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Hypersonic flow over a two-dimensional compression corner is investigated using
computational fluid dynamics and global resolvent analysis in this study, which is a
continuation of the work done by Hao et al. (J. Fluid Mech., vol. 919, 2021, p. A4). The
same baseline free-stream conditions with a Mach number of 7.7 and a unit Reynolds
number of 4.2 × 106 m−1 are considered. The ramp angles range from 0° (equivalent to a
flat plate) to 12° (slightly below the critical angle of global instability). During this process,
the base flow evolves from no separation to incipient separation to large separation. The
resolvent analysis reveals that the optimal response to upstream disturbances localised
near the leading edge is in the form of steady streamwise streaks for all interaction
strengths, which arise from transient growth in the flat-plate boundary layer due to the
lift-up mechanism and significantly grow near the corner due to the Görtler instability.
The most amplified spanwise wavelength decreases as the ramp angle is increased and
scales with the incoming boundary-layer thickness.
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1. Introduction

The shock-wave/laminar boundary-layer interaction is a fundamental problem of fluid
mechanics and is of practical importance in the aerodynamics and propulsion of
high-speed flight vehicles (Babinsky & Harvey 2011). If the adverse pressure gradient
induced by the shock wave is large enough, the boundary layer separates from the wall and
forms a separation bubble.

The shock-induced separated flow can support various local and global flow instabilities
(Robinet 2007; Egorov, Neiland & Shvedchenko 2011; Guiho, Alizard & Robinet 2016;
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Sansica, Sandham & Hu 2016; Bugeat et al. 2022) that may lead to unsteadiness and
a laminar-turbulent transition. Experiments and direct numerical simulations (DNSs)
with many canonical configurations (Chapman, Kuehn & Larson 1958; Ginoux 1960;
Simeonides & Haase 1995; Benay et al. 2006; Willems, Gülhan & Steelant 2015; Roghelia
et al. 2017; Currao et al. 2020; Fu et al. 2021) have shown that strong interactions
can promote the laminar-turbulent transition near flow reattachment, which is frequently
accompanied by streamwise streaks in the reattached boundary layer. These instabilities
can also be understood by examining the spectrum of the linearised Navier-Stokes
operator. Due to the strong non-parallelism of the base flow, global stability analysis (GSA)
is more relevant than local analysis. From a global stability point of view, a flow is called an
oscillator if globally unstable and a noise amplifier if globally stable (Huerre & Monkewitz
1990).

For shock impingement on a Mach 2.15 boundary layer, Robinet (2007) found that
the two-dimensional base flow becomes globally unstable to three-dimensional stationary
disturbances beyond a critical incident shock angle by GSA. Similar observations
were made in the hypersonic flow regime by Hildebrand et al. (2018). For a Mach 5
double-wedge flow, Sidharth et al. (2018) also found a stationary unstable mode beyond
a critical deflection angle, which is in the form of streamwise streaks downstream of
reattachment. A similar unstable mode was identified by Hao et al. (2021) in a Mach 7.7
compression corner flow. Additional stationary and oscillatory modes appear as the ramp
angle is further increased. A companion DNS study (Cao et al. 2021) confirmed that global
instability leads to a three-dimensional flow bifurcation to generate pairs of counterrotating
streamwise vortices near flow reattachment. After the nonlinear saturation of the leading
stationary mode, the flow exhibits broadband low-frequency unsteadiness. More recently,
Cao et al. (2022) observed the laminar-turbulent transition through the breakdown of
streamwise vortices by further increasing the Reynolds number. No upstream disturbances
were added in the DNS. Under both flow conditions, the distributions of the surface
pressure and heat flux, and the spanwise wavelengths of the streamwise streaks agree well
with the experiments (Roghelia et al. 2017). This suggests that the dynamics of a strong
oscillator are dominated by its intrinsic instability.

In contrast to oscillators, noise amplifiers feed on the continuous input of external
disturbances. Global resolvent analysis is an effective tool to study the dynamics
of noise amplifiers, which considers the response of a globally stable flow to
time-harmonic forcing with no assumption on the parallelism of the flow (Sipp & Marquet
2013; Bugeat et al. 2019). The optimal response can be either modal resonance or
non-modal pseudo-resonance due to the non-normality of the linearised Navier-Stokes
operator (Schmid 2007). The latter can be further divided into convective- and
component-type non-normalities (Chomaz 2005). If the base flow is weakly non-parallel,
the convective-type non-normality is related to the ‘normal-mode’ instabilities obtained
from local analysis, such as Mack’s first and second modes (Mack 1984), while the
component-type non-normality may share some similarities with the algebraic instabilities
(Ellingsen & Palm 1975) obtained from transient growth analysis (Hanifi, Schmid &
Henningson 1996; Tumin & Reshotko 2003; Tempelmann, Hanifi & Henningson 2012;
Quintanilha et al. 2022). The dynamics of the shock-induced separated flow as a noise
amplifier is further complicated by its non-parallelism and has attracted much attention.

Balakumar, Zhao & Atkins (2005) examined the evolution of small-amplitude
second-mode disturbances over a 5.5° compression corner at Mach 5.373 by
two-dimensional DNS. The disturbances grow exponentially upstream of separation
and downstream of reattachment but remain neutral across the separation region.
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Response to upstream disturbances

Similar findings were reported by Egorov et al. (2006). For the same flow conditions and
geometry, Novikov, Egorov & Fedorov (2016) conducted DNS of a three-dimensional wave
packet generated by a wall blowing suction pulse upstream of separation. Depending on the
location of the pulse, the evolution of the wave packet is dominated by either the oblique
first mode or the planar second mode. Sansica et al. (2016) numerically studied shock
impingement on a Mach 1.5 boundary layer and triggered a laminar-turbulent transition
near flow reattachment by adding a pair of oblique first-mode waves determined by local
analysis to the incoming boundary layer.

For a Mach 8 compression corner flow, Dwivedi et al. (2019) found that the optimal
response to forcing upstream of separation is in the form of steady streamwise streaks
downstream of reattachment using resolvent analysis. It was also demonstrated that
the baroclinic effects contribute most to the amplification of the streamwise vorticity
perturbation. Lugrin et al. (2021) conducted a high-fidelity simulation of a Mach 5
hollow-cylinder/flare flow with the inlet perturbed by white noise. The noise amplitude
was chosen to reproduce the experimental length of the separation region (Benay et al.
2006). By performing spectral proper orthogonal decomposition and resolvent analysis,
the transition process was shown to be associated with the breakdown of streamwise
streaks near flow reattachment, which are generated through the nonlinear interaction of
oblique first-mode waves upstream of separation and experience a linear amplification in
the shear layer. More recently, Bugeat et al. (2022) applied resolvent analysis to shock
impingement on a Mach 2.15 boundary layer. For three-dimensional forcing, both modal
resonance and non-modal pseudo-resonance were identified depending on the spanwise
wavenumbers. The former represents a direct excitation of the leading global mode, while
the latter corresponds to streamwise streaks.

