PERMUTATION POLYNOMIALS WITH EXPONENTS IN AN ARITHMETIC PROGRESSION

YOUNG HO PARK AND JUNE BOK LEE

We examine the permutation properties of the polynomials of the type $h_{k,r,s}(x) = x^r (1 + x^s + \cdots + x^{sk})$ over the finite field \mathbb{F}_q of characteristic p. We give sufficient and necessary conditions in terms of k and r for $h_{k,r,1}(x)$ to be a permutation polynomial over \mathbb{F}_q for q = p or p^2 . We also prove that if $h_{k,r,s}(x)$ is a permutation polynomial over \mathbb{F}_q , then $(k+1)^s = \pm 1$.

1. INTRODUCTION

Let \mathbb{F}_q be the finite field of $q = p^n$ elements of characteristic p. A polynomial $h(x) \in \mathbb{F}_q[x]$ is called a permutation polynomial (abbreviated to PP) over \mathbb{F}_q if it induces a bijection on \mathbb{F}_q . In this article, we shall examine permutation properties of the polynomials

$$h_{k,r,s}(x) = x^r \left(1 + x^s + \dots + x^{sk} \right)$$

over \mathbb{F}_q , where k, r, s are positive integers. These are the generalisations of the polynomials of the type $h_k(x) = 1 + x + \cdots + x^k$, whose permutation properties were completely characterised by Matthews when q is odd [3]:

THEOREM A. For $q = p^n$ odd, $1 + x + \cdots + x^k$ is a permutation polynomial over \mathbb{F}_q if and only if $k \equiv 1 \pmod{p(q-1)}$.

Let

$$d = \frac{q-1}{(s,q-1)}$$
, and $S = \{x \in \mathbb{F}_q \mid x^s = 1\}$.

There are two permuting classes as given in [3]. The proof of the following theorem is essentially the same as that given in [3], with a minor correction. We include it for the reader's convenience.

THEOREM B. $h_{k,r,s}(x)$ is a permutation polynomial over \mathbb{F}_q if one of the following conditions holds:

- (1) $k+1 \equiv 1 \pmod{d}, k+1 \in S \text{ and } (r,q-1) = 1;$
- (2) $k+1 \equiv -1 \pmod{d}, -(k+1) \in S \text{ and } (r-s, q-1) = 1.$

Received 14th July, 1997

This work is supported by BSRI-96-1423 and by Yonsei Academic Research Grant, 1996.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/98 \$A2.00+0.00.

PROOF: Suppose (1). For any $a \in \mathbb{F}_q$, we have

(1.1)
$$h_{k,r,s}(a) = \begin{cases} a^r \frac{1-a^{s(k+1)}}{1-a^s} = a^r & \text{if } a^s \neq 1, \\ (k+1)a^r & \text{if } a^s = 1 \end{cases}$$

Since $k+1 \in S$ and (r, q-1) = 1, we see that $(k+1)x^r$ maps S onto S and x^r maps $\mathbb{F}_q - S$ onto inself.

Now suppose (2). Then

(1.2)
$$h_{k,r,s}(a) = \begin{cases} a^r \frac{1 - a^{s(k+1)}}{1 - a^s} = -a^{r-s} & \text{if } a^s \neq 1, \\ (k+1)a^r & \text{if } a^s = 1 \end{cases}$$

Since $-(k+1) \in S$ and (r-s, q-1) = 1, we see that $(k+1)x^r$ maps S onto $(-1)^s S$, and $-x^{r-s}$ maps $\mathbb{F}_q - S$ onto $\mathbb{F}_q - (-1)^s S$.

