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PERMUTATION POLYNOMIALS WITH EXPONENTS
IN AN ARITHMETIC PROGRESSION

YOUNG HO PARK AND JUNE BOK LEE

We examine the permutation properties of the polynomials of the type hk,r,s(x) =
xT (l + x" H h x3k) over the finite field F, of characteristic p. We give sufficient
and necessary conditions in terms of k and r for hk,r,i(x) to be a permutation
polynomial over F, for q = p or p2 . We also prove that if hk,r,s(x) is a permutation
polynomial over F, , then (fc + l)s = ±1.

1. INTRODUCTION

Let Wq be the finite field of q — pn elements of characteristic p. A polynomial
h(x) £ Fq[x] is called a permutation polynomial (abbreviated to PP) over Wq if it
induces a bijection on Wq. In this article, we shall examine permutation properties of
the polynomials

hk,rAx) = x r ( l + Xs + • • • + xak)

over Wq, where k, r, s are positive integers. These are the generalisations of the polyno-
mials of the type hk{x) — l+x-\ \-xk, whose permutation properties were completely
characterised by Matthews when q is odd [3]:

THEOREM A. For q — pn odd, 1 + x -\ \-xk is a permutation polynomial over
Wq if and only ifk = l (mod p(q - 1)).

Let

d = . q~X . , and 5 = {x £ Wq \ x" = 1}.

There are two permuting classes as given in [3]. The proof of the following theorem is
essentially the same as that given in [3], with a minor correction. We include it for the
reader's convenience.

THEOREM B . hk,r,s(x) is a permutation polynomial over Wq if one of the following
conditions holds:

(1) k + 1 = 1 (mod d), Jt + l e S and (r, q - 1) = 1 ;
(2) Jfc + 1 = - 1 (modd), - ( H l ) e S and (r - s,q - 1) = 1.
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P R O O F : Suppose (1). For any a € ¥q, we have

I />.'" -
(1.1)

(k + l)ar if a8 = 1

Since k+1 € S and (r, g — 1) = 1, we see that (k + l)xr maps 5 onto 5 and xT maps
Wq — S onto inself.

Now suppose (2). Then

(fc + l)ar if as = 1

Since -(fc + 1) € 5 and (r - s, g - 1) = 1, we see that (k + l)xr maps S onto (-1)'S,
and -xr~s maps Fg - 5 onto F9 - (-1)SS. D

In his Ph.D dissertation Matthews has conjectured that the converse of Theorem
B holds. We shall prove this conjecture for q — p or p2 (Theorem 4.6) and also prove
that ±(k + 1) € 5 if /ifc,r,s(^) is a PP (Theorem 4.7). It is worth noting that, under
the assumption that hk,r,s(x) is a permutation polynomial over ¥q, the conditions
k + 1 = 1 (mod d), k + 1 € S force (r, q — 1) = 1 and the conditions k + 1 = - 1
(mod d), —(k + 1 ) 6 5 imply (r — s, q — 1) = 1. As a consequence of Theorem 4.7, it
remains to show that k + 1 = ±1 (mod d) to prove this conjecture.

The Hermite criterion will be used in the sequel [2];

THE HERMITE CRITERION. f(x) € ¥q[x] is a permutation polynomial over
¥q if and only if the following conditions hold:

(1) / has exactly one root in ¥q;
(2) for each integer t with 1 ^ t ^ q — 2 and t ^ 0 (mod p), the reduction

of f{x)t (mod (xg — x)) has degree ^ q - 2.

2. PRELIMINARY RESULTS.

Clearly, hk,r,s(x) and hkris{x) are equal as functions on ¥q if r = r' (mod q — 1).
For k, we have the following:

P R O P O S I T I O N 2 . 1 . Ifk = l (modp(q-l)/(s,q-I)), then hktr.tS(a) = hiiriS(a)
for all a£¥q.

PROOF: If a* = 1, then hk,r,s(a) = ar(k+ 1) = ar(/ + 1) = ft»,r,s(a). If a" ^ 1,
then

hk,T,s(a) = a r
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since k = I (mod (q — l)/(s,q - 1)) if and only if sk = si (mod q — 1). Q

This Proposition justifies the following notational convention. For negative integers
k,r, hk,r,s{x) will mean hk>ya(x), where k',r' are positive integers with k' = k

(mod p(q - l ) / ( s , q - 1)) and r' = r (mod 9 - 1).