A series of experiments (Esquieu et al. 2019; Benitez et al. 2020) was conducted with
a cone–cylinder–flare geometry in a Mach 6 quiet wind tunnel at Purdue University.
For a 10° flare large enough to induce flow separation, the surface pressure fluctuation
measurements captured the second mode and a low-frequency instability on the flare. A
similar low-frequency instability was found by Butler & Laurence (2021) in the separated
shear layer over a cone-flare model in a reflected shock tunnel at Mach 6 and was
believed to be generated by the separation bubble. Paredes et al. (2022) studied the linear
evolution of the first and second modes from a location upstream of the cone–cylinder
juncture to the end of the flare by solving the harmonic linearised Navier-Stokes
equations. Comparison with the experimental wall-pressure power spectra revealed that
the low-frequency instability originates from the oblique first mode. However, they
found that the axisymmetric laminar flow is globally unstable. In other words, the
cone–cylinder–flare flow is a weak oscillator, which may influence the evolution of
upstream disturbances after nonlinear saturation of the global mode (Li et al. 2022).

Despite these efforts, many questions regarding the response of shock-induced separated
flow to upstream disturbances remain to be answered, e.g. the effect of the interaction
strength, the competition between steady streamwise streaks and Mack’s modes, the role of
the global instability if the flow is marginally unstable, etc. To gain a deeper understanding
of the dynamics of shock-induced separated flow as a noise amplifier, the present study
investigates hypersonic laminar flow over a compression corner using a combination of
computational fluid dynamics and global resolvent analysis, and determines the optimal
responses and forcings over a range of flow conditions and geometries.
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Figure 1. Computational domain and schematic of the compression corner configuration.

2. Geometric configuration and flow conditions

The experimental model tested in the hypersonic Aachen Shock Tunnel TH2 by Roghelia
et al. (2017) is considered here, which has a flat plate of length L = 100 mm with a sharp
leading edge (see figure 1). The length of the ramp is set to 100 mm. A Cartesian coordinate
system is constructed with the origin at the leading edge, the x direction along the flat plate,
the y direction perpendicular to the flat plate and the z direction satisfying the right-hand
rule. A body-oriented coordinate system is also defined, where ξ is the distance along the
model surface measured from the leading edge and η is the wall-normal distance from the
model surface.

The baseline free-stream conditions are given as follows: M∞ = 7.7, ρ∞ = 0.021 kg m−3,
T∞ = 125 K and Re∞ = 4.2 × 106 m−1. The wall temperature is assumed to be room
temperature (Tw = 293 K or Tw/T∞ = 2.344) due to the short test time. Four ramp angles
(α = 0°, 4°, 8° and 12°) are considered to achieve different interaction strengths. Note that
α = 0° represents a hypersonic flat-plate boundary layer as a reference.

3. Computational details

3.1. Governing equations
The three-dimensional compressible Navier–Stokes equations are given in the following
conservation form:

∂U
∂t

+ ∂F
∂x

+ ∂G
∂y

+ ∂H
∂z

= 0, (3.1)

where U = (ρ, ρu, ρv, ρw, ρe)T is the vector of conservative variables and F , G and H are
the vectors of fluxes. In these expressions, ρ is the density, u, v and w are the flow velocities
in the x, y and z directions, and e is the total energy per unit mass. A calorically perfect
Newtonian fluid is assumed to have a constant specific heat ratio of 1.4. Sutherland’s law
is used to calculate the dynamic viscosity. The thermal conductivity is obtained with a
constant Prandtl number of 0.72. The flow-field variables are non-dimensionalised using
the free-stream parameters and the length of the flat plate L.

It is assumed that the vector U can be decomposed into a two-dimensional steady base
flow and a small-amplitude three-dimensional time-dependent perturbation as

U(x, y, z, t) = Ū(x, y) + U ′(x, y, z, t). (3.2)

Hereafter, the overbar and prime represent base-flow and perturbation variables,
respectively. Note that the base flow also satisfies (3.1). Substituting (3.2) into (3.1) and
neglecting the higher-order terms leads to the governing equations of the perturbation as

∂U ′

∂t
+ ∂F ′

∂x
+ ∂G′

∂y
+ ∂H ′

∂z
= 0. (3.3)
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3.2. Base-flow solver
The base-flow solutions are obtained using an in-house multiblock parallel finite-volume
solver called PHAROS (Hao, Wang & Lee 2016; Hao & Wen 2020). The inviscid fluxes
are calculated using the modified Steger–Warming scheme (MacCormack 2014), while
the viscous fluxes are computed with the second-order central difference. An implicit line
relaxation method (Wright, Candler & Bose 1998) is employed for pseudo time stepping,
which allows a Courant–Friedrichs–Lewy number up to 103. The free-stream conditions
are specified on the left and upper boundaries of the computational domain (see figure 1).
A simple extrapolation is used on the right boundary. The no-slip condition is applied
to the isothermal model surface. The grid independence of the base-flow simulations is
verified in Appendix A. Subsequent stability analysis requires a clean base flow with little
numerical noise. For all cases, a ten orders of magnitude reduction in the Euclidean norm
of the density residual is achieved (see Appendix A).

3.3. Resolvent analysis
The operator form of (3.3) is given by

∂U ′

∂t
= AU ′, (3.4)

where A is the Jacobian matrix evaluated using the base flow. The perturbation U ′ is
assumed to be in the following modal form:

U ′(x, y, z, t) = Û(x, y) exp[iβz − i(ωr + iωi)t], (3.5)

where Û is the two-dimensional eigenfunction, β is the spanwise wavenumber, ωr is
the angular frequency and ωi is the growth rate. Substituting (3.5) into (3.4) leads to an
eigenvalue problem as

− (ωr + iωi)Û = AÛ, (3.6)

which is also discretised using the finite-volume method in accordance with the base-flow
solver. The inviscid fluxes are calculated using the modified Steger–Warming scheme near
discontinuities and a central scheme in smooth regions. The viscous fluxes are computed
with the second-order central difference. The boundary conditions are consistent with
those for the base flow. Sponge layers are placed near the far-field and outflow boundaries
to ensure no reflection of perturbations (Mani 2012). More details regarding the numerical
settings can be found in our previous work (Hao et al. 2021).

The discretised eigenvalue problem is solved using the implicitly restarted Arnoldi
method implemented in ARPACK (Sorensen et al. 1996) for a given β in the shift-invert
mode. The inversion step is achieved using the lower-upper decomposition implemented
in SuperLU (Li et al. 1999). For each shift, 100 eigenvalues are requested with a Krylov
subspace of size 250. All the eigenvalues are converged with ‖AÛ + (ωr + iωi)Û ‖
/(ω2

r + ω2
r ) ≤ 10−10. The flow is globally unstable if an eigenvalue with ωi > 0 can be

found. Our previous study showed that the compression corner flow at the baseline flow
conditions is globally unstable when the ramp angle is greater than or equal to 13° (Hao
et al. 2021).