In his Ph.D dissertation Matthews has conjectured that the converse of Theorem B holds. We shall prove this conjecture for q = p or p^2 (Theorem 4.6) and also prove that $\pm (k+1) \in S$ if $h_{k,r,s}(x)$ is a PP (Theorem 4.7). It is worth noting that, under the assumption that $h_{k,r,s}(x)$ is a permutation polynomial over \mathbb{F}_q , the conditions $k+1 \equiv 1 \pmod{d}$, $k+1 \in S$ force (r, q-1) = 1 and the conditions $k+1 \equiv -1 \pmod{d}$, $-(k+1) \in S$ imply (r-s, q-1) = 1. As a consequence of Theorem 4.7, it remains to show that $k+1 \equiv \pm 1 \pmod{d}$ to prove this conjecture.

The Hermite criterion will be used in the sequel [2];

THE HERMITE CRITERION. $f(x) \in \mathbb{F}_q[x]$ is a permutation polynomial over \mathbb{F}_q if and only if the following conditions hold:

- (1) f has exactly one root in \mathbb{F}_q ;
- (2) for each integer t with $1 \le t \le q-2$ and $t \not\equiv 0 \pmod{p}$, the reduction of $f(x)^t \pmod{(x^q x)}$ has degree $\le q-2$.

2. PRELIMINARY RESULTS.

Clearly, $h_{k,r,s}(x)$ and $h_{k,r',s}(x)$ are equal as functions on \mathbb{F}_q if $r \equiv r' \pmod{q-1}$. For k, we have the following:

PROPOSITION 2.1. If $k \equiv l \pmod{p(q-1)/(s,q-1)}$, then $h_{k,r,s}(a) = h_{l,r,s}(a)$ for all $a \in \mathbb{F}_q$.

PROOF: If $a^s = 1$, then $h_{k,r,s}(a) = a^r(k+1) = a^r(l+1) = h_{l,r,s}(a)$. If $a^s \neq 1$, then

$$h_{k,r,s}(a) = a^r \frac{a^{s(k+1)} - 1}{a^s - 1} = a^r \frac{a^{s(l+1)} - 1}{a^s - 1} = h_{l,r,s}(a)$$

since $k \equiv l \pmod{(q-1)/(s, q-1)}$ if and only if $sk \equiv sl \pmod{q-1}$.

This Proposition justifies the following notational convention. For negative integers $k, r, h_{k,r,s}(x)$ will mean $h_{k',r',s}(x)$, where k', r' are positive integers with $k' \equiv k \pmod{p(q-1)/(s,q-1)}$ and $r' \equiv r \pmod{q-1}$.

PROPOSITION 2.2. If $h_{k,r,s}(x)$ is a PP over \mathbb{F}_q , then

$$\left(k+1,\frac{p(q-1)}{s,q-1}\right)=1.$$

PROOF: Suppose $h_{k,r,s}(x)$ is a PP over \mathbb{F}_q . First, $h_{k,r,s}(1) = k+1 \neq h_{k,r,s}(0) = 0$ (mod p), that is, (k+1,p) = 1. Since $h_{k,r,s}(a) = 0$ if and only if $a^r = 0$ or $1+a^s+\cdots+a^{sk} = 0$, there is no a such that $a^s \neq 1$ and $1+a^s+\cdots+a^{sk} = (a^{s(k+1)}-1)/(a^s-1) = 0$. Thus if we let $N_1 = \{a \mid a^s = 1\}$, $N_2 = \{a \mid a^{s(k+1)} = 1\}$, then $N_1 = N_2$. But $|N_1| = (s,q-1) = (s(k+1),q-1) = |N_2|$. Let $s = (s,q-1)s_0, q-1 = (s,q-1)q_0$ with $(s_0,q_0) = 1$. Then $(s(k+1),q-1) = (s,q-1)((k+1)s_0,q_0) = (s,q-1)((k+1,q_0)$. Hence $(k+1,q_0) = 1$. Thus we have $1 = (k+1,pq_0) = (k+1,p(q-1)/(s,q-1))$.