PROPOSITION 2 . 2 . If /ifc,r,s(a;) is a P P over Wq, then

PROOF: Suppose hktr<g(x) is a PP over F , . First, /ifc,r,s(l) = fe + l / /ijt,r,s(O) = 0

(mod p), that is, (fc + l ,p) = 1. Since /ifc,r,»(a) = 0 if and only if ar = 0 or l + a " + - • • +

asfc = 0, there is no a such that a3 ^ 1 and l + as + - • •+ask = (as(fc+1) - l)/(a3 - 1) =

0. Thus if we let Nx = {a \ a" = 1}, AT2 - {a | as(fc+1) = 1}, then Nx = N2.

B u t 1 ^ 1 = ( s , q - l ) = (s(k + l ) , q - l ) = | A T 2 | . L e t s = ( s , q - l ) s 0 , q - 1 =

(s,q-l)q0 with {so,qo) - 1. Then (s(fc + l ) , g - l ) = (s ,g - 1)((A; + l ) s o ,9o) =

(s ,g — 1)(A; + l ,go)- Hence (fe + l ,9 0 ) = 1- Thus we have 1 = (k + l,pq0) — [k +

g-l)). D

PROPOSITION 2 . 3 . hk>rtS{x) is a PP if and only if h-k-2,B-r,s{x) is a PP.

PROOF: We show that /ifc,r,s(a) = - / i_ f e_2 , s -r , s (a9"2) for all a e F , . If as = 1,

then hfciP,,(a) = (fe + l )a r = - ( - * - 2 + l ) ( o - 1 ) ~ P ( a - 1 ) ' = -fe_f c_2,-r+«,.(a-1). If

as ^ 0 ,1 , then

,
r a s ( f c + 1 > - l . , ,

PROPOSITION 2 . 4 . hk^8(x) isaPPover¥g if and only if hkt-r-.kSiS{x) is a
PP over ¥q.

P R O O F : We have hktTt3 (a""2) = /ifc)_r_fcs,g(a) for all a 6 F , . D

Let (s, q — 1) = s'. We can choose an integer t relatively prime to q — 1 such that

st = s' (mod q — 1). Since xl is a PP, /ifc,r,8(x) is a PP if and only if the composition

hk,T,s{xt) = hk,rt,at(x) is a PP. Now

fcfc,rt,.t(aO s x r t ( l + x8' + • • • + zs'fe) = /ik,r t ,s '(x) (mod (i« - a:))

with s' I (g — 1). Thus it suffices to consider the polynomials hk<riS(x) with s | {q — 1).
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Now let (r,s) = e. If (e,q — 1) / 1, then the equation xe = 1 has (e,q— 1)
solutions and hk,r,a(x) sends all solutions of xe — 1 to k + 1, so that /ifc,r,s(x) is not
a PP. If (e, q - 1) = 1, then xe is a PP and /ifc,r,»(x) = frfc,(r/e),(a/e)(ze) is a PP if and
only if hk,(r/e),(8/e)(x) is a PP.

In conclusion, it is enough to consider the cases that (r,s) = 1 and s | (q - 1).
Prom now on, we shall always assume that

so that

(r,s) = 1 and s | {q - 1),

3. CIRCULANT MATRICES.

We review elementary facts about circulant matrices. A circulant matrix of order
n is an n x n matrix of the form

drc(co,ci, . . . ,cn_i) =

c0 Cn-l\

Cn-2

Co /

For a polynomial f(x) — CQ + c\x + c-ix2 + 1- Cn-ixn *, C/ = circ(co, c\,..., cn_!)
is called the circulant matrix of / . It is well known that if a field F has a primitive
nth root of unity C »nd f(x) = CQ + c\x -\ 1- cn-ix

n~1 € F[x), then Cj can be put
into a diagonalised form as follows [1, 4];

//(I)

(3.1)

no
/(c2)

Suppose f(x) — aix H 1- ag_ix9 1 £ Fg is a PP over F9. The Hermite criterion
implies a9_i = 0. Considering the circulant matrix Mf — circ(Q,a,\,a2, • • • ,aq-2) of
order q — 1, we then have

(3.2) detM/ = Yl f(a) = = - 1 -

For a € F9 and positive integer m , we denote by a(m) the row vector {a,a,- • • , a )

with m a ' s .
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Let C = circ(a(m), 6(n_m)) be an n x n circulant matrix with m a's and (n — m)
6's, where a ^ b. Then, using (3.1), it is not difficult to show

{ (ma+(n-m)b)(a-b)n~1 if(m,n) = l

0 otherwise.