In this study, only globally stable flows are considered. In other words, all initial
perturbations decay to zero in the case of no external forcing. To study the behaviour
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of the flow as a noise amplifier, a small-amplitude forcing term is added to (3.4) as

∂U ′

∂t
= AU ′ + Bf ′, (3.7)

where matrix B constrains the forcing to a localised region. If the forcing is assumed to be
harmonic in time and in the spanwise direction as

f ′(x, y, z, t) = f̂ (x, y) exp(iβz − iωrt), (3.8)

the long-time solution of (3.7) takes the same form as

U ′(x, y, z, t) = Û(x, y) exp(iβz − iωrt). (3.9)

One should distinguish (3.9) from (3.5) as they have different physical interpretations.
Substituting (3.8) and (3.9) into (3.7) gives

Û = RBf̂ , R = (−ωrI − A)−1, (3.10a,b)

which represents the relationship between the forcing and its linear response (Bugeat et al.
2019). Here, matrix R is the resolvent matrix and matrix I is the identity matrix. We
are interested in finding the forcing and response that maximise the energy amplification
(often referred to as the gain). In this study, the optimal gain σ is defined by

σ 2(β, ωr) = max
f̂

‖ Û‖E

‖ Bf̂ ‖E
. (3.11)

The Chu energy (Chu 1965) is used to evaluate the energy norm as

‖ Û‖E = Û∗MÛ, (3.12)

where the superscript * denotes the complex conjugate and M is the weight matrix. The
expression of matrix M is given by Bugeat et al. (2019). As demonstrated by Sipp &
Marquet (2013), Bugeat et al. (2019) and Dwivedi et al. (2019), the optimisation problem
(3.11) can be converted to an eigenvalue problem as

B∗M−1R∗MRBf̂ = σ 2f̂ , (3.13)

which is solved using ARPACK for a given β and ωr in the regular mode. Five eigenvalues
are requested with a Krylov subspace of size 12. All the eigenvalues are converged with
the same relative residuals as in the GSA. During this process, the inverses of R and
its conjugate transpose are calculated using SuperLU. The largest eigenvalue represents
the optimal gain, and the corresponding eigenfunction represents the optimal forcing. The
optimal response can be readily obtained via (3.10). The grid independence of the resolvent
analysis is verified in Appendix A, and the current resolvent analysis solver is validated in
Appendix B.

The resolvent analysis and the temporal transient growth analysis describe the response
of the flow to external forcing and initial conditions, respectively (Schmid 2007). If the
forcing and response are constrained at two different streamwise locations, the resolvent
analysis is equivalent to the spatial transient growth analysis (Tumin & Reshotko 2003). In
this study, the forcing is always localised at xf /L = 0.2 to represent upstream disturbances,
which can be introduced through the receptivity of free-stream noise, leading-edge
imperfection, surface roughness, etc. In this case, the submatrices of matrix B are set
to the identity matrix in cells at the forcing location and zero elsewhere. In contrast, the
response in the entire computational domain is considered. In fact, the optimal response is
insensitive to the forcing location (see Appendix C).
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4. Results

4.1. Base flows and stability analysis
We first examine the general features of the base flows with different ramp angles.
According to the classical triple-deck theory (Neiland 1969; Stewartson & Williams 1969),
supersonic flow over a compression corner is governed by a scaled ramp angle defined as

α∗ = Re1/4
L α

C1/4λ1/2(M2∞ − 1)
1/4 , (4.1)

where α is in radians, C is the Chapman–Rubesin parameter and λ equals 0.332 in a
Blasius boundary layer. Previous studies have shown that incipient separation occurs when
α* ≈ 1.57 (Rizzetta, Burggraf & Jenson 1978; Ruban 1978; Cassel, Ruban & Walker 1995),
and secondary separation forms beneath the primary bubble when α* is between 3 and
5 (Smith & Khorrami 1991; Korolev, Gajjar & Ruban 2002; Shvedchenko 2009; Gai &
Khraibut 2019). The precise critical values depend on the wall-to-total temperature ratio
(Egorov et al. 2011; Hao et al. 2021). For the baseline flow conditions considered in this
study, α = 0°, 4°, 8° and 12° correspond to α* = 0, 1.147, 2.295 and 3.442, respectively.
Therefore, flow separation is expected for the two larger ramp angles.

Figure 2 shows the distributions of the skin friction coefficient Cf , surface Stanton
number St and surface pressure coefficient Cp for different ramp angles. The surface
quantities Cf , St and Cp are defined by

Cf = τw

0.5ρ∞u2∞
, St = qw

0.5ρ∞u3∞
, Cp = pw

0.5ρ∞u2∞
, (4.2a–c)

where τw, qw and pw are the surface shear stress, heat flux and pressure, respectively.
Also shown in the figure is the distribution of the surface pressure gradient dCp/ds*,
where s* is the non-dimensional distance along the model surface measured from the
leading edge. When α > 0°, an oblique shock is induced by the flow deflection, which
elevates the pressure on the ramp and poses an adverse pressure gradient on the boundary
layer. At α = 4°, the pressure gradient peaks at the corner, which is not strong enough to
cause flow separation. In response, Cf suddenly drops near the corner and slowly rises on
the ramp. The St behaves in a similar way to Cf . As α is increased to 8°, the minimum
Cf has crossed zero to form the separation and reattachment points marked by the open
circles. Meanwhile, the pressure gradient exhibits two local maxima separated by a local
minimum. At α = 12°, the local minimum becomes negative and thus poses an adverse
pressure gradient to the reverse flow boundary layer. The deceleration of the reverse flow
generates a local maximum of Cf near the corner, as reported by Smith & Khorrami
(1991), Korolev et al. (2002) and Gai & Khraibut (2019). The local maximum of Cf is still
negative, which indicates that the flow is prior to secondary separation. The presence of a
pressure plateau region connecting the separation and reattachment processes is indicative
of large separation (Burggraf 1975). The small fluctuations of the surface quantities near
x/L = 1.6 are caused by the impingement of an expansion wave induced by the interaction
of the separation and reattachment shock waves.

It is well known that flow separation can support self-sustained instability (Theofilis
2011). For hypersonic flow over a compression corner, our previous study (Hao et al.
2021) demonstrated that the leading global instability is a three-dimensional stationary
mode, which becomes unstable beyond a critical scaled ramp angle. For the current flow
conditions, the critical value of α* is approximately 3.729 (α = 13°). Although the base
flows at the four ramp angles are globally stable, modal resonance may be important
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Figure 2. Distributions of the (a) skin friction coefficient, (b) surface Stanton number, (c) surface pressure
coefficient and (d) surface non-dimensional pressure gradient for different ramp angles. Open circles,
separation and reattachment points; horizontal line, zero skin friction; vertical line, corner.

when the spanwise wavenumber and frequency of the forcing are close to those of the
leading mode. Figure 3(a) presents the growth rate of the least stable mode as a function
of spanwise wavenumber for the α = 12° case. The growth rate peaks at βL = 48.0
(λ/L = 0.130) with the corresponding eigenvalue spectrum shown in figure 3(b). There
is another stationary mode beneath the leading mode. These two modes move towards
each other as β is increased and eventually meet to form a pair of conjugate oscillatory
modes. As demonstrated by Hao et al. (2021), modal coalescence generates a dominant
small-wavelength mode as the flow is further destabilised. The eigenfunction of the least
stable mode at βL = 48.0 is visualised in figure 4. The perturbation u′ is present in both
the separation region and the reattached boundary layer, whereas w′ is mainly confined to
the separation bubble with an opposite sign in the upstream and downstream regions. Such
features have been observed by Sidharth et al. (2018) for hypersonic flow over a slender
double wedge and by Boin et al. (2006), Robinet (2007) and Hildebrand et al. (2018)
for shock impingement on a flat plate. The leading mode also resembles the self-excited
stationary mode found in an incompressible separation bubble (Theofilis et al. 2000). In
addition, there are no evident perturbations in the inviscid region behind the separation
shock in contrast to the global modes found by Hao et al. (2022) over a 25°−55° double
cone and by Sawant, Theofilis & Levin (2022) over a 30°−55° double wedge. This is
because the current shock interaction is much weaker than their cases.

