ) ^ ( c , END, 0 ) , then 3T(id, C,0) = jy(c,END,0).
Since ^"(id, C, 0 ) = &~'(id;C, 0) = id; C = C, and ST(c, END, 0 ) = c, it follows
that C = c as categorical terms. But C and c are (the categorical interpretations of the
corresponding) A.-terms. Since the categorical interpretation is complete, C = ^c.

a

In the final section of this paper we shall see a stronger version of Theorem 4.2.
Indeed, we shall consider there a machine performing full reduction, and every result
of the machine will be the categorical interpretation of a .̂-term.

PART II

This second part of the paper contains the definition of some new environment
machines directly inspired by the categorical semantics. Our main aim is to show in
this way the fruitfulness of the categorical approach as a simple guide to the definition
of new abstract machines. We start with defining a variant of the CAM implementing
a X-calculus with both call-by-value and call-by-name as parameter passing modes
(see Asperti, 1990).
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5 Integrating lazy and strict evaluation

In the previous sections we have investigated two completely lazy implementations of
the X-calculus. In a real language, we may be interested in having the ability to express
both lazy and strict operations. The integration of strict and lazy evaluation becomes
particularly relevant in functional languages extended with algebraic or inductive
types (such as are found in Miranda, Haskell, or in some dialects of LISP). Functions
that are inductive over the structure of an argument are strict in that argument, while
all the other functions may be lazy.

Our approach to the problem of integrating strict and lazy evaluation is close to the
Algol 60 parameters passing mode. It is essentially based on the existence of two
different kinds of variables: the strict and the lazy ones. By abstracting over a strict
variable we get call by value (strict abstraction); in the other case we have call by
name (lazy abstraction). The fact of considering two different kinds of variables
instead of two kinds of lambda abstraction allows a better handling of terms with free
variables. Moreover, it justifies the 'uniform' behaviour of the two forms of
abstraction with respect to the application.

The implementation requires a run time test, which is performed when an actual
parameter M is passed to a procedure Xx. P in some environment %: if x has been
declared 'lazy', the evaluation of M is frozen, saving on the environment a closure
(£,; freeze(M)); otherwise we start the reduction of M in %.

We now present the formal operational semantics of the strict-lazy-X,-calculus (ktl-
calculus) in the form of an inference relation.

We have two disjoint sets of variables Vs and Vt. We ' mark' the variables with a
subscript ^ or / according to their type. The set Asl of all terms of the X8,-calculus over
the previous sets of variables is inductively denned by the following rules:

if xt e V, then xs e Asl

if xt e V, then x, e A,,;
if * s e Vs and MeAsl then Xxs.MeAsl;
if xt e Vt and M e Asi then Xxl. Me Asl;
if MeAst and NeA8, then MNeAsl.

Closed terms and substitutions are defined in the usual way.
We define now the values of the calculus, that is, intuitively, the possible outputs

of the reduction process.

Definition 5.1
The set Val, of strict values in Asl is the set of all terms of the form, Xxs. M, with
M e A,,. The set Val, of lazy values in Asl is the set of all terms of the form, Xxt. M, with
M e A. The set Val of values in A,, is Val, U Val,.

In the following, we shall use the symbols V, V, and V, to range over values, strict
values and lazy values, respectively. The capital letters M, N, P, Q. ...will represent
arbitrary terms in A.

Consider now the following |3-rules:
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p-strict. (kx,.M)V-+M[V/x8];
P-lazy. (lxl.M)N^M{N/xl].

The reduction relation -»•„ is the smallest relation over A that contains the two P-rules
above, and such that

MN-*slM'N'

It is readily seen that this reduction is deterministic.

6 Denotational semantics of the Isl-calculus

The aim of this section is to provide a denotational semantics for the X8l-calculus. As
in section 2, we are not interested in the semantic itself, but only as a guide to the
implementation.

Let us look more closely at the problem. Our starting point is the denotational
semantics of the lazy calculus in section 2. Thus, we still assume a domain A*
representing our 'lazy values', such that A < A*.

Let M be an open X.8(-term with free marked variables in A = {xu...,xn}. Its
categorical interpretation will be an arrow [M]: tx/1(A)x ... x/n(A)^-A, where
/t(A) = A if the variable xt is marked 'strict', and /t(A) = A* if the variable x( is
marked 'lazy'.

The only problem is in interpreting the application. Recall that the 'canonical'
interpretation of section 1 is

= eval o <<|> o [M]A, [iV]A>, where eval: AA x A -+ A,

while the ' lazy interpretation' of Definition 2.4 gives

[AfiV]A = eval *o<0>o<\>o\M]A, freezeo[iV]A>, where eval*: A(A')xA*^A.