It is also clear that

(3.4) det circ(ao,ai,a2, . . . ,an_i) = (-l)n~1detarc(ai ,a2 , . . . ,an_i,ai) .

4. MAIN RESULTS

Returing to PP's, we first consider the case s = 1 and write hk<r(x) for /ifc,r,i(x).

Assume /ifc,r(z) is a PP, and write

r + k — l(q — 1) + m, where 0 ^ m < q — 1.

Let f(x) = /ifc,r(x) (mod (x" - x)) with deg(/) < q. Then

(x + --- + x r - l ) + (l + l)(xr + ---+xm)

+ Z ( x m + 1 + --- + x « - 1 ) , if m^r
( ' l{x + • • • + xm) + (I - l)(xm+1 + • • • + x1-1)

+l(xr H hz9"1), if m < r.

By the Hermite criterion, / = 0 (mod p), and hence

( xr + --- + xm, iim^r
( X ) ~ \ - x m + 1 x*-1, if m<r.

First consider the case m^ r, and let

Mf = Ctrc(0(r), l(m-r+l)!0(q_2-Tn))

be the circulant matrix of /(x) of order (q — 1) x (9 — 1). Since

(4.1) m - r + l = A; + l (modp(g-l)) ,

we have (m - r + 1,9 — 1) = 1 by Propostion 2.2. Hence, by (3.3) and (3.4),

detM, = (-l) r ( 9-2 )detrirc(l ( m_r + 1 ) ,O(,_2_m + r )) = (-l)r (9"2)(m - r + 1).

By (3.2) and (4.1) we thus have

(4.2) fc+l = m - r + l = ( - l ) r ( 9 - 2 ) de tM / = (- l ) r ( g - 2 )~1 = ( - l ) r ~ 1 (mod p).

Similar argument shows that (4.2) holds also when m < r. Thus we have proved:

https://doi.org/10.1017/S0004972700031622 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700031622


248 Y.H. Park and J.B. Lee [6]

THEOREM 4 . 1 . If xr (l + x H \- xk) is aPP over ¥q, then

ifc + l = ( - l ) r " 1 (modp).

Now we prove that the conjecture is true for s = 1 and q = p.

THEOREM 4 . 2 . /ifc,r(:r) = xr(l + z + • • • + xk) is a PP over ¥p if and only if

one of the following conditions holds:

(1) fc + l = l ( m o d p ( p - l ) ) and ( r , p - 1 ) = 1;

(2) k + l = -l (modp(p - l ) ) and ( r - l , p - l ) = l .

PROOF: The claim is easy for p = 2, so we assume that p is odd. By Proposition
2.1, we may assume that 1 ̂  k ^ p(p - 1). We may also assume that 1 ̂  r ^ p - 1.
As above, write

r + k = l(p - 1) + m, with 0 ̂  m < p - 2.

We know that / = 0 (mod p) and m—r+l = ±1 (mod p). Since - (p — 2) < m—r+1 ^
p, we must have m — r + 1 = 1, — 1 or p — 1.

Case 1. m - r + 1 = 1: Then k - l(p-l) = pip - 1) and hk<r(a) -
ar(l + a-\ i-a^"-1)) = ar for all a £ Fp. In this case, hk,r(x) is
a PP over Fp if and only if (r, q - 1) = 1.

Case 2. m-r+1 = - 1 : Then k = l(p - l)-2 = p(p - l)-2,and hk,r(
a) = -a r ~ 1

for all o € F p . So hk>r(x) is a PP if and only if (r - 1,q - 1) = 1.

Case 3. m - r + l = p - l : Then k-l(p-l)+p-2-p-2 and, for a ^ 0,1, we

have hkir(a) = ar(l + a + • • • + ap~2) = a^a?-1 - l)/(a - 1) = 0. Thus

hk,r{x) is not a PP over Fp. D

Before we proceed to the case q — p2, we need several observations.

LEMMA 4 . 3 . Suppose r < q and k ^p(q- 1). If hk<r(x) - xr(l + x-\ \-xk)
is a PP over ¥q, then r + k<q-l or p(q - 1) ^ r + k < (p + l)(g - 1) .