PROPOSITION 2.3. $h_{k,r,s}(x)$ is a PP if and only if $h_{-k-2,s-r,s}(x)$ is a PP. PROOF: We show that $h_{k,r,s}(a) = -h_{-k-2,s-r,s}(a^{q-2})$ for all $a \in \mathbb{F}_q$. If $a^s = 1$, then $h_{k,r,s}(a) = (k+1)a^r = -(-k-2+1)(a^{-1})^{-r}(a^{-1})^s = -h_{-k-2,-r+s,s}(a^{-1})$. If $a^s \neq 0, 1$, then

$$-h_{-k-2,-r+s,s}\left(\frac{1}{a}\right) = -\left(\frac{1}{a}\right)^{(-r+s)} \frac{\left(\frac{1}{a}\right)^{s(-k-1)} - 1}{\left(\frac{1}{a}\right)^s - 1} = -a^r \frac{a^{s(k+1)} - 1}{1 - a^s} = h_{k,r,s}(a).$$

PROPOSITION 2.4. $h_{k,r,s}(x)$ is a PP over \mathbb{F}_q if and only if $h_{k,-r-ks,s}(x)$ is a PP over \mathbb{F}_q .

PROOF: We have $h_{k,r,s}(a^{q-2}) = h_{k,-r-ks,s}(a)$ for all $a \in \mathbb{F}_q$.

Let (s, q-1) = s'. We can choose an integer t relatively prime to q-1 such that $st \equiv s' \pmod{q-1}$. Since x^t is a PP, $h_{k,r,s}(x)$ is a PP if and only if the composition $h_{k,r,s}(x^t) = h_{k,rt,st}(x)$ is a PP. Now

$$h_{k,rt,st}(x) \equiv x^{rt} \left(1 + x^{s'} + \dots + x^{s'k} \right) \equiv h_{k,rt,s'}(x) \pmod{(x^q - x)}$$

with $s' \mid (q-1)$. Thus it suffices to consider the polynomials $h_{k,r,s}(x)$ with $s \mid (q-1)$.

Now let (r, s) = e. If $(e, q - 1) \neq 1$, then the equation $x^e = 1$ has (e, q - 1) solutions and $h_{k,r,s}(x)$ sends all solutions of $x^e = 1$ to k + 1, so that $h_{k,r,s}(x)$ is not a PP. If (e, q - 1) = 1, then x^e is a PP and $h_{k,r,s}(x) = h_{k,(r/e),(s/e)}(x^e)$ is a PP if and only if $h_{k,(r/e),(s/e)}(x)$ is a PP.

In conclusion, it is enough to consider the cases that (r, s) = 1 and $s \mid (q-1)$. From now on, we shall always assume that

$$(r, s) = 1$$
 and $s \mid (q - 1)$,

so that

$$d = \frac{q-1}{s}$$

3. CIRCULANT MATRICES.

We review elementary facts about circulant matrices. A circulant matrix of order n is an $n \times n$ matrix of the form

$$circ(c_0, c_1, \dots, c_{n-1}) = \begin{pmatrix} c_0 & c_1 & \dots & c_{n-1} \\ c_{n-1} & c_0 & \dots & c_{n-2} \\ \vdots & \vdots & & \vdots \\ c_1 & c_2 & \dots & c_0 \end{pmatrix}$$

For a polynomial $f(x) = c_0 + c_1 x + c_2 x^2 + \cdots + c_{n-1} x^{n-1}$, $C_f = circ(c_0, c_1, \ldots, c_{n-1})$ is called the circulant matrix of f. It is well known that if a field F has a primitive *n*th root of unity ζ and $f(x) = c_0 + c_1 x + \cdots + c_{n-1} x^{n-1} \in F[x]$, then C_f can be put into a diagonalised form as follows [1, 4];

(3.1)
$$C_f \sim \begin{pmatrix} f(1) & & \\ & f(\zeta) & & \\ & & f(\zeta^2) & \\ & & \ddots & \\ & & & f(\zeta^{n-1}) \end{pmatrix}$$