In both these cases, [M] and \M\ have type (are elements in) A, but since we know
a priori the intended use of the parameter A^with respect to the term M, we can decide
the proper transformation in order to apply the eval map. In particular, in the first
case we transform [M] in ())o[M] of type AA; in the second case we transform it in
0o(j)o[MIA of type A(A*\

In case of a mixed evaluation mechanism, the previous approach does not work:
we do not know if the parameter will be passed by value or by name until we look
at the function, but since we have 'flattened' the function in A, we have no way to
recover this information.

In order to solve this problem, we can use the notion of weak categorical sum a#b
of two objects a and b (strong sums would create some problems, see below). What
we need is a retraction of the form AA#S{A*) < A (via y and 5, say). Indeed, in this case
we can respectively interpret a term of the form Xxs. M or Xxl. M in its ' proper' space,
that is AA in the first case and AiA*} in the second one. By an injection and an
application of y, we can still reduce it to an element in A, but when we wish to look
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at it as function, that is when we compose it with the 5 arrow, we find an element in
AA#AiA'\ that is, roughly, either an element in AA or an element in A(A'K Now,
according to the previous cases, we can either leave the argument of this function
unchanged, or freeze it.

The hypothesis AA#A(A*) < A is not very nice. It would be more elegant to reduce it
to the simpler hypothesis A%A < A. Now if AA < A and A < A* we have already
proved that also AlAn < A. Unfortunately, retractions are not preserved by weak
categorical sums, but this is ' almost' true, as is expressed by Lemma 6.2 below. It will
turn out that this is enough for our purposes. We recall now the definition of weak
categorical sum.

Definition 6.1
Let C be a category, and a,beObc. The weak sum (weak coproduct) of a and b is an
object a#b together with two morphisms ina:a-+a#b, inb:b^*a#b (called injections)
such that, for anyfe C[a, c] andge C[b, c], there exists a morphism [f, g] e C[a#b, c] such
that

(0 lf,g]oina=f;
(ii) [f,g]oinb = g;
(iii) ho[f,g] = [hof,hog], for every h:c-+c'.

The difference with the notion of (strong) categorical sum is that no uniqueness is
demanded for the arrow [f,g]. In particular, we cannot prove that [ina, inb] — id (see
Hayashi; 1985, and Martini, 1988 for weak categorical concepts).

We have two reasons for working with the weak notion instead of the strong one.
The first one is that weak sums are enough for our purposes. The second one, that
is much more important, is that the notion of strong sum must be used very carefully
when dealing with ^.-models. Indeed, it is well-known that a CCC with coproducts
and fixpoints is inconsistent. Now, every reflexive object A in a CCC has fixpoints,
and moreover fixpoints are ' inherited' by all the objects that are retractions of A (see
Asperti and Longo, 1990). Since we deal with exactly this kind of objects, we could
not escape the inconsistency.

Lemma 6.2
Let C be a category with weak sums and let a, b, c, d be objects in C. If a < c (via f
g) and b < d (via h, k), then there exists a pair of arrows I: a#b -*• c#d and m: c#d-> a#b
such that mo I = [ina, inb]. (We will say that a#b is a weak retract of c#d).

Proof
Just take 1 = (incof)#(indoh), and m = (inaog)#(inbok). Then we have

m o 1 = [ina o g, inb ok]o [inc of, ind o h]

= [['«„ ° g, inb ok]o inc of, [ina o g, inb ok]o ind o h]

= [inaogofinbokoh]

= [ina, inb]. •

Fortunately, for our model definition it is enough to have a weak retraction between
AA#A<A') and A. This means that we just need a CCC with weak coproducts and an
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object A such that AA<A,A<A* and A#A < A. Moreover, since A#A s
(A x i)#{A x t) is a weak retract of ̂ 4 x (/#/), using the' transitivity' of weak retractions
and the well-known fact that in a CCC AA < A implies AxA<A (see Asperti and
Longo, 1990), we can further reduce the latter assumption to (t#i) < A. We have
plenty of examples which satisfy this condition. The simplest one is probably the
category of CPO with coalesced sum. If A is a nontrivial reflexive object of this
category, then obviously (t#t) < A.

It is well known that in a Cartesian Closed Category with (strong) coproducts C,
there is an isomorphism between (a x c)#(b x c) and (a#b) x c for all the objects a, b,
c in C. Explicitly, this isomorphism is given by the following pair of arrows

*i = Una x idc, inb x idc]: (a x c)#(b xc)->(a#b) x c and

la = eval o [\(inaxe), A(inbxc)] x idc: (a#b) x c -»• (a x c)#(b x c)

If we only have weak coproducts the previous functions do not define an isomorphism
any more. As a matter of fact, we can only prove that

^ o j j = [inaxc,inbxc],

i1oi2 = [ina,inb]xidc.

However, this loss of information is not a big drawback. We call i2 a distribution
morphism, and we will use it in the following interpretation of the Xjrcalculus.