In addition to the global stability of the base flows, the incoming and reattached
boundary layers may support convectively unstable Mack’s first and second modes. The
wall-normal profile of the base flow is extracted at x/L = 0.5. Note that the profile is the
same for different ramp angles, as the location is upstream of separation. Further assuming
that the perturbation is harmonic in the streamwise direction allows the application of a
local ‘normal-mode’ analysis. In this analysis, the flow is assumed to be parallel in the ξ

direction. The spatial stability problem is solved by a Chebyshev pseudo-spectral method

964 A25-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

38
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.384


Response to upstream disturbances

βL

ω
i L

/u
∞

0 20 40 60 80 100
–0.3

–0.2

–0.1

0
λ/L = 0.13

ωr L/u∞
–4 –2 0 2 4

–4

–2

0

(a) (b)

Figure 3. (a) Growth rate of the least stable global mode as a function of spanwise wavenumber and
(b) eigenvalue spectrum at βL = 48.0 (λ/L = 0.130) at α = 12°. Horizontal line, zero growth rate.
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Figure 4. Real parts of (a) streamwise velocity perturbation u′ and (b) spanwise velocity perturbation w′ of the
least stable global mode at βL = 48.0 (λ/L = 0.130) for the α = 12° case. The contour levels are evenly spaced
between ±0.25 of the maximum absolute values. Black lines, dividing streamline and solid wall; open circles,
separation and reattachment points.

to obtain the global eigenvalue spectrum and an iterative fourth-order compact finite
difference scheme to increase the accuracy of solutions without interpolating the base flow
(see Guo et al. 2020 for more details). Figure 5 shows the contour of the streamwise growth
rate in the β-ωr space with the neutral curve highlighted in black. As expected, the Mach
7.7 flat-plate boundary layer with a cold wall only supports Mack’s second mode, which is
most amplified as a planar wave at ωrL/u∞ = 110 ( f = 305.5 kHz). The three-dimensional
second mode spreads to βL = 133.4 (λ/L = 0.047).

Wall-normal distributions of the streamwise velocity us and temperature T are then
extracted at the midpoint of the ramp (ξ /L = 1.5) and compared in figure 6 as a function
of distance from the wall yn for different ramp angles. The velocity and temperature
at the edge of the boundary layer vary according to inviscid theory of oblique shock
waves. As α is increased, the boundary-layer thickness decreases, and the temperature
peak increases. Local stability analysis is performed using these profiles to obtain the
stability diagrams, as shown in figure 7. Again, there is no first mode. From α = 0° to
12°, the second mode is destabilised at higher peak frequencies, which is consistent with
the variation in the boundary-layer thickness. Meanwhile, the unstable region extends
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Figure 5. Contour of streamwise growth rate in the space of spanwise wavenumber and angular frequency at
x/L = 0.5 obtained from the local stability analysis. Black line, neutral curve.
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Figure 6. Wall-normal distributions of (a) streamwise velocity and (b) temperature at the midpoint of the
ramp (ξ /L = 1.5) for different ramp angles.

to higher spanwise wavenumbers. As seen later, the overlap between the second-mode
frequencies in the incoming and reattached boundary layers for the α = 4° case allows a
continuous excitation of the disturbances.

4.2. Optimal disturbances
Global resolvent analysis is performed over a wide range of spanwise wavenumbers and
angular frequencies using the base-flow solutions. Note that the forcing is localised at
xf /L = 0.2. The resulting optimal gain is plotted in the β-ωr space in figure 8 for different
ramp angles. For the flat-plate case, the maximum gain is achieved near βL = 96.3
(λ/L = 0.065) as the frequency approaches zero. The optimal gain is almost independent of
the frequency for ωrL/u∞ ≤ 1 ( f ≤ 2.8 kHz). As seen later, the low-frequency response is
in the form of streamwise streaks, which have been extensively identified by temporal and
spatial analyses of transient growth in both incompressible and compressible boundary
layers (Hanifi et al. 1996; Andersson et al. 1999; Tumin & Reshotko 2003; Tempelmann
et al. 2012). Another local maximum of the optimal gain (approximately 1/4 of the
global maximum) can be found on the axis of βL = 0 at ωrL/u∞ ≈ 75 ( f ≈ 208.3 kHz).
The high-frequency response is related to Mack’s second mode. Note that the gain of
the second mode may exceed that of the streamwise streaks for a longer flat plate.
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Figure 7. Contours of streamwise growth rate in the space of spanwise wavenumber and angular frequency
at the midpoint of the ramp (ξ /L = 1.5) at (a) α = 0°, (b) α = 4°, (c) α = 8° and (d) α = 12°. Black line,
neutral curve.

In the framework of resolvent analysis, the streamwise streaks and the second-mode waves
represent the component- and convective-type non-normalities, respectively. Similar
observations were made by Bugeat et al. (2019) for a Mach 4.5 flat-plate boundary layer
except that they found a third local maximum gain corresponding to Mack’s first mode.
As predicted by the local analysis, the current flow conditions support no first mode.

At α = 4°, the contour of the optimal gain is similar to that for the flat plate. The
low-frequency peak is further amplified and shifts to a higher wavenumber (βL = 160.1
or λ/L = 0.039). The second mode is also enhanced and moves towards a higher frequency
(ωrL/u∞ ≈ 102 or f ≈ 277.7 kHz); however, its gain is still less than that of the streamwise
streaks. As α is further increased, the maximum optimal gain of the streamwise streaks
and the corresponding wavenumber continue to grow. In contrast, the second-mode peak
is separated into two local maxima. One is almost fixed at ωrL/u∞ = 102, and the other has
a similar frequency to the most amplified mode predicted by the local stability analysis on
the ramp (see figure 7).

To closely examine the dependence of the optimal gain on the spanwise wavenumber
for the streamwise streaks and the second mode, slices at two representative frequencies
(ωrL/u∞ = 10−1 and 102) are extracted from the optimal-gain contours, as shown in
figure 9. At the lower frequency, increasing the ramp angle elevates the optimal gain
over the considered range of wavenumbers. The preferential wavenumbers at α = 0°,
4°, 8° and 12° are βL = 96.3, 160.1, 206.8 and 252.7 (λ/L = 0.065, 0.039, 0.030 and
0.025), respectively. At the higher frequency, two local maxima can be observed for each
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Figure 8. Contours of optimal gain in the space of spanwise wavenumber and angular frequency at
(a) α = 0°, (b) α = 4°, (c) α = 8° and (d) α = 12°.

ramp angle. The two-dimensional peak is associated with the second mode. As described
earlier, the second mode is first promoted and then stabilised as α is increased. The
three-dimensional peak is the unsteady counterpart of the steady streamwise streaks.