Suppose $f(x) = a_1x + \cdots + a_{q-1}x^{q-1} \in \mathbb{F}_q$ is a PP over \mathbb{F}_q . The Hermite criterion implies $a_{q-1} = 0$. Considering the circulant matrix $M_f = circ(0, a_1, a_2, \ldots, a_{q-2})$ of order q-1, we then have

(3.2)
$$\det M_f = \prod_{a \in \mathbb{F}_q^*} f(a) = \prod_{a \in \mathbb{F}_q^*} a = -1.$$

For $a \in \mathbb{F}_q$ and positive integer m, we denote by $a_{(m)}$ the row vector (a, a, \dots, a) with m a's.

Permutation polynomials

Let $C = circ(a_{(m)}, b_{(n-m)})$ be an $n \times n$ circulant matrix with m a's and (n-m) b's, where $a \neq b$. Then, using (3.1), it is not difficult to show

(3.3)
$$\det C = \begin{cases} (ma + (n-m)b)(a-b)^{n-1} & \text{if } (m,n) = 1 \\ 0 & \text{otherwise.} \end{cases}$$

It is also clear that

(3.4)
$$\det \operatorname{circ}(a_0, a_1, a_2, \dots, a_{n-1}) = (-1)^{n-1} \det \operatorname{circ}(a_1, a_2, \dots, a_{n-1}, a_1)$$

4. MAIN RESULTS

Returing to PP's, we first consider the case s = 1 and write $h_{k,r}(x)$ for $h_{k,r,1}(x)$. Assume $h_{k,r}(x)$ is a PP, and write

$$r + k = l(q - 1) + m$$
, where $0 \le m < q - 1$.

Let $f(x) = h_{k,r}(x) \pmod{(x^q - x)}$ with deg(f) < q. Then

$$f(x) = \begin{cases} l(x + \dots + x^{r-1}) + (l+1)(x^r + \dots + x^m) \\ +l(x^{m+1} + \dots + x^{q-1}), & \text{if } m \ge r \\ l(x + \dots + x^m) + (l-1)(x^{m+1} + \dots + x^{r-1}) \\ +l(x^r + \dots + x^{q-1}), & \text{if } m < r. \end{cases}$$

By the Hermite criterion, $l \equiv 0 \pmod{p}$, and hence

$$f(x) = \begin{cases} x^r + \cdots + x^m, & \text{if } m \ge r \\ -x^{m+1} - \cdots - x^{r-1}, & \text{if } m < r. \end{cases}$$

First consider the case $m \ge r$, and let

$$M_f = circ(0_{(r)}, 1_{(m-r+1)}, 0_{(q-2-m)})$$

be the circulant matrix of f(x) of order $(q-1) \times (q-1)$. Since

(4.1)
$$m-r+1 \equiv k+1 \pmod{p(q-1)},$$

we have (m - r + 1, q - 1) = 1 by Proposition 2.2. Hence, by (3.3) and (3.4),

$$\det M_f = (-1)^{r(q-2)} \det \operatorname{circ} \left(\mathbb{1}_{(m-r+1)}, \mathbb{0}_{(q-2-m+r)} \right) = (-1)^{r(q-2)} (m-r+1).$$

By (3.2) and (4.1) we thus have

(4.2)
$$k+1 \equiv m-r+1 \equiv (-1)^{r(q-2)} \det M_f \equiv (-1)^{r(q-2)-1} \equiv (-1)^{r-1} \pmod{p}.$$

Similar argument shows that (4.2) holds also when m < r. Thus we have proved:

THEOREM 4.1. If $x^r(1 + x + \cdots + x^k)$ is a PP over \mathbb{F}_a , then

$$k+1 \equiv (-1)^{r-1} \pmod{p}.$$

Now we prove that the conjecture is true for s = 1 and q = p.