Let in,:AA^AA#AlA*) and in1:A<A">-+AA#A(A"> be the injections. In the following
we assume that AA#A{A"> is a weak retract of A via y: AA#AlA">^A, 8: A-+AA#A{A'\
i.e. 8OY = [W,,OT1].

Let lazy?: A xA*^-(AA xA)#(AiAt) xA*) be the arrow defined as follows:

lazy? = [in1 oidx unfreeze, in2]oi2o5x id

where i2:A
A#A(A*)xA*->(AAxA*)#(A{A')xA*) is the distribution morphism, and

inx:A
AxA^(AAx A)HA(At) x A*),in2:(A

iAt) x A*)-+ (AA x ̂ )#(^<"*> x A*) are the
injections.

Definition 6.3
Let A and A* as before. The interpretation of a "kgl-term M is inductively defined as
follows:

[xJA = unfreezeosndofst o... ofst with n — i occurrences offst, if xeV,

[xJA = sndofsto...ofst with n — i occurrences offst, if xeVs

IMN]A = [eval,eval*]olazy1o(lM\, freeze olN^y

\Xxs .M\L = yoin,o A([ M ]A „ {XJ)

[\x,. Af IA = y o in, o A([Af ]A y {Ij}).

Lemma 6.4
Iazy7o(yoins) x id = inxoidx unfreeze: AA x A*^-(AA x A)#(A(A'} x A*);
lazyf o(yo in,) x id = in2: A

iA"> xA*-+(AA xA)#(AlAt) xA*).
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Proof

lazy? o (y o in,) x id = [inx o id x unfreeze, in2] o i2 o 5 x id o (y o in,) x id

= [/«!oid x unfreeze, in2]oi2o(8oyoin,) x id

= [inl o id x unfreeze, z'«2] o i2 o ([in$, inj o ins) x id

= [wij o id x unfreeze, m2] o i2 o ins x id

= [;'«! o id x unfreeze, /w2] oeval o A(/«i) x id

by def of i2, where in[: AAxA^(AAx A)#(A(A"> x ,4)

= [wij o id x unfreeze, in2] o in[

= in1 o id x unfreeze.

and analogously for the other one. •

Theorem 6.5
[eval,eval*]olazyr!o(yoins) x id = evaloidx. unfreeze: AA x A* -*• A;
[eval,eval*]olazy!o{yoin^)xid = eval*: A{A"* x A* -> A.

Proof
Immediate by the previous lemma. Q
In order to prove the soundness of the interpretation in Definition 6.3, we need a few
substitution lemmas.

Substitution Lemma 6.6
(i) IfyiFVQf), then [#]*„<„ = W\ofst
(ii) lM[N/xs]\ = \M\L „ ltJ o (id,
(iii)

(i) By induction on M. The following is a typical case:

frPL = y o in, o

where u is the obvious isomorphism (A x B) x C 2 {A x C) x B

= y o /«, o A(lPjA u { } o fst o u) by induction

= Yo/n,oA(|[P]Au{ ,ofstxid) as fsto^ = fst x id: (A xB)x C^-A x C

= YoinsoA([/>]Au(a.))ofst by the naturality of A.

(ii) By induction on M.

= xs
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M = yi where yi is marked 'lazy'.

IVJA U («,J ° <id> I#1A> = unfreeze o snd o fstn"i+1 o <id, [AT JA>

= unfreeze o snd o fst"~*

M = yt where yt is marked 'strict'. Analogous.

M = PQ.

= [eval,eval*]o lazy ?o<IPJA u { i J J freeze o|fi]AU{Xf)>o<id, [AT]A>

= [eval.eval*] o lazy? o <[J>]A „ {x#) o <id, [^]A>, freeze o < g h u„,, o <id, [ATJA>>

= [eval.eval*] o lazy ? o <AP[N/xs}\, freeze o [G[JV/x J]A>

J1A = y o « , o A ( [ J W K J 1 A U {JS})

= y o m, o A ( [ ^ A „{Vs v o <id, \N\ „ {J/<)»

= YoinfoA([FlAU,I,#iX#)o<id,IiV]Aofst» by (i)

= YoiBfoA([/nAu{,ririJ)o<id,IiSriA> by naturality of A

M = 'kyl.P. Analogous,
(iii) By induction on M.

M = x,

W a u ^ i 0 ^ ' freeze o [̂ V]|A> = unfreeze o snd o<id, freeze o [A ]̂A

= unfreeze o freeze o

M = xt where x( is marked ' lazy'

W A U {*,) ° < i d ' freeze o [A ]̂A> = unfreeze o snd o fst"-(+1 o <id, freeze o [iV]A>

= unfreeze o snd o fst"~f

M = xt where x( is marked 'strict'. Analogous.

M = PQ.