The optimal responses and forcings of the most amplified streamwise streaks (denoted
by the open circles in figure 9a) are presented in figure 10. For the flat plate, the
forcing is in the form of streamwise vortices with most of the kinetic energy in the
wall-normal and spanwise velocity components. The flow response is streamwise streaks
with the kinetic energy contributed mostly by the streamwise velocity perturbation, i.e.
|u′| � |v′| and |u′| � |w′| (not shown here). Such a component-wise energy transfer
is usually attributed to the lift-up mechanism (Landahl 1980). Interestingly, the forcing
stretches out of the boundary layer to the free stream. For the compression corners, the
optimal responses resemble the flat-plate result and experience a strong amplification
in the interaction region. The optimal forcings are also streamwise vortices; however,
the contribution from the wall-normal velocity perturbation becomes more important for
larger ramp angles. In particular, the streamwise streaks are convected downstream above
the dividing streamline with no evident interaction with the separation bubble at α = 12°.
Only weak perturbations can be seen inside the separation bubble near the reattachment
point, indicative of insignificant modal resonance. A similar steady optimal response over
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Figure 9. Optimal gains at (a) ωrL/u∞ = 10−1 and (b) ωrL/u∞ = 102 as a function of spanwise wavenumber
for different ramp angles. Open circles, local maxima of interest.

a compression corner was obtained by Dwivedi et al. (2019) under one of the experimental
conditions of Chuvakhov et al. (2017). However, they found a significant contribution to
the amplification of the streamwise streaks from the separation bubble, in contrast to the
present study. In fact, our GSA shows that their flow conditions are weakly unstable to
three-dimensional perturbations, which invalidates the assumption of resolvent analysis.
The interplay between the intrinsic instability and upstream disturbances was addressed in
a companion study (Cao et al. 2023).

The temperature components of the optimal responses are shown in figure 11 for
different ramp angles. As expected, they also take the form of streaks with alternating high
and low temperature in the spanwise direction (Tempelmann et al. 2012). The temperature
perturbation is concentrated near the edge of the boundary layer for the flat plate but
extends to the near-wall region for the compression corners (explained in § 4.3). Although
the amplitude of the temperature perturbation is larger than that of the streamwise velocity
perturbation (see figure 10), the overall Chu energy of the response is mainly contributed
by the kinetic energy. The density components of the optimal responses can be found in
Appendix D.

To quantitatively describe the spatial evolution of the optimal responses, the Chu
energy density of the most amplified streamwise streaks is integrated in the wall-normal
direction along the model surface, as shown in figure 12. Note that the Chu energy of the
response is normalised by that of the forcing, which allows a direct comparison between
different cases. For the compression corners, the flat-plate results at the same spanwise
wavenumbers are also plotted. It is confirmed that the streamwise streaks originate from
the transient growth of streamwise vortices on the flat plate with a preferential spanwise
wavelength and experience a strong amplification in the interaction region until reaching
the maximum energy at the end of the ramp. For the large-separation case (α = 12°), the
amplification seems to be associated with the separation and reattachment processes while
remaining moderate in the pressure plateau region (see figure 2c). It is indicated that
the most amplified streamwise streaks are in essence non-modal pseudo-resonance. As
explained later, the amplification across the interaction region is mainly due to the Görtler
instability. The streamline curvature is high near the separation and reattachment points
and low along the shear layer, resulting in two separate stages of energy growth. Also
shown in figure 12(d) is the Chu energy density integrated above the dividing streamline
represented by the red dashed line. It is confirmed that the separation bubble contributes
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Figure 10. Optimal responses (left) and forcings (right) associated with the most amplified streamwise streaks
at (a) α = 0°, (b) α = 4°, (c) α = 8° and (d) α = 12°. Open circles, separation and reattachment points; black
dashed lines, the edge of the boundary layer at xf /L = 0.2.

little to the optimal response. The N factor can be defined by the natural logarithm of the
ratio between the maximum Chu energy and the value at the forcing location multiplied
by a factor of 1/2. The N factors of the most amplified streamwise streaks at α = 0°, 4°, 8°
and 12° are 3.42, 5.76, 7.35 and 9.13, respectively.

Modal resonance may be important when the forcing wavenumber and frequency are
close to those of the least stable global mode. Figure 13 presents the real part of the
spanwise velocity perturbation at βL = 50.0 and ωrL/u∞ = 10−1 for the α = 12° case. The
perturbation structure resembles the global mode shown in figure 4(b) in the separation
region, which indicates that the global mode is excited by the forcing and contributes to
the overall growth of the response. The contribution can be clearly seen by comparing the
wall-normal integrals of the Chu energy density for the modal and non-modal resonances
(i.e. βL = 50.0 and 252.7) in figure 14. Nonetheless, the largest energy of the non-modal
resonance achieved at the end of the ramp is two orders of magnitude greater than that of
the modal resonance.

It is also of interest to examine the optimal responses associated with the second
mode. Figures 15 and 16 show the pressure perturbation fields and the corresponding
Chu energy densities integrated in the wall-normal direction at βL = 0 and ωrL/u∞ = 102

(denoted by the open circles in figure 9b). Also shown in figure 14 are two line
segments, whose slopes are determined from the spatial growth rates predicted by the
local stability analysis with the same β and ωr at ξ /L = 0.5 and 1.5 for the α = 4° case
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Figure 11. Temperature components of the optimal responses associated with the most amplified streamwise
streaks at (a) α = 0°, (b) α = 4°, (c) α = 8° and (d) α = 12°. Open circles, separation and reattachment points.

(see figures 5 and 7). The evolution of the perturbations exhibits a typical two-cell
structure in the incoming boundary layer for different cases. Partly contributed by
the component-type non-normality, the spatial growth rate is slightly larger than that
predicted by the local analysis. For the flat plate, the second mode is amplified on the
upstream half of the flat plate and attenuated in the downstream half. In contrast, the
perturbations continue to grow on the ramp at α = 4° (see figure 16). The growth rate
on the ramp agrees well with the local-analysis prediction, which indicates that the
growth is mainly due to the convective-type non-normality. The N factor of the second
mode is 4.84, which is comparable to that of the streamwise streaks. As α is further
increased, the second mode remains neutral inside the separation region and oscillates
along the ramp, which is consistent with the previous findings of Balakumar et al.
(2005). Radiation of the second-mode energy along the oblique shocks can be seen, as
reported by Butler & Laurence (2021). Downstream of reattachment, the perturbations
are stabilised with a non-monotonic evolution, and the two-cell structure no longer exists.
For the large-separation case, a three-cell structure forms after the second mode enters
the separation bubble, which was attributed to the excitation of an acoustic discrete
mode (Egorov et al. 2006). Other components of the optimal responses can be found in
Appendix D.