THEOREM 4.2. $h_{k,r}(x) = x^r (1 + x + \cdots + x^k)$ is a PP over \mathbb{F}_p if and only if one of the following conditions holds:

- (1) $k+1 \equiv 1 \pmod{p(p-1)}$ and (r, p-1) = 1;
- (2) $k+1 \equiv -1 \pmod{p(p-1)}$ and (r-1, p-1) = 1.

PROOF: The claim is easy for p = 2, so we assume that p is odd. By Proposition 2.1, we may assume that $1 \le k \le p(p-1)$. We may also assume that $1 \le r \le p-1$. As above, write

$$r+k=l(p-1)+m, ext{ with } 0\leqslant m\leqslant p-2.$$

We know that $l \equiv 0 \pmod{p}$ and $m-r+1 \equiv \pm 1 \pmod{p}$. Since $-(p-2) \leq m-r+1 \leq p$, we must have $m-r+1 \equiv 1, -1$ or p-1.

- Case 1. m-r+1 = 1: Then k = l(p-1) = p(p-1) and $h_{k,r}(a) = a^r (1+a+\cdots+a^{p(p-1)}) = a^r$ for all $a \in \mathbb{F}_p$. In this case, $h_{k,r}(x)$ is a PP over \mathbb{F}_p if and only if (r, q-1) = 1.
- Case 2. m-r+1 = -1: Then k = l(p-1)-2 = p(p-1)-2, and $h_{k,r}(a) = -a^{r-1}$ for all $a \in \mathbb{F}_p$. So $h_{k,r}(x)$ is a PP if and only if (r-1, q-1) = 1.
- Case 3. m-r+1 = p-1: Then k = l(p-1)+p-2 = p-2 and, for $a \neq 0, 1$, we have $h_{k,r}(a) = a^r (1 + a + \dots + a^{p-2}) = a^r (a^{p-1} 1)/(a-1) = 0$. Thus $h_{k,r}(x)$ is not a PP over \mathbb{F}_p .

Before we proceed to the case $q = p^2$, we need several observations.

LEMMA 4.3. Suppose r < q and $k \leq p(q-1)$. If $h_{k,r}(x) = x^r (1 + x + \dots + x^k)$ is a PP over \mathbb{F}_q , then r + k < q-1 or $p(q-1) \leq r + k < (p+1)(q-1)$.

PROOF: The coefficient of x^{q-1} of $h_{k,r}(x) \pmod{x^q-x}$ is [(r+k)/(q-1)]. Hence, by the Hermite criterion, $[(r+k)/(q-1)] \equiv 0 \pmod{p}$. Since $r+k \leq q-1+p(q-1)$, we have [(r+k)/(q-1)]=0 or p.

LEMMA 4.4. Let r < q, q odd, and $k \leq p(q-1)$. If $(q-1)/2 \leq r+k < q-1$, and if $h_{k,r}(x)$ is a PP over \mathbb{F}_q , then $r \equiv 0 \pmod{p}$ or $r+k+1 \equiv 0 \pmod{p}$.

PROOF: We have

$$h_{k,r}(x)^2 = x^{2r} \left(1 + 2x + 3x^2 + \dots + (k+1)x^k + kx^{k+1} + (k-1)x^{k+2} + \dots + x^{2k} \right)$$

Hence, the coefficient of x^{q-1} in $h_{k,r}(x)^2$ is given by (2k+1) - (q-1-2r) = 2k + 2r + 2 - q if 2r + k < q - 1, or given by (q - 1 - 2r) + 1 = q - 2r if $2r + k \ge q - 1$. By the Hermite criterion, the result follows.

248

PROPOSITION 4.5. Suppose q is odd and $1 \le k \le p(q-1)$. If $h_{k,r}(x)$ is a PP over \mathbb{F}_q , then

$$k+1 = tp(p-1) \pm 1$$

for some integer t such that $1 \leq t \leq (q-p)/(p(p-1))$ or $(q/p) \leq t \leq (q-1)/(p-1)$.