[P0 A u ( l ( ) o<id , freeze o[AlA>

= [eval.eval*] o lazy ? o <[P]A „ (I|}, freeze o [ 0 A u(Ii)> o <id, freeze o [//]A>
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[eval.eval*] o lazy ? o <[/>]A „ (Ij) o <id, freeze o [N]A,

freeze o [g]]A „ {X{) o <id, freeze o [W IA>

[eval.eval*] o lazy ? o <[P[iV/jf J]a> freeze o [6[AyxJlA>

l4 = y o in, o A(lP[N/xs]j, „ {J

= y o in, o A([P] A „ {Vii x) o <id, freeze o [AT IA „ {tfj,»

= Y o in, o A([/>]A „ {I/JI X[} o <id, freeze o JÂ JA o fst» by (i)

= Y o ins o A([/J]Au{Ii ^j) o <id, freeze o [fiV])A> by naturality of A

= [(\y. • F)h u («j o <id, freeze o I?v ]A>.

M = Xy,. P. Analogous. •

The previous substitution lemma combines with Theorem 6.5 to give semantics to the
P-rule.

Theorem 6.7
(i) l(Xxs.M)V}, = lM[V/xs]j,;
(ii) lfrxrM)N]t = MN/x$Ai
(iii) [M]A = [M'IA implies [MA1A = \M'N\A;
(iv) \N\L = [AT'], wip&5 [ Vs N^ = I Ks N\

where A is a set of variables that contains all the free variables of the involved terms.

Proof
(i) l(Xxs .M)V]A = [eval.eval*] o lazy ? o <HXxs. M]A, freeze o IK]A>

= [eval,eval*] o lazy ? o <Y O in, o A([MJA „ {Xj)), freeze o [ F]A>
= [eval,eval*]olazy?o(Yo/ns)x idoid x freezeo<A([M]AU{2.}), [F]A>
= eval o id x unfreeze o id x freeze o<A([M]AU(:r,), JK]A> by Theorem 6.5

= evaloA(IMIAU(I,) x ido<id, [K]A>

= lM[V/x,]]A by the substitution lemma,
(ii) [(X,x,.M)AniA = [eval,evaP]olazy?o<|[X.jcJ.Af]A,freezeo|[Ar]A>

= [eval,eval*] o lazy ? o < y o in, o A([M ] A v fa.(}), freeze o {N ]A>
= [eval,eval*] olazy?o(Y o in,) x ido<A([MIAU(I()), freeze o
= eval* o<A(IM]AU|I(}), freeze o[AfJA> by Theorem 6.5
= eval* o A([JI/l4u{Ij}) x ido <id, freeze o [A ÎA>
= |i»/lAU,Xl,o<id, freeze o [AT] A>
= lM[N/x,]}& by the substitution lemma,

(iii) and (iv) are immediate, by the interpretation of the application. •

Corollary 6.8
Let P be a Xsl-term with free variables in A. If P->slQ in one step, then [/*]A = [ 0 A .
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Proof
By induction on the number k of the inference rules

MN -+UM'N V,N^,,V,N''

used in the one step derivation P -*al Q, using the previous theorem. •

Corollary 6.9 (soundness)
Let P be a Xsl-term with free variables in A. If P^sl Q, then [.P]A = [g]A.

Proof
By induction on the length of the derivation, using the previous corollary. •

7 The CAM with lazy abstraction

The CAM, is a variation of the Categorical Abstract Machine implementing the X8l-
calculus. We shall derive this original machine from the denotational semantics of
Section 6. The following exposition may look a bit tricky, but the reader should keep
in mind three important facts, namely that the categorical semantics of the Xtl-
calculus is much more entangled than that of the traditional ^.-calculus, that the
compilation in linear code, by itself, compromises to some extent a neat explanation
of the categorical' soundness' of the machine, and finally that we wish to get, insofar
as it seems possible, an efficient implementation.

For ease of reference we recall here the interpretation of a .̂s,-term M given in
Definition 6.3:

W A = unfreeze o snd o fst o... o fst with n — 1 occurrences of fst, if x e V,

W A = s nd o fst o... o fst with n — 1 occurrences of fst, if x e V8

IMN]A = [eval,eval*]olazy?o<[Mj,4, freezeo[A ]̂A>

fkx. .MIA = yowsoA(IM]au {XJ

fkx,.M]A = Yo in, oA([MlAU(Xi)).

As in Section 2, we take the combinators unfreeze and freeze(_). The other
combinators are curs(_), cur;(_), and lazy_app?, with the following intended
semantics:

cur,(/) = yoin,oA(f):B^-A, where/: BxA-*A

cur,(g) = yoin,oA(g): B-*A where g: BxA *->A

lazy_app? = feval,eval*] olazy?

With these combinators, and the usual combinators for handling the stack, the
previous interpretation becomes:

M A = fst;...; fst; sand; unfreeze with « — 1 occurrences of fst, if x e Vl

W A = fst;...;fst; snd with n— 1 occurrences of fst, if xe Vt
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= push; fM]A; swap; freeze(IA^]A); cons; lazy_app?