PROOF: The coefficient of a;9"1 of hk,r(x) (mod x" - x) is [(r + k)/(q - 1)].
Hence, by the Hermite criterion, [(r + k)/(q — 1)] = 0 (mod p). Since r + k ^
q - 1 + p(q - 1), we have [(r + k)/(q - 1)] = 0 or p. D

LEMMA 4 . 4 . Let r < q, q odd, and k 4p{q- 1). If (q - l)/2 ^ r + k < q- 1,
and if hk,r{x) is a PP over ¥q, then r = 0 (mod p) orr + k+l = 0 (mod p).

PROOF: We have

h k < r { x ) 2 = x 2 r ( l + 2 x + 3 x 2 + --- + (k + l ) x k + k x k + 1 + ( k - \ ) x k + 2 + ••• + x 2 k )

Hence, the coefficient of xq~l in hk>r(x)2 is given by (2fc + 1) — (q — 1 - 2r) = 2k +

2r + 2 - q if 2r + k < q - 1, or given by (q - 1 - 2r) + 1 = q - 2r if 2r + k ^ q - 1.
By the Hermite criterion, the result follows. D
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PROPOSITION 4 . 5 . Suppose q is odd and 1 ^ fc ^ p(q - 1) . If hk<T(x) is a

PP over Fq, then

k + \ = tp(p - 1) ± 1

for some integer t such that 1 ^ t ^ (q - p)/(p{p — 1)) or (q/p) ^t^(q~ l ) / ( p — 1).

P R O O F : We may assume that 1 ^ r ^ g — 1. By Lemma 4.3, we then have
1 ^ k <q-l or ( p - l ) ( g - 1) < k ^p{q- 1). Since k = tp(p - 1) or fc = tp{p - l ) - 2
for some t by Theorem 4.2, we have 1 < i ^ (g — l)/(p(p — 1)) 4- (S/p(p - 1)) or

(Q/P) - (1/P) + (< /̂p(P - 1 ) X * «S (« - 1)/(P - 1) + (<VP(P - !)) - w h e r e 5 = 0,2. Note
that (q - l) /(p(p - 1)) + (5/p(p - 1)) = (q/p ~ l ) / (p - 1) + (p - 1 + 5)/(p(p - 1)), and
(q/p - l ) / (p - 1) is an integer. When q is odd, we have (p — 1 + 5)/(p(p — 1)) < 1,
- (1 /p) + (S/p(p~ 1)) > - 1 and (8/p(p- 1)) < 1 for 5 = 0,2, and thus the claim
follows. D

THEOREM 4 . 6 . Let q = p or q = p2. Then hk,r(x) ~xr(l + x-\ \-xk) is a
PP over Wq if and only if one of the following conditions holds:

(1) k + 1 = 1 (mod p(q - 1)) and (r,q- 1) = 1;
(2) k + 1 = - 1 (mod p{q - 1)) and (r - 1, q - 1) = 1.

P R O O F : Suppose hk,r{x) is a PP over ¥q. We may assume that r < q and

k ^ p(<7 — 1) • Let q = p2.

First we consider the case q = 4. By Theorem 4.1, fc = 2,4 or 6. F4 = {0,1, a,

1 + a} where a 2 = a + l . If A; = 2, /ifc,r(a) = a r ( l + a + a2) = 0, and so hk,r(x) is

not a PP over Fq. If fc = 4, then /ifc,r(a) = -ar~l for a ^ 1 by (1.2) and thus hkt,.(x)

is a PP over Wq if and only if (r - 1, q - 1) = 1 (Case (1)). If fc = 6, then /ifc,r(a) = ar

for a 7̂  0 by (1.1) and then hk^r{x) is a PP over ¥q if and only if (r, g — 1) = 1 (Case

(2))-
Now consider for odd q = p2. By Proposition 4.5, fc + 1 = tp(jp — 1) ± 1 for some

t such that 1 < t < 1 orp^.t^p + 1. So the possible values of t are 1, p or p + 1.
We shall show that t ^ l ,p

First, assume t = 1 so that fc = p(p — 1) or fc = p(p — 1) — 2. If r < p - 1, then

Lemma 4.4 implies that r = 0 (mod p) or r ± 1 E 0 (mod p) . This is impossible
since r < p - 1. Thus r ^ p — 1 . I f f c = p(j> — 1) — 2 and r = p — 1, then q — 1 >
r + fc = g — 3 > (g — l ) / 2 . Again Lemma 4.4 implies r = p — 1 = 0 (mod p) or
r + fc + l = q — 2 = 0 (mod p) , which is absurd. If fc = p(p - 1) - 2 and r = p , then
( r - l , p - l ) = p - l 7̂  1, and thus hk,r(x) is not a PP by Theorem 4.2. Finally, if
p - l < r < g — 1 with fc = p(p - l ) o r p + l ^ r ^ g — 1 with fc = p(p — 1) - 2,
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then q — 1 < r + k < 2(q — 1). So the coefficient of x 9 " 1 in hk,r(x) (mod {xq - x)) is

nonzero. By the Hermite criterion, /ifc,r(a;) is not a PP over F g .