964 A25-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

38
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.384


J. Hao, S. Cao, P. Guo and C.-Y. Wen

C
hu

 e
ne

rg
y 

de
ns

ity

0.5 1.0 1.5
10–1

100

101

102

103

104

βL = 96.3

0.5 1.0 1.5
10–1

100

101

102

103

104

105

βL = 160.1

x/L

C
hu

 e
ne

rg
y 

de
ns

ity

0.5 1.0 1.5
10–1

100

101

102

103

104

105

106

βL = 206.8

x/L
0.5 1.0 1.5

10–1

100

101

102

103

104

105

106

107

βL = 252.7

(a) (b)

(c) (d )

Figure 12. Distributions of Chu energy density integrated in the wall-normal direction associated with the
most amplified streamwise streaks at (a) α = 0°, (b) α = 4°, (c) α = 8° and (d) α = 12°. Vertical lines, separation
and reattachment points; dash–dotted lines, flat-plate results. Red dashed line, the Chu energy density integrated
above the dividing streamline for the α = 12° case.
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Figure 13. Real part of spanwise velocity perturbation w′ of the optimal response at βL = 50.0 and
ωrL/u∞ = 10−1 for the α = 12° case. The contour levels are evenly spaced between ±0.5 of the maximum
absolute value. Open circles, separation and reattachment points.

Additional second-mode peaks are examined at ωrL/u∞ = 150 and 220 for the α = 8°
and 12° cases, respectively. The corresponding pressure perturbation fields and the Chu
energy densities integrated in the wall-normal direction are shown in figures 17 and 18.
The perturbations decay significantly on the flat plate followed by a growth along the
reattached boundary layer as predicted by the local stability analysis. Interestingly, the
α = 8° case supports a continuous amplification of the second mode on the ramp similar
to the α = 4° case, while the second mode starts to decay near the outlet at α = 12°. It
is indicated that the reattached boundary-layer thickness grows slowly at moderate ramp
angles. The N factors for these two cases are 4.20 and 3.74, which are much lower than
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Figure 14. Distributions of Chu energy density integrated in the wall-normal direction associated with the
modal and non-modal resonances at ωrL/u∞ = 10−1 for the α = 12° case. Dashed lines, separation and
reattachment points.
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ωrL/u∞ = 102 for different ramp angles: (a) α = 0°; (b) α = 4°; (c) α = 8°; (d) α = 12°.
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Figure 16. Distributions of Chu energy density integrated in the wall-normal direction associated with the
two-dimensional second mode at ωrL/u∞ = 102 for different ramp angles. The slopes of the short line segments
are determined from the spatial growth rates of the most unstable mode predicted by the local stability analysis
at ξ /L = 0.5 and 1.5 at βL = 0 and ωrL/u∞ = 102 for the α = 4° case.
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Figure 17. Real parts of pressure perturbations associated with the two-dimensional second mode for
different ramp angles: (a) α = 8° at ωrL/u∞ = 150; (b) α = 12° at ωrL/u∞ = 220.

those of the corresponding streamwise streaks. However, if only the ramp region is focused
on, the N factors of the second mode and the streamwise streaks are comparable at α = 8°.
In this case, the role of the second mode in the early stages of transition merits further
investigation.

4.3. Corner rounding
To further understand the physical mechanisms that amplify the streamwise streaks in
the interaction region, the corner of the 12° ramp is rounded such that the circular
arc is tangential to both the flat plate and ramp. Similar geometries have been used to
experimentally and numerically study the Görtler instability induced by wall curvature
(Floryan 1991; de Luca et al. 1993; Saric 1994; Chen, Huang & Lee 2019). Two corner radii
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Figure 18. Distributions of Chu energy density integrated in the wall-normal direction associated with the
two-dimensional second mode at ωrL/u∞ = 150 for the α = 8° case and ωrL/u∞ = 220 for the α = 12° case.
The slopes of the short line segments are determined from the spatial growth rates predicted by the local
stability analysis at ξ /L = 1.5.
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Figure 19. Distributions of the (a) skin friction coefficient and (b) surface pressure coefficient for different
corner radii. Open circles, separation and reattachment points and points of tangency; horizontal line, zero skin
friction; vertical line, corner.

(rc/L = 1.9 and 3.8) are considered with the points of tangency on the flat plate xt/L = 0.8
and 0.6.

Figure 19 shows the distributions of Cf and Cp for different corner radii. Sufficient
corner rounding alleviates the adverse pressure gradient and thus eliminates the separation
region. Such a strategy can be used to stabilise the global instability of supersonic flow
over a compression corner, which will be addressed in a future study. Global resolvent
analysis is then performed using the base flows with corner rounding at ωrL/u∞ = 10−1.
As expected, the most amplified optimal responses and forcings are found to be streamwise
streaks and vortices for rc/L = 1.9 and 3.8, respectively (see figure 20). Cossu et al. (2000)
performed spatial transient growth analysis of an incompressible boundary layer over a
concave curved wall and found an optimal response and forcing similar to the present
results. For rc/L = 1.9 and 3.8, the most amplified optimal responses occur at βL = 262.3
and 287.5 (λ/L = 0.024 and 0.022), respectively. Surprisingly, the preferential spanwise
wavelengths are insensitive to corner radii and close to the sharp-corner value (βL = 252.7
or λ/L = 0.025). This finding may suggest that the total turning angle is more important
than the curvature of the wall for the Görtler instability (Floryan 1991), which will be
addressed in a future study.
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Figure 20. Optimal responses and forcings associated with the most amplified streamwise streaks for
(a) rc/L = 1.9 and (b) rc/L = 3.8. Open circles, points of tangency; black dashed lines, the edge of the boundary
layer at xf /L = 0.2.

The streamlines passing through point (x/L, y/L) = (0.5, 0.01) close to the edge of
the local boundary layer are extracted for the sharp- and rounded-corner cases with the
distributions of the Chu energy density along the streamlines presented in figure 21. Also
shown in this figure are the distributions of the streamline curvature. For the sharp-corner
case, the peaks in the curvature are due to flow separation and reattachment, whereas the
curvature is small in the shear layer and reattached boundary layer. The energy density
increases significantly where the curvature is large. With corner rounding, the curvature
is approximately constant at L/rc above the circular arc. The energy density experiences
exponential growth over the circular arc and reaches a peak close to the sharp-corner value
at the end of the ramp.

The striking similarity between these cases indicates that the growth of the streamwise
streaks in the interaction region is mainly due to the Görtler instability. To support this
argument, local stability analysis is performed using three wall-normal profiles, which
are assumed to be parallel in the ξ direction. For the two cases with corning rounding,
the profiles are extracted at ξ /L = 1. The wall curvature is used to evaluate the Lamé
coefficients in curvilinear coordinates (see Ren & Fu 2015 for detailed expressions of
the linear operators). For the sharp-corner case, the wall-normal profile is extracted at
the reattachment point, where the wall curvature is zero. A representative curvature
is computed by averaging the streamline curvatures from the wall to the edge of the
reattached shear layer. The resulting curvature is approximately 1.12. The flow near the
separation point is not considered here due to the strong non-parallelism.

