ON THE GROWTH OF THE CYCLOTOMIC POLYNOMIAL

IN THE INTERVAL $(0,1)$
by P. ERDÖS
(Received 16th November, 1956)
Let

$$
F_{n}(x)=\Pi_{d \mid n}\left(x^{n / a}-1\right)^{\mu(d)}
$$

be the nth cyclotomic polynomial, and denote by A_{n} the absolute value of the largest coefficient of $F_{n}(x)$. Schur proved that

$$
\lim _{n \rightarrow \infty} \sup A_{n}=\infty,
$$

and Emma Lehmer [5] showed that $A_{n}>c n^{1 / 3}$ for infinitely many n; in fact she proved that n can be chosen as the product of three distinct primes. I proved [3] that there exists a positive constant c_{1} such that, for infinitely many n,

$$
\begin{equation*}
A_{n}>\exp \left\{n^{c_{1} / \log \log n}\right\} \tag{1}
\end{equation*}
$$

and Bateman [1] proved very simply that, for every $\epsilon>0$ and all $n>n_{0}(\epsilon)$,

$$
A_{n}<\exp \left\{n^{(1+\epsilon) \log 2 / \log \log n}\right\}
$$

My proof of (1) followed immediately from the fact that, for infinitely many n,

$$
\begin{equation*}
\max _{|x| \leqslant 1}\left|F_{n}(x)\right|>\exp \left\{n^{c_{2} / \log \log n}\right\} \tag{2}
\end{equation*}
$$

The proof of (2) was quite complicated.
Some time ago Kanold* asked me if I could estimate the growth of $\left|F_{n}(x)\right|$ in the interval $(0,1)$. I have now found a very simple proof that there exists a positive constant c_{3} such that, for infinitely many n,

$$
\begin{equation*}
\max _{0 \leqslant x \leqslant 1}\left|F_{n}(x)\right|>\exp \left\{n^{c_{s} / \log \log n}\right\} \tag{3}
\end{equation*}
$$

which, of course, implies (2) and therefore (1).
I conjecture that (3) is satisfied for every $c_{3}<\log 2$, so that Bateman's result is best possible.

Proof of (3). It follows easily from the Prime Number Theorem, or from the more elementary result

$$
\pi(x)>\frac{1}{2} \frac{x}{\log x}
$$

that there are arbitrarily large integers t for which

$$
\pi\left(t+t^{1 / 4}\right)-\pi(t)>\frac{1}{10} t^{1 / 4} / \log t
$$

Denote by $p_{1}, p_{2}, \ldots, p_{k}$, where $k>\frac{1}{10} t^{1 / 4} / \log t$, the primes in the interval $\left(t, t+t^{1 / 4}\right)$ in ascending order of magnitude. Put $n=\prod_{i=1}^{k} p_{i}$, and

$$
\begin{equation*}
F_{n}(x)=F_{n}^{(1)}(x) F_{n}^{(2)}(x), \tag{4}
\end{equation*}
$$

where, in $F_{n}^{(1)}(x), d$ runs through the divisors of n satisfying $v(n / d) \leqslant l$. Here l is the greatest integer less than $\frac{1}{2}(k-2)$ which satisfies $l \not \equiv k(\bmod 2)$, and $v(d)$ denotes the number of distinct

* Oral communication.
prime factors of d. Put

$$
x=1-p_{1}^{-l-\frac{1}{2}} .
$$

Clearly, if $v(n / d)>l$, then $n / d>p_{1}^{l+1}$. Thus

$$
\left|x^{n / d}-1\right|>1-\left(1-p_{1}^{-l-\frac{t}{l}}\right)^{p_{1}^{l+1}}>1-\exp \left(-p_{1}^{1 / 2}\right)
$$

Hence

$$
\begin{equation*}
\left|F_{n}^{(2)}(x)\right|>\left\{1-\exp \left(-p_{1}^{1 / 2}\right)\right\}^{2 k}>\frac{1}{4}, \tag{5}
\end{equation*}
$$

since $\exp \left(p_{1}^{1 / 2}\right)>2^{k}$ (because $p_{1}>k^{4}$).
We now estimate $\left|F_{n}^{(1)}(x)\right|$. Assume that $v(n / d)=r \leqslant l$.
Then, clearly, since $r \leqslant k \leqslant p_{1}^{1 / 4}$,

$$
p_{1}^{r}<\frac{n}{d}<p_{k}^{r}
$$

so that

$$
p_{1}^{\tau}<\frac{n}{d}<\left(p_{1}+p_{1}^{1 / 4}\right)^{r}<p_{1}^{\tau}\left(1+2 p_{1}^{-1 / 2}\right) .
$$

Thus

$$
\begin{equation*}
1-\left(1-p_{1}^{-l-\frac{1}{2}}\right)^{n / d}=\frac{n}{d p_{1}^{l+\mathfrak{t}}}+O\left(\frac{n^{2}}{d^{2} p_{1}^{2 l+1}}\right)=\frac{1}{p_{1}^{l-r+\frac{1}{2}}}\left\{1+O\left(p_{1}^{-\frac{t}{b}}\right)\right\} . \tag{6}
\end{equation*}
$$