The only combinator requiring attention is 'lazy_app?' (all the other combinators
have the usual behaviour; in particular for the two cur(_) combinators we use the
associative law of composition). Now, when we meet a lazy_app? as next instruction,
the current environment can be either in the state <^1;cur8(C1), ^2;freeze(C2)> or in
the state (E^jcur^Q), ^2;freeze(C2)>. In both cases we have a pair formed by a
closure and a frozen expression; the only difference is in the kind of the cur
combinator in the closure.

Category theory gives the following equations

< ^ ; c u r / Q ) , £2; freeze(C2)>; lazy_app ?

= [eval,eval*] o lazy ? o <^x; cu r /Q) , %2; freeze(C2)>

= [eval,eval*] o lazy ? o <Y O in, o A(CX) o i,x, freeze 0 Q 0 %2>

= [eval, eval*] o lazy? o (y o in,) x freeze o <A(Ca) o i;1; C2 o ̂ 2>

= eval o <A(Cj) o %v C2 o £2> by Theorem 6.5

and analogously,

<^1;cur,(C1), %,; freeze(C2)>; lazy_app? = <^, $,; freeze(C2)>; Cx.

The last equation can be immediately adopted as a rewriting rule, but the previous
one is not, since we must first independently perform the reduction of the expression
C2o^2. In other words, we have the conditional rule

^\C2^M
<^;cur/Q),^2;freeze(C2)>; (lazy_app?; C3) => <^,M>;C3'

where M is in normal form.
Working with a stack we should save the closure ^jjcur^Ci), start the evaluation

of £2; C2 and then build the new pair between the current environment (i.e. the result
of the evaluation) and the head of the stack. Note now that ^ ; cur^C^) was already
on the stack just before executing the last cons operation which eventually preceded
lazy_app. This suggests that we can anticipate the test before the cons. As a matter
of fact, the test can be encapsulate in freeze(_), yielding the new combinator
freeze ?(_).

Definition 7.1
The compilation by means of categorical combinators of a ~ktl-term M in a '
environment A of' marked' variables is inductively defined as follows:
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Xi) = snd; unfreeze

t x)=fst;

= push; ; swap; freeze! ; cons; app.

Definition 7.2
FCI The reduction of the compiled code is summarized in table 4:

Table 4

Environment

<«,P>
<<x, P>
%

<£; cu^CJ, a>

S; freeze(C1)

Before

Code

fst; C
snd; C
c u r / Q ; C2

c u r ^ Q ; C2

app; C2

push; C
swap; C
cons; C
freeze ?(CX); C2

freeze 7(0^; C2

unfreeze; C2

5
5
5
5
5
5

^ ? ;

^ ;

s

Stack

S
5
cur/Q.S
cur^Q.5

After

Environment Code

a C
P c
£; curs(C,) C2

^; cur^CJ C2

<£,a> C,; C2

4 c
2̂ c

Si Q ; C2

5i; freeze^) C2

S C,; C2

5
5
S
S
S

Si-
S

S?;

S2;
s

Stack

>

cur(Cj). 5

cur( CJ.S

Thus, the freeze? operation requires a test on the top of the stack. Note, moreover,
that after this test we can actually forget whether the cur operation was lazy or strict.

The correctness of the previous machine has been proved by Asperti (1990). Note,
however, that our proof is not based on the categorical semantics of the A.SJ-calculus,
but it relies on the correctness of the CAM, passing through an embedding of the Xsl-
calculus into the call-by-value ^.-calculus, and an operational comparison of the two
abstract machines.

PART III

The final sections of this paper are devoted to the presentation of two original
categorical machines for strong reduction of X.-terms (i.e. up to the normal form).
Strong reduction strategies have recently been the object of several studies (see
Cregut, 1990; Abadi et al., 1990; Field, 1990). Their need arises in different fields of
computer science, from optimization theory (partial evaluation), to type checking in
higher order functional languages, and higher order unification in logic programming.

The categorical nature of the following machines is even more evident than in the
cases we have discussed so far. In particular, since the result of the evaluation is a k-
term, and not just a closure, the categorical ' soundness' of the machine immediately
yields a 'correctness' result, showing the full power of this approach.
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8 Passing environments across a X

The result of evaluating a weak head normal form is a closure of the kind (£;cur(C)).
The main problem in reducing the term to its full normal form is that of passing the
environment (the substitution) £, across the ^.-abstraction. Category theory suggests
the following rewriting:

(*) (5; cur(C)) -> cur(£ x id; C) = cur«fst; £, snd>; C).