PROOF: We may assume that $1 \leq r \leq q-1$. By Lemma 4.3, we then have $1 \leq k < q-1$ or $(p-1)(q-1) \leq k \leq p(q-1)$. Since k = tp(p-1) or k = tp(p-1)-2 for some t by Theorem 4.2, we have $1 \leq t \leq (q-1)/(p(p-1)) + (\delta/p(p-1))$ or $(q/p) - (1/p) + (\delta/p(p-1)) \leq t \leq (q-1)/(p-1) + (\delta/p(p-1))$, where $\delta = 0, 2$. Note that $(q-1)/(p(p-1)) + (\delta/p(p-1)) = (q/p-1)/(p-1) + (p-1+\delta)/(p(p-1))$, and (q/p-1)/(p-1) is an integer. When q is odd, we have $(p-1+\delta)/(p(p-1)) < 1$, $-(1/p) + (\delta/p(p-1)) > -1$ and $(\delta/p(p-1)) < 1$ for $\delta = 0, 2$, and thus the claim follows.

THEOREM 4.6. Let q = p or $q = p^2$. Then $h_{k,r}(x) = x^r (1 + x + \cdots + x^k)$ is a PP over \mathbb{F}_q if and only if one of the following conditions holds:

- (1) $k+1 \equiv 1 \pmod{p(q-1)}$ and (r, q-1) = 1;
- (2) $k+1 \equiv -1 \pmod{p(q-1)}$ and (r-1, q-1) = 1.

PROOF: Suppose $h_{k,r}(x)$ is a PP over \mathbb{F}_q . We may assume that r < q and $k \leq p(q-1)$. Let $q = p^2$.

First we consider the case q = 4. By Theorem 4.1, k = 2, 4 or 6. $\mathbb{F}_4 = \{0, 1, \alpha, 1+\alpha\}$ where $\alpha^2 = \alpha + 1$. If k = 2, $h_{k,r}(\alpha) = \alpha^r (1+\alpha+\alpha^2) = 0$, and so $h_{k,r}(x)$ is not a PP over \mathbb{F}_q . If k = 4, then $h_{k,r}(a) = -a^{r-1}$ for $a \neq 1$ by (1.2) and thus $h_{k,r}(x)$ is a PP over \mathbb{F}_q if and only if (r-1, q-1) = 1 (Case (1)). If k = 6, then $h_{k,r}(a) = a^r$ for $a \neq 0$ by (1.1) and then $h_{k,r}(x)$ is a PP over \mathbb{F}_q if and only if (r, q-1) = 1 (Case (2)).

Now consider for odd $q = p^2$. By Proposition 4.5, $k + 1 = tp(p-1) \pm 1$ for some t such that $1 \le t \le 1$ or $p \le t \le p+1$. So the possible values of t are 1, p or p+1. We shall show that $t \ne 1, p$

First, assume t = 1 so that k = p(p-1) or k = p(p-1) - 2. If r , then

$$q-1 > r+k > k \ge p^2 - p - 2 \ge \frac{q-1}{2}$$

Lemma 4.4 implies that $r \equiv 0 \pmod{p}$ or $r \pm 1 \equiv 0 \pmod{p}$. This is impossible since $r . Thus <math>r \ge p - 1$. If k = p(p-1) - 2 and r = p - 1, then q - 1 > r + k = q - 3 > (q - 1)/2. Again Lemma 4.4 implies $r = p - 1 \equiv 0 \pmod{p}$ or $r + k + 1 = q - 2 \equiv 0 \pmod{p}$, which is absurd. If k = p(p-1) - 2 and r = p, then $(r - 1, p - 1) = p - 1 \neq 1$, and thus $h_{k,r}(x)$ is not a PP by Theorem 4.2. Finally, if $p - 1 \le r \le q - 1$ with k = p(p - 1) or $p + 1 \le r \le q - 1$ with k = p(p - 1) - 2,

[8]

then $q-1 \leq r+k \leq 2(q-1)$. So the coefficient of x^{q-1} in $h_{k,r}(x) \pmod{(x^q-x)}$ is nonzero. By the Hermite criterion, $h_{k,r}(x)$ is not a PP over \mathbb{F}_q .