As expected, the local stability analysis captures stationary Görtler modes at the
most unstable spanwise wavenumbers for different cases, whose spatial growth rates
are converted to the slopes of the line segments in figure 21. The streamwise velocity
and temperature perturbations from the resolvent analysis and local stability analysis are
compared in figure 22. The temperature perturbation has a larger magnitude than the
streamwise velocity perturbation, which is a typical behaviour of the Görtler instability at
high Mach numbers (Ren & Fu 2015). Particularly, the temperature perturbation exhibits
two peaks due to the cold-wall effects (Spall & Malik 1989). The good agreement
between the global and local analyses confirms that the streamwise streaks are amplified
in the interaction region due to the Görtler instability (a convective-type non-modal
resonance) with little contribution from the separation bubble. The small discrepancies
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Figure 21. Distributions of Chu energy density along a streamline passing through point (x/L, y/L) = (0.5, 0.01)
associated with the most amplified streamwise streaks for (a) sharp corner, (b) rc/L = 1.9 and (c) rc/L = 3.8 at
α = 12°. Open circles, separation and reattachment points and points of tangency. The slopes of the short line
segments are determined from the spatial growth rates of the most unstable Görtler mode predicted by the local
stability analysis.

in the eigenfunctions near the wall and the spatial growth rates may be caused by the
non-parallelism of the base flow, the contribution from the component-type non-modal
resonance and other effects, such as the adverse pressure gradient (Spall & Malik 1989)
and the baroclinic torque (Zaprygaev, Kavun & Lipatov 2013; Dwivedi et al. 2019).

4.4. Scaling of streamwise streaks
Additional simulations were performed to investigate the effects of different flow
conditions on the low-frequency streamwise streaks. For example, the Mach number
is increased to 10 without changing the other flow-governing parameters. Figure 23(a)
compares the optimal gains at ωrL/u∞ = 10−1 as a function of spanwise wavenumber at
α = 0° for different flow conditions. Increasing the Reynolds number by a factor of two
leads to a larger optimal gain of the streamwise streaks at a higher spanwise wavenumber.
In fact, the optimal growth in a flat-plate boundary layer scales with ReL (Hanifi et al.
1996). In contrast, increasing the Mach number and the wall temperature stabilises the
flow and reduces the preferential spanwise wavenumber. Note that the thickness of the
boundary layer is reduced with increasing Reynolds number, whereas the trend is reversed
with increasing Mach number and wall temperature. It is therefore speculated that the
preferential spanwise wavenumber of the optimal response scales with the boundary-layer
thickness, which is clearly demonstrated in figure 23(b). For the flat plate, the reference
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Figure 22. Wall-normal distributions of streamwise velocity and temperature perturbations normalised by
the maximum temperature perturbation amplitude at the most amplified spanwise wavenumbers for (a) sharp
corner, (b) rc/L = 1.9 and (c) rc/L = 3.8. The profiles are exacted at the reattachment point for the sharp-corner
case and ξ /L = 1 for the rounded-corner cases.

location to calculate the boundary-layer thickness is arbitrary. Here, the boundary-layer
thickness δ99 is evaluated at x/L = 1.

Similarly, different flow conditions are considered for the α = 8° case, which is chosen
rather than α = 12° to avoid any global instability. The general behaviours are similar to
those for the flat plate, which suggests that the scaling with the boundary-layer thickness
also holds for the compression corners. In other words, the wavelength of the streamwise
streaks scales with the boundary-layer thickness rather than the length of the separation
region, in contrast to the long-wavelength global mode (Sidharth et al. 2018; Hao et al.
2021). In fact, flow separation is eliminated as the Mach number is increased to 10.

With this scaling, a universal relation between the preferential spanwise wavelength and
the ramp angle can be established, as shown in figure 24. The scaled wavelength tends
to approach a constant value as α is increased. One must be cautious when comparing
the present scaling with experiments. On the one hand, the experimental conditions
must be globally stable to exclude any interference of global instability. On the other
hand, as pointed out by Simeonides & Haase (1995), the wavelengths of the streamwise
streaks at weak interactions greatly depend on the leading-edge thickness variations of the
model. Furthermore, a pair of oblique first-mode waves can generate steady streamwise
streaks through nonlinear interactions (Lugrin et al. 2021), which may become relevant
at low supersonic Mach numbers. Here, a recent experiment conducted by Chuvakhov
& Radchenko (2020) is considered with the flow conditions given as follows: M∞ = 8,
ReL = 1.77 × 105 and T0 = 735 K. The flow is confirmed to be globally stable by GSA,
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Figure 23. Optimal gains at ωrL/u∞ = 10−1 as a function of spanwise wavenumber non-dimensionalised by
the length of the flat plate L and the boundary-layer thickness at x/L = 1 at (a,b) α = 0° and (c,d) α = 8°.
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Figure 24. Scaled preferential spanwise wavelengths as a function of ramp angle. Dashed line, trendline.

and the incoming boundary layer only supports the second mode. The wavelength of the
streamwise steaks observed from the temperature-sensitive paint image is approximately
3 mm, which agrees well with the present trend.

5. Conclusions

Global resolvent analysis is performed to investigate the response of hypersonic flow
over a compression corner to upstream disturbances that are harmonic in time and in the
spanwise direction. The gain is measured by the ratio of the overall Chu energy of the
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response in the entire flow-field to that of the forcing localised near the leading edge. For
all interaction strengths, two regions of maximum optimal gain are identified in the space
of the forcing spanwise wavenumber and frequency corresponding to steady streamwise
streaks and the second mode, respectively. As the ramp angle is increased, the gain
of the streamwise streaks significantly increases, whereas the second-mode gain varies
non-monotonically. The streamwise streaks originate from streamwise vortices in the
incoming boundary layer through transient growth and experience a strong amplification
in the interaction region with a spanwise wavenumber selection process. Sufficient corner
rounding eliminates the separation region by alleviating the adverse pressure gradient.
However, the streamwise streaks are found to be insensitive to corner rounding, which
indicates that the amplification mechanisms of the streamwise streaks in the interaction
region are mainly the Görtler instability. The preferential wavelength decreases with
increasing ramp angle and scales with the boundary-layer thickness at the corner.