We therefore have, from (6) and the definition of $F_{n}^{(1)}(x)$,

$$
\begin{equation*}
\left|F_{n}^{(1)}(x)\right|>p_{1}^{L}\left\{1+O\left(p_{1}^{-1 / 2}\right)\right\}^{-2^{k}} \tag{7}
\end{equation*}
$$

where

$$
\begin{aligned}
L & =-\sum_{r=0}^{k}(-1)^{k-l+r}\left(r+\frac{1}{2}\right)\binom{k}{l-r} \\
& =-\sum_{r=0}^{k}(-1)^{k-l+r} r\binom{k}{l-r}+\frac{1}{2} \sum_{r=0}^{k}(-1)^{k-l+r}\binom{k}{l-r} \\
& =(-1)^{k-l+1}\left\{\binom{k-2}{l}-\frac{1}{2}\binom{k-1}{l}\right\} .
\end{aligned}
$$

Thus, from the definition of l and by a simple computation, we obtain

$$
\begin{equation*}
L>\frac{1}{2 k}\binom{k-2}{l}>c_{4} k^{-3 / 2} 2^{k} \tag{8}
\end{equation*}
$$

It follows from (7) and (8), since $p_{1}>k^{4}$, that

$$
\begin{equation*}
\left|F_{n}^{(1)}(x)\right|>\exp \left\{c_{4} k^{-3 / 22^{k}} \log p_{1}-c_{5} 2^{k} p_{1}^{-1 / 2}\right\}>\exp \left(c_{6} k^{-3 / 2} 2^{k}\right) . \tag{9}
\end{equation*}
$$

Thus, from (4), (5) and (9),

$$
\begin{equation*}
\left|F_{n}(x)\right|>\frac{1}{4} \exp \left(c_{6} k^{-3 / 2} 2^{k}\right) . \tag{10}
\end{equation*}
$$

Now

$$
\begin{equation*}
n=p_{1} p_{2} \cdots p_{k}<\left(p_{1}+p_{1}^{1 / 4}\right)^{k}<2 p_{1}^{k}<2 \exp (5 k \log k), \tag{11}
\end{equation*}
$$

since

$$
\left.p_{1}<t+t^{1 / 4}<\left(\frac{1}{10} t^{1 / 4}\right) \log t\right)^{5}<k^{5}
$$

and (1) follows immediately from (10) and (11).

Denote by $\phi(n, k)$ the number of integers m such that $1 \leqslant m \leqslant k$ and $(m, n)=1$. Clearly

$$
\begin{equation*}
\phi(n, k)=k \underset{p \mid n}{\Pi}\left(1-\frac{1}{p}\right)+\alpha 2^{v(n)-1}, \text { where }-1<\alpha<1 \tag{12}
\end{equation*}
$$

I have proved [2] that, for every n, there exists a k such that

$$
\left|\phi(n, k)-k \underset{p \nmid n}{\Pi}\left(1-\frac{1}{p}\right)\right|>c_{7} 2^{2 v(n)} / \log v(n),
$$

and conjectured [2] that the error term in (12) is $o\left(2^{v(n)}\right)$ for $v(n) \rightarrow \infty$. Vijayaraghavan [6] and Lehmer [4] disproved this conjecture, and in fact Vijayaraghavan proved that in (12) α can come as near as one wishes to both -1 or +1 .

Now one can pose the following problem : Let $n \leqslant x$; then, from

$$
v(n)<(1+\epsilon) \log x / \log \log x
$$

and (12), we obtain

$$
\begin{equation*}
\phi(n, k)=k \prod_{p \mid n}\left(1-\frac{1}{p}\right)+O\left\{2^{(1+\epsilon) \log x \log \log x}\right\} . \tag{13}
\end{equation*}
$$

I believe that the error term in (13) cannot be replaced by

$$
O\left\{2^{\left(1-c_{8}\right) \log x / \log \log x}\right\} .
$$

If this could be proved it might enable one to show that (3) holds for every $c_{3}<\log 2$.

REFERENCES

1. P. T. Bateman, Note on the coefficients of the cyclotomic polynomial, Bull. Amer. Math. Soc. 55 (1949), 1180-1181.
2. P. Erdös, On the coefficients of the cyclotomic polynomial, Bull. Amer. Math. Soc., 52 (1946), 179-184.
3. P. Erdös, On the coefficients of the cyclotomic polynomial, Portugaliae Math., 8 (1949), 63-71.
4. D. H. Lehmer, The distribution of totatives, Canadian Math. J., 7 (1955), 347-357.
5. Emma Lehmer, On the magnitude of the coefficients of the cyclotomic polynomial, Bull. Amer. Math. Soc. 42 (1936), 389-392.
6. T. Vijayaraghavan, On a problem in elementary number theory, J. Indian Math. Soc. (N.S.), 15 (1951), 51-56.

Department of Mathematios
The University
Birmingham