Now consider the case t = p. Then $k = p^2(p-1)$ or $k = p^2(p-1) - 2$, so that p(q-1) - k - 2 is p(p-1) - 2 or p(p-1), respectively. Recall that $h_{k,r}(x)$ is a PP if and only if $h_{p(q-1)-k-2,q-r}(x)$ is a PP (Proposition 2.3). Thus this case reduces to the case t = 1 and hence $h_{k,r}(x)$ is not a PP.

Therefore t = p + 1 and $k + 1 = p(q - 1) \pm 1$. The remaining assertions are now clear by (1.1) and (1.2).

The tensor product or Kronecker product $A \otimes B$ of two matrices A, B is defined by

$$A \otimes B = \begin{pmatrix} b_{11}A & b_{12}A & \dots & b_{1\nu}A \\ b_{21}A & b_{22}A & \dots & b_{2\nu}A \\ \vdots & \vdots & & \vdots \\ b_{\mu 1}A & b_{\mu 2}A & \dots & b_{\mu\nu}A \end{pmatrix}$$

where $B = (b_{ij})$ is a $\mu \times \nu$ matrix. It is well known that

$$\det A \otimes B = (\det A)^{\nu} (\det B)^{\mu}$$

if A is a $\mu \times \mu$ matrix, and B is a $\nu \times \nu$ matrix [4].

Towards the conjecture, we consider the general $s \mid (q-1)$.

THEOREM 4.7. If $h_{k,r,s}(x)$ is a PP over \mathbb{F}_q , then

$$(k+1)^s \equiv (-1)^{r-1} \pmod{p}.$$

Furthermore,

$$k+1 \in S \text{ or } -(k+1) \in S.$$

PROOF: Let $s \neq 1$. Write r + ks = l(q-1) + m, $0 \leq m < q-1$ as before, and let $r = l_0 s + r_0$ with $0 < r_0 < s$. Let $f(x) = h_{k,r,s}(x) \pmod{(x^q - x)}$ with deg(f) < q. If $m \geq r$, then

$$f(x) = l(x^{r_0} + x^{r_0+s} + \dots + x^{r-s}) + (l+1)(x^r + x^{r+s} + \dots + x^m) + l(x^{m+s} + x^{m+2s} + \dots + x^{q-1+r_0-s}),$$

and if m < r, then

$$f(x) = l(x^{r_0} + x^{r_0+s} + \dots + x^m) + (l-1)(x^{m+s} + x^{m+2s} + \dots + x^{r-s}) + l(x^r + x^{r+s} + \dots + x^{q-1+r_0-s}).$$

As before, let M_f be the circulant matrix of order $(q-1) \times (q-1)$ with the first row vector $(0, a_1, a_2, \ldots, a_{q-2})$ where $f(x) = a_1x + a_2x^2 + \cdots + a_{q-2}x^{q-2}$.