In other words, when we try to reduce a term of the form (^;cur(C)), we can
immediately return a 'cur' as a partial result of the evaluation, and start a
subcomputation of C in the environment <fst; £, snd>. Unfortunately, things are not
so simple: as a matter of fact, an essential feature of the categorical abstract machines
considered so far is that an environment is a term in a suitable normal form, while,
in general, <fst;£, snd> is not. Normalizing fst;£ is very expensive, since it would
essentially imply a complete physical replication of £; moreover, this work can be
completely useless; take for instance the case Cis a closed term. There is, nevertheless,
a simple solution to this problem, that is to proceed in the reduction of <fst; %, snd>
in a sort of 'lazy' way. To explain our approach, it is convenient to introduce some
terminology. In particular, adopting a notation close to that of Abadi et al. (1990);
we shall write f1^) instead of fst;^, and, more generally, t"(£) for fst;...fst;£, with
n occurrences of fst. f° should be thus understood as an identity. We call f" a shift
combinator, and f"(£) is a shifted environment. Shifted environments are recursively
denned by the following grammar:

$"=t"(id), t"<Um(0)>, t"<5,G';C)>.
where n and m can be any integer. 0 is a De Bruijn index (it stands for the categorical
combinator 'snd'). (^';C) is a closure. C is a piece of code; its syntactical category
usually depends on the particular machine. For instance, in our first machine it will
just be a A,-term, but in the second machine we consider, based on the computation
of head normal forms, we will have closures as instructions, requiring a recursive
definition between code and environment.

In a real implementation, a shifted environment fn(^) can be simply represented by
an integer n and a pointer to L,.

The main difference between our approach and that of Abadi et al. (1990) can be
roughly explained as follows: while they were interested in the definition of a general
framework for studying the computational process, we are more concerned with
concrete abstract machines. For this reason, we shall try to avoid all the rules
concerning a mere symbolic manipulation of environments, since they never occur in
practice (or better, they are always guided by the operations on the code).
Nevertheless, in this way we shall get a formal system whose interest is not merely
practical, but that can be considered as an interesting surrogate for Curien's
combinatorial system, and even for the calculus of explicit substitutions (Abadi et al.,
1990).

Working with shifted environments, the rewriting rule (*) is now translated as
follows:

(t"(&; cur(C)) - cur(t° <tn+10i), f(0)>; C).
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'Laziness' comes in when we must evaluate a De Bruijn index m in a shifted
environment t"(£). In the case m > 0, we have the following rule, whose semantical
soundness is obvious:

(t" <r(H'), x>;«+1) - (tfl+p(^'); «)•
If m = 0, two cases are possible: either we are pointing to a closure (t"(£"); C), and
we open it with the rule

(r < mi, (r on; o>; o> - msn; o
or we are pointing to a 'global variable' f8(0), that stops the evaluation:

Starting from the previous considerations and following the main structure of
Krivine's machine, we define now a first abstract machine that can be considered as
the categorical counterpart of Cregut's KN machine (Cregut, 1990). The state of the
machine is a triple (t"(£)> C, S), where ^ is a shifted environment, C is the current
code, and S is a stack. The machine is defined by the following (conditional) rewriting
rules:

2. (r&'l cur(C'), X• S)-+ (f° <tn(^'), X>, C, S)

5. ( f (mf(O)>,O,0)^(«+?) , end, 0 )
6 (t"'(U,Cf, 0)^(7

\ \ \ Q J i \ « / / 1 " » I v ^ i / s ^ I / • •** *V \ '

(f°<f+1(^), t°(0)>, C, 0 ) - » (AT,end,0)
' (t"ft), cur(C),) -* (cur(AT), end, 0 )

Rule 5 can be regarded as a particular case of rule 6. The normalization of C starts
in the configuration (t°(id), C, 0 ) .

9 Computing head normal forms

The previous machine was based on a leftmost-redex strategy. Our next machine
implements normal parallel reduction with left call by value (see Levy, 1978, p. 193).
The main advantage of this machine is that it allows us to share the reduction of
different instances of a same variable.

Our first goal is the definition of a machine computing the head normal form of a
term, if it exists. For this purpose, we must define a suitable representation of the
unevaluated part of the head normal form. Now, in a categorical framework, closures
have the same status as terms, and thus we can soundly consider them as part of the
code. That is, closures will not only represent (substitution for) variables in the
environment, but also unreduced parts of the result. From this point of view, there
is still a point that must be clarified: in the previous machine we have an evident
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notational redundancy, since a De Bruijn index « is exactly the same as fn(0). This
was not of great relevance so far, since we still had a clear distinction between code
and environment, but now that we are going to mix the two notions it is convenient
to adopt the latter as the unique, canonical representation.