This study is restricted to high Mach number flow with a cold wall, which does not
support Mack’s first mode. The competition between the streamwise streaks and the
oblique first mode remains to be understood. The transition of the considered hypersonic
flow over a compression corner may have two routes. First, the streamwise streaks are
strong enough to trigger secondary instabilities and eventually break down in a similar
way to Görtler vortices (Li & Malik 1995; Ren & Fu 2015). Second, if the streamwise
streaks survive from breakdown and are dissipated by viscosity as convected downstream,
the second mode developing in the reattached boundary layer can initiate transition
through nonlinear resonance (Herbert 1988). In these processes, the interaction between
the streamwise streaks and the second mode merits further investigation (Chen, Zhu &
Lee 2017, Chen et al. 2019; Paredes, Choudhari & Li 2019) particularly at moderate ramp
angles.
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Appendix A. Verification of grid independence

Computational meshes are constructed with two different levels of grid refinement,
including 600 × 300 (coarse) and 900 × 400 (fine). Figure 25 compares the distributions
of Cf and the optimal gains at two representative frequencies (ωrL/u∞ = 10−1 and 102)
obtained with the two meshes for the α = 12° case. It is indicated that the coarse
mesh is adequate for both the base-flow simulations and resolvent analysis at relatively
low frequencies. At angular frequencies greater than 102, the grid resolution is further
increased to 1000 × 300 (coarse) and 1400 × 300 (fine). Grid independence is also verified
in figure 25 at ωrL/u∞ = 220 for the α = 12° case. The time history of the Euclidean norm
of the density change in successive iterations for the α = 12° case is shown in figure 26.
Note that the density change is normalised by that in the first step.
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Figure 25. (a) Distributions of the skin friction coefficient and (b) optimal gains at ωrL/u∞ = 10−1 and 102

as a function of spanwise wavenumber obtained with the coarse and fine meshes for the α = 12° case. Open
circles, fine-mesh results; horizontal line, zero skin friction.

Iterations

R
es

id
u
al

0 5000 10 000 15 000 20 000
10–10

10–8

10–6

10–4

10–2

100

Figure 26. Time history of the Euclidean norm of the density residual for the α = 12° case normalised by that
in the first step.

Appendix B. Validation of the resolvent analysis solver

The first validation case is the optimal transient growth of steady perturbations in a Mach 3
boundary layer over an adiabatic flat plate considered by Tumin & Reshotko (2003). They
used an iteration method to maximise the Chu energy ratio between the perturbations at
two locations with non-parallel effects. The Reynolds number based on the Blasius length
scale l at the end of the flat plate equals 1000. A computational mesh is constructed with a
resolution of 600 × 300. The forcing is assumed to be steady and localised near the leading
edge. The preferential spanwise wavenumber is approximately βl = 0.3, which agrees well
with the results of Tumin & Reshotko (2003) and Bugeat et al. (2019).

The second case is the evolution of the second mode in a hypersonic boundary
layer with the flow conditions taken from Bountin et al. (2013). The flow conditions
are M∞ = 6, T∞ = 43.18 K and Re∞ = 10.5 × 106 m−1. The flat plate has a length of
0.2 m and a wall temperature of 293 K. A computational mesh is constructed with a
resolution of 1000 × 200. The forcing is assumed to be two-dimensional and localised
at x = 0.02 m. The forcing frequency is set to 138.74 kHz. The streamwise growth rate
of the optimal response is evaluated with the pressure perturbation amplitude at the wall
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Figure 27. Comparison of the streamwise growth rates of the second mode obtained from the present
resolvent analysis and the DNS of Hao & Wen (2021). Horizontal line, zero streamwise growth rate.

x (m)

N
-f

ac
to

r

0.2 0.3 0.4 0.5
0

5

10

15

Resolvent analysis

Li et al. (2018)

Figure 28. Comparison of the N-factor evolutions over a cone-flare model obtained from the present resolvent
analysis and the optimal growth calculations of Li et al. (2018) with an azimuthal wavenumber of 100.

and compared with the DNS result of Hao & Wen (2021) in figure 27. The growth rate is
non-dimensionalised by the local Blasius length scale. In their DNS, the disturbances were
introduced through a wall blowing suction actuator. Good agreement is obtained between
the resolvent analysis and DNS.

The third case is the development of Görtler vortices in hypersonic flow over a cone-flare
model (Li et al. 2018), which consists of a conical and an aft concave section. Among the
different geometries investigated by Li et al. (2018), we consider the case 9 design. The
flow conditions are M∞ = 6, T∞ = 51.92 K and Re∞ = 12.13 × 106 m−1. A computational
mesh is constructed with a resolution of 600 × 300. The forcing is assumed to be steady
and localised at x = 0.15 m. The axisymmetric formulation of the linearised Navier-Stokes
operator is given by Hao et al. (2022). As described in § 4.2, the N-factor is computed
from the wall-normal integral of the Chu energy density of the optimal response with an
azimuthal wavenumber of 100 and compared with the optimal growth calculations of Li
et al. (2018) in figure 28. Good agreement is obtained.
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Figure 29. Optimal gains as a function of spanwise wavenumber with different forcing locations at
ωrL/u∞ = 10−1 for the α = 12° case.
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Figure 30. Wall-normal distributions of streamwise velocity and temperature perturbations normalised by the
respective maximum temperature perturbation amplitude at βL = 252.7 and ωrL/u∞ = 10−1 for the α = 12°
case with different forcing locations. The profiles are extracted at ξ /L = 1.5.

Appendix C. Influence of the forcing location

Figure 29 compares the optimal gains at ωrL/u∞ = 10−1 obtained with different forcing
locations for the α = 12° case. Note that xf /L = 0.2 is the baseline location. The optimal
gain is slightly amplified as the forcing is implemented closer to the separation region
(xf /L = 0.4). Relaxation of the localisation restriction by setting matrix B in (3.7) to the
identity matrix further enhances the optimal gain. Nonetheless, the preferential spanwise
wavenumber remains unchanged at βL = 252.7. The wall-normal distributions of the
streamwise velocity and temperature perturbations at βL = 252.7 are extracted at ξ /L = 1.5
and compared in figure 30 for the three cases. The perturbations are normalised by the
respective maximum temperature perturbation amplitude for different cases. Clearly, the
optimal response is insensitive to forcing locations.
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Figure 31. Density components of the optimal responses associated with the most amplified streamwise
streaks at (a) α = 0°, (b) α = 4°, (c) α = 8° and (d) α = 12°. Open circles, separation and reattachment points.

964 A25-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

38
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.384


Response to upstream disturbances

0.5 1.0 1.5

0.1

0.2

0

y/L

(a)

0.2

0.1

0

0.2

0.1

0

0.2

0.1

0

y/L

y/L

y/L

(b)

(c)

(d )

0.5 1.0 1.5

0.5 1.0 1.5

0.5 1.0 1.5

T ′: –30   30

x/L

Figure 32. Real parts of temperature perturbations associated with the two-dimensional second mode at
ωrL/u∞ = 102 for different ramp angles: (a) α = 0°; (b) α = 4°; (c) α = 8°; (d) α = 12°.

Appendix D. Components of the optimal responses

Figure 31 shows the density components of the optimal responses associated with the most
amplified streamwise streaks (denoted by the open circles in figure 9a) for different ramp
angles.
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Figure 33. Real parts of density perturbations associated with the two-dimensional second mode at
ωrL/u∞ = 102 for different ramp angles: (a) α = 0°; (b) α = 4°; (c) α = 8°; (d) α = 12°.

Figures 32–34 present the temperature, density and streamwise velocity perturbation
fields associated with the second mode (denoted by the open circles in figure 9b) for
different ramp angles, respectively.
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Figure 34. Real parts of streamwise velocity perturbations associated with the two-dimensional second mode
at ωrL/u∞ = 102 for different ramp angles: (a) α = 0°; (b) α = 4°; (c) α = 8°; (d) α = 12°.
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