First, consider the case $m \ge r$. We have

$$\begin{aligned} \det M_{f} &= \det \operatorname{circ}(0_{(r_{0})}, l, 0_{(s-1)}, \dots, l, 0_{(s-1)}, l+1, 0_{(s-1)}, \dots, l+1, 0_{(s-1)}, \\ &l, 0_{(s-1)}, \dots, l, 0_{(s-1+s-r_{0})}) \\ &= (-1)^{r_{0}(q-2)} \det \operatorname{circ}(l, 0_{(s-1)}, \dots, l, 0_{(s-1)}, l+1, 0_{(s-1)}, \dots, l+1, 0_{(s-1)}, \\ &l, 0_{(s-1)}, \dots, l, 0_{(s-1)}) \\ &= (-1)^{r_{0}(q-2)} \det \left(I_{s} \otimes \operatorname{circ}\left(\overbrace{l, l, \dots, l, l+1, \dots, l+1}^{(r-r_{0})/s}, \overbrace{l, \dots, l}^{((m-r)/s)+1}, \overbrace{l, \dots, l}^{d-((m-r_{0})/s)-1}\right)\right) \\ &= (-1)^{r_{0}(q-2)} \left[\det \operatorname{circ}\left(\overbrace{l, l, \dots, l, l+1, \dots, l+1}^{(r-r_{0})/s}, \overbrace{l, \dots, l}^{((m-r)/s)+1}, \overbrace{l, \dots, l}^{d-((m-r_{0})/s)-1}\right)\right]^{s}, \end{aligned}$$

where I_s is the $s \times s$ identity matrix, and d = (q-1)/s. By (3.3) and (3.4),

$$\det \operatorname{circ}\left(\overbrace{l,l,\ldots,l}^{(r-r_0)/s},\overbrace{l+1,\ldots,l+1}^{((m-r)/s)+1},\overbrace{l,\ldots,l}^{d-((m-r_0)/s)-1}\right)$$
$$=(-1)^{(r-r_0)(d-1)/s}\det \operatorname{circ}\left(\overbrace{l+1,\ldots,l+1}^{((m-r)/s)+1},\overbrace{l,\ldots,l}^{d-((m-r)/s)-1}\right)$$
$$=(-1)^{(r-r_0)(d-1)/s}\left(dl+\frac{m-r}{s}+1\right)=(-1)^{(r-r_0)(d-1)/s}(k+1).$$

But, for odd q, we have

$$r_0(q-2) + \left[\frac{r-r_0}{s}(d-1)\right]s \equiv r_0 + l_0s(d-1) \equiv r_0 - l_0s \equiv r + l_0s = r \pmod{2}.$$

Consequently, $(k+1)^{s} = (-1)^{r-1}$ by (3.2).

By a similar argument when m < r we obtain

$$\det M_f = (-1)^{r_0(q-2) + (m-r_0+2s)(d-1)} (k+1)^s$$

For odd q, a short calculation shows that $r_0(q-2) + (m-r_0+2s)(d-1) \equiv m \equiv r+sk \equiv r \pmod{2}$. Here, the last congruence follows beause if s is odd, then d is even and then k is even by Proposition 2.2. Thus we always have $(k+1)^s = (-1)^{r-1}$.

Finally the last assertion of our Theorem is clear for even q. Assume q is odd. If r is odd, then $(k+1)^s = 1$ so that $k+1 \in S$. On the other hand, if r is even then s must be odd, because if r and s were both even, then $h_{k,r,s}(x)$ would be a polynomial in x^2 and then $h_{k,r,s}(x)$ could not be a PP. Thus if r is even, $(-(k+1))^s = 1$.

Y.H. Park and J.B. Lee

References

- [1] W.-S. Chou, Permutation polynomials over finite dields and combinatorial applications, (Ph.D. Dissertation) (The Pennsylvania State University, 1990).
- [2] R. Lidl and H. Niederreiter, Finite fields, Encyclopedia Math. Appl., 20 (Addison-Wesley, Reading, MA, 1983).
- [3] R. Matthews, 'Permutation properties of the polynomials $1 + x + \cdots + x^k$ over a finite field', *Proc. Amer. Math. Soc.* 120 (1994), 47-51.
- [4] M. Marvin and H. Minc, A survey of matrix theory and matrix inequalities (Dover, New York, 1964).

Department of Mathematics Kangwon National University Chuncheon 200-701 Korea Department of Mathematics Yonsei University Seoul 120-749 Korea