Now consider the case t — p. Then k = p2(j> — 1) or k — p2(p — 1) — 2, so that

p(q - 1) - k - 2 is p{p — 1) - 2 or p(p - 1), respectively. Recall that hk,r(x) is a PP

if and only if /ip(g_1)_fc_2)g_r(x) is a PP (Proposition 2.3). Thus this case reduces to

the case t = 1 and hence hk<r{x) is not a PP.

Therefore t = p + 1 and & + l = p ( g - l ) ± l . The remaining assertions are now

clear by (1.1) and (1.2). D

The tensor product or Kronecker product A ® B of two matrices A, B is defined

by

A ® B =

\bftiA

where B — (bij) is a \i x i/ matrix. It is well known that

det A ® B = (det i4)"(det B f

if A is a /x x n matrix, and B is a f x z/ matrix [4].

Towards the conjecture, we consider the general s | (q — 1).

THEOREM 4 . 7 . If hk,r,s(x) is a PP over ¥q, then

(k+iy^i-l)*-1 (modp).

Furthermore,

k + le S or - (k + 1) € 5.

P R O O F : Let s ^ 1. Write r + fes = /(? — 1) + m, 0 ^ m < q — 1 as before, and let

r = iO5 + ro with 0 < ro < s. Let / (x ) = hktr,s{x) (mod (x9 - x)) with deg ( / ) < ? -

If 7n ̂  r , then

/ ( x ) = l(xr° + x r ° + s + • • • + xr~8) +(l+ l ) (x r + x r + s + • • • + x m )

+ l(xm+s + x m + 2 s + ••• + x " - 1 + r ° - s ) ,

and if m < r, then

/ ( x ) - l ( x r o + x r o + a + --- + x m ) + { l - l ) ( x m + s + x m + 2 a + • • • + x r - s )

+ l ( x r + x r + 3 + ••• + x " - 1 + r ° - 3 ) .
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As before, let Mf be the circulant matrix of order (q - 1) x (q - 1) with the first row
vector (0, a i , a?.,..., aq-2) where f(x) = a\x + a^x2 + 1- aq-2^q~2 •

First, consider the case m ̂  r . We have

detMf = det circ(0( r o ) , /, ()(„_!),...,/,()(„_!), I + 1,<)(„_!),...,I + 1,0(3_i),

' . 0(8-1)) • • • ) *i 0(«-l+8-r

(r-ro)/s ((m-r)/«)+l d-((m-ro)/s)-l

d-((m_ro)/s)_i
\

i

Jl ,
where Is is the s x s identity matrix, and d = (q — l ) / s . By (3.3) and (3.4),

(r—rQ)/s ((m-r)/a)+l d-((m-ro) /s)- l

d e t c i r c N , i , . . . , Z , Z + l , . . . , / + l , / , . . . , i )

( ( ) / )

= ( _ ! ) ( r - r o ) ( « « - i ) / . d e t d r c A + i , . r . , i + i ,

But, for odd g, we have

ro(q-2)+ \V ~ T° (d - l)]s = r0 + los(d - 1) i r 0 - l o ! = r + !08=r (mod 2).
L 3 J

Consequently, (fc + I)8 = (-I)1""1 by (3.2).
By a similar argument when m < r we obtain

detM/ = (_l)r0(9-2)+(m

For odd q, a short calculation shows that ro(q — 2) + (m — ro + 2s)(d — 1) = m =
r + sk = r (mod 2). Here, the last congruence follows beause if s is odd, then d is
even and then k is even by Proposition 2.2. Thus we always have (k + l)s — ( - l ) r - 1 .

Finally the last assertion of our Theorem is clear for even q. Assume q is odd. If
r is odd, then (k + I)8 = 1 so that k + 1 € S. On the other hand, if r is even then s
must be odd, because if r and s were both even, then /ifc,r,s(x) would be a polynomial
in x2 and then hktT,s{x) could not be a PP. Thus if r is even, (-(k + I))8 = 1. D
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