The main differences with the previous machine are the following ones:

(a) when we evaluate f°(0) in an environment fn <tp(£), %}, we no longer have to
make a distinction between the case in which % is a closure or it is a (global)
variable. Since we can now handle closures as code instructions, we just
proceed to evaluate % in an environment fn(id). Again, note the 'local'
soundness of this rule; the categorical term t"<tp(£)>X>; t°(0) ' s equal to
fn(id);x- Note also that we are using id in a polymorphic fashion: its arity
actually depends on the number of free variables accessible from % (that is, on
the arity of the domain of x).

(b) the distinction between local and global variables depends on the structure of
the environment. When we evaluate tm(0) with m > 0 in an environment
t"<fp(£), x> the variable should be understood as local, and we compute
f ^ O ) in the environment fn+p(t); if, on the contrary, the environment was
of the kind f "(id), the variable is global, at this stage of the computation; in
particular, it is the head variable of our term, and we return as result fn+m(0)
followed by the list of its unevaluated arguments, that are just the closures in
the stack.

(c) when we meet a closure tm(^);C as a code instruction, we start a
subcomputation for reducing the closure to its head normal form N. On
returning from this subroutine call we restart the previous computation with
the same environment and stack, and with N as new code. This execution
mode allows us to share the reduction of tffl(^); C by introducing a level of
indirection on closures.

Here is the abstract machine:

•

x (ceo, s) -* (t»ft), c, (t-(4); c").
(4), cur(C), 0 ) -> (cur(C), end, 0)

"(£), cur(C), %. S) -* (t° <f°(id), %}, M, S)

3. (f "(id), tm(0), %i Xr) -* (t"+"(O)Xi • • • Xr. end, <

5. (r<r(d,X>,f(O),S)-(Hid),X,S)

6.

7- (--(§), cur(C), 0 ) -+ (cur(Af), end, 0 )

The initial configuration is still (t°(id), C , 0 ) .
Following Cregut (1990), the second rule above may be replaced by the simpler,

and more practical rule

2'. (r(£), cur(C'), x. 5) -»• (f° <f"(̂ ), x>, C, 5).

",0)^Wend,0)
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Note that this machine no longer implements normal parallel reduction with left call
by value, as Cregut affirms, but is an interesting compromise between that strategy
and normal parallel reduction.

The next step is that of introducing a new mechanism to get the full normal form
of the term, by unwinding closures. As is discussed by Cregut (1990), we can add
strategies at this level to decide whether to pursue the reduction or not. This part of
the machine is thus a sort of controller, recursively calling the previous machine on
each closure. Moreover, since it is completely independent from the way we compute
the head normal form, every controller for Cregut's machine works for our machine
as well. Here is a simple example of a controller, borrowed from Cregut (1990):

• NF is a function that takes a partially evaluated term and unwinds closures;
• N takes a term and gives back its normal form, if it exists:

NF(cur(C))->c\ir(Cy

NF(f(id);C)-+A

10 Correctness of the machine

In this section we shall study the correctness of our second machine (the following
approach applies as well to the machine in section 8).

We start by defining a translation function ZT from machine states to categorical
terms that, for the categorical nature of the abstract machine, will be particularly
simple. In particular, the formal definition of &~ is just the same as for Krivine's
machine in section 4.

We consider f"(^) as an abbreviation for fst;... ;fst;^ with m occurrences of fst,
and (MN) as an abbreviation for <M, N}; app, where app = A"1^): A x A ->• A as in
section 1. Note that the previous categorical' expansion' of a A.-term M (in De Bruijn
notation) is nothing but the categorical interpretation of M. In the following, we shall
make no further distinction between a ^.-term and its categorical expansion
(interpretation); in other words, we shall designate as X-terms all the categorical terms
that are syntactically equal to the interpretation of A.-terms.

2T is then defined as follows

where &'\M,0) = M,

3T\M, N. S) = &~'((MN), S).
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By the definition of 3~, it is evident that if o = (%, C, Xi> • • •, XT) a n d o' = (£', C"> x[, • • • >
XO are two states such that, E, = £,', C = C and, for any i, xt = x't> then ^"(a) = ^"(o')
(where the previous equalities are meant between categorical terms). A similar result
holds for 3".

Theorem 10.1 (soundness)
If (x, C, S) - ft', C, S'), then 3T&, C, S) = ST^, C, S').

Proof
1. (f-G), {CC"), S) -+ (t"ft), C ( f © ; C"). S).

2

© ; C) (t"(^; C")), 5) (naturality of < , >
;C),(rft);C").s)
C',(t"©;C").S).

(fft), cur(C), 0 ) -* (cur(M), end, 0 )
fft), cur(C), x • 5) - (t° <t°(id), x>, M, S)"

By hypothesis, ^ ( f © , cur(C), 0 ) = ^ ' ( t n © ; cur(C), 0 ) = fft); cur(C) =
(Af), end, 0 ) = cur(M).

Then

3. (t"(id), f"(0), Xi.-.Xr)-»-(tm+"(O)Xi,-,Xr, end, 0 ) .
Obvious.

4- (tn <f P(^), 5C>, tm+'(0), 5) -> (t"+"G), fm(0), S).

, x>, tm+1(0), ^) = ^ ' ( ( t n <tpG), x>; tm +

; fst; tm(0)),

5- (tn <tptt), X>, t°(0), S) -> (t»(id), ,̂ 5).

t^ ) , x>, t°(0), s) = ^--((t" <tp(^'), x>; t°(o»,

6.

By hypothesis, ST{\^'\ C, 0) = ̂ '((tm(^"); C), 0 ) = fm(^"); C = 5"(iV, end, 0 )
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T h e n ; O),

7 (t° <f+1QD, t°(0)>, C, 0)^(N, end, 0 )

(t"(^)
By hypothesis, ^ ( t ° <tn+1(^), t°(0)>, C, 0 ) = ^'((t°<tn+1(O, t°(0)>; C), 0))
= t°<tn+1©, t°(0)>; C = <tn+1(^), t°(0)>; C = (̂TV, end, 0 ) = JV.

^-(t"(«. cur(C), 0 ) = 5T'((t«(Q;cur(C)), 0 )
= t"©;cur(C)
= cur«fst;r(^)!snd>;C)

= cur(N)
= ^"(cur(iV),end,0). D

The soundness of the controller is obvious. Moreover, it is also evident that the
machine returns as result a A.-term in normal form. Thus, by the previous simple
theorem and the completeness of the categorical interpretation, we may conclude:

Corollary 10.2 (correctness)
If N(P)^Q, then P^fiQ, and Q is in normal formal.

What we cannot prove so easily is that if the term P has a head normal form, then
the machine will eventually stop.

Roughly speaking, every implementation of the .̂-calculus is essentially composed
of two distinct parts, one dealing with ^-reductions, and the other one realizing the
substitution algorithm. For instance, in our second machine, everything but rule 2 can
be essentially seen as a substitution algorithm. One could be tempted to say that if the
machine is based on a safe strategy in the choice of P-redexes, the termination of the
computation, in case the A.-term has a h.n.f., only depends on the termination of the
substitution algorithm (that, usually, is not so difficult to prove). However,
substitution and P-reduction rules are interleaved in a very complex way, and the
previous short cut is not comforted by any theoretical result.

In particular, the substitution algorithm implemented by our second machine is
described by the following rewriting system (which can be considered as our
counterpart of the system SUBST for Curien's categorical combinators (Hardin,
1987; Hardin and Laville, 1986)).

Definition 10.3 (SUBST,)
Nat_pair. t,; (MN) -> (£; M) {&; N)
Free. fn(id); fm(0) ^ tm+"(0)
Fst. f" <tP(̂ )> X>; tm+1(0) ̂  t"+pft); tm(0)
Snd. tn<fmx>;t°(O)^r(id);x
Nat_cur. fn(^); cur(M) ̂  cur(f° <f"+1(^), f°(0)>; M).
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The previous system does not have any critical pair, thus it is locally confluent (since
it is left linear, it is also confluent). We have proved the termination of SUBST1 by
relying on the termination of SUBST (we skip the proof, since it is quite technical and
not very informative).

However, there is no trivial way to relate the termination of SUBSTj to the
termination of the abstract machine (on terms with h.n.f).

11 Conclusions

We have discussed in this paper some examples of (both known and original)
environment machines in the unified mathematical framework provided by category
theory. The general idea is that the abstract, denotational notion of model for a given
calculus, once it is formalized in the categorical language, usually provides a linguistic
framework that is sufficiently accurate to serve as a basis for operational
investigations. In particular, the categorical language provides a simple formalism for
handling terms and environments (substitutions) in a uniform way, and thus for
studying their operational interaction at the implementation level.

We have particularly stressed the relevance of the categorical approach as a guide
to the definition of new machines, by emphasizing the role of what we called the
'categorical soundness', that defines an invariant over states of the machine during
a computation.

In proving that an abstract environment machine actually implements a given
functional calculus, we tried to distinguish between two different aspects, namely
between termination and correctness (i.e. that fact that, if the computation stops, the
result is correct). Although we have pointed out some problems of the categorical
approach in deriving a 'correctness' result in case the output is a closure (typically
with weak reduction strategies), this result can be got by relying only on a purely
equational theory. On the contrary, it does not seem possible to treat termination in
this way. This is the reason why we particularly stressed the relevance of the
categorical approach in the creative phase of definition of the machine, rather than
in proving properties of it.

One of the aims of the various directed calculi of explicit substitutions which have
been developed in recent years is that of handling these two problems at the same
time. If we know that our calculus enjoys good properties, by defining a suitable
embedding from machines states to terms of the calculus we can derive a lot of
information about the machine.

On the other side, directed combinatorial systems, being inspired by given
computational models, usually lack flexibility.
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