CENTRALIZING AUTOMORPHISMS OF LIE IDEALS IN PRIME RINGS

JOSEPH H. MAYNE

Abstract

Let R be a prime ring of characteristic not equal to two and let T be an automorphism of R. If U is a Lie ideal of R such that T is nontrivial on U and $x x^{T}-x^{T} x$ is in the center of R for every x in U, then U is contained in the center of R.

A linear mapping T from a ring to itself is called centralizing on a subset S of the ring if $x x^{T}-x^{T} x$ is in the center of the ring for every x in S. In [7] Posner showed that if a prime ring has a nontrivial derivation which is centralizing on the entire ring, then the ring must be commutative. In [5] and [8] the same result is proved for a prime ring with a nontrivial centralizing automorphism. A number of authors have generalized these results by considering mappings which are only assumed to be centralizing on an appropriate ideal of the ring.

In [1] Awtar considered centralizing derivations on Lie and Jordan ideals. In the Jordan case, he proved that if a prime ring of characteristic not two has a nontrivial derivation which is centralizing on a Jordan ideal, then the ideal must be contained in the center of the ring. This result is extended in [6] where it is shown that if R is any prime ring with a nontrivial centralizing automorphism or derivation on a nonzero ideal or (quadratic) Jordan ideal, then R is commutative. Recently Bell and Martindale [2] have proved similar results assuming that the ring is only semi-prime.

For prime rings Awtar also showed that a nontrivial derivation which is centralizing on a Lie ideal implies that the ideal is contained in the center if the ring is not of characteristic two or three. In [4] Lee and Lee obtained the same result while removing the characteristic not three restriction. In this paper the corresponding result for automorphisms on Lie ideals is proved.

Theorem. If R is a prime ring of characteristic not equal to two and T is an automorphism of R which is centralizing and nontrivial on a Lie ideal U of R, then U is contained in the center of R.

From now on assume that R is a prime ring of characteristic not equal to two with center Z. Recall that a ring R is prime if $a R b=0$ implies that $a=0$ or $b=0$. Let $[x, y]=x y-y x$ and note the following basic identities valid in any associative ring :
(a) $[x, y z]=y[x, z]+[x, y] z$
(b) $[x y, z]=x[y, z]+[x, z] y$
(c) $[x,[y, z]]+[y,[z, x]]+[z,[x, y]]=0$

[^0]The first two identities show that the commutator $[x, y]$ acts as a derivation on R if either of its arguments is fixed. The third identity is the Jacobi identity. Note also that whenever $a[x, r]=0$ for all r in R, then $0=a[x, r s]=\operatorname{ar}[x, s]+a[x, r] s=\operatorname{ar}[x, s]$ for all r and s in R. Since R is prime, either $a=0$ or x is the center of R.

Now assume that U is a Lie ideal of R and T is a homomorphism of R to R such that $\left[x, x^{T}\right]$ is in Z for every x in U. Linearizing this gives $\left[x, y^{T}\right]+\left[y, x^{T}\right]$ is in Z for every x and y in U. Since U is a Lie ideal, y can be replaced by $[x, r]$ with r in R resulting in $\left[x,[x, r]^{T}\right]+\left[[x, r], x^{T}\right]$ is in Z. Using the Jacobi identity and the fact that $\left[x, x^{T}\right]$ is in Z, $\left[x,[x, r]^{T}\right]+\left[[x, r], x^{T}\right]=\left[x,\left[x^{T}, r^{T}\right]\right]+\left[[x, r], x^{T}\right]=\left[x,\left[x^{T}, r^{T}\right]\right]-\left[x,\left[x^{T}, r\right]\right]$. Thus

$$
\begin{equation*}
\left[x,\left[x^{T}, r-r^{T}\right]\right] \text { is in } Z \text { for all } x \text { in } U \text { and } r \text { in } R . \tag{1}
\end{equation*}
$$

If a mapping T satisfies $\left[x, x^{T}\right]=0$ for all x in some subset S of R, then T is called commuting on S.

Lemma 1. If T is an automorphism of R which is centralizing on U, then T is commuting on U.

Proof. Let r be replaced by $x x^{T} x$ in (1). Then using the fact that $\left[x, x^{T}\right]$ is in Z and thus $\left[x^{T}, x^{T T}\right]$ is also in $Z,\left[x,\left[x^{T}, x x^{T} x\right]\right]-\left[x,\left[x^{T}, x^{T} x^{T T} x^{T}\right]\right]=\left[x, x\left[x^{T}, x^{T} x\right]+\left[x^{T}, x\right] x^{T} x\right]-$ $\left[x, x^{T}\left[x^{T}, x^{T T} x^{T}\right]\right]=\left[x, x x^{T}\left[x^{T}, x\right]+\left[x^{T}, x\right] x^{T} x\right]-\left[x, x^{T} x^{T}\left[x^{T}, x^{T T}\right]\right]=\left[x, x x^{T}\right]\left[x^{T}, x\right]+$ $\left[x^{T}, x\right]\left[x, x^{T} x\right]-\left[x, x^{T} x^{T}\right]\left[x^{T}, x^{T T}\right]=x\left[x, x^{T}\right]\left[x^{T}, x\right]+\left[x^{T}, x\right]\left[x, x^{T}\right] x-x^{T}\left[x, x^{T}\right]\left[x^{T}, x^{T T}\right]-$ $\left[x, x^{T}\right] x^{T}\left[x^{T}, x^{T T}\right]=2 x\left[x, x^{T}\right]\left[x^{T}, x\right]-2 x^{T}\left[x, x^{T}\right]\left[x^{T}, x^{T T}\right]$ is in Z for all x in U. Commuting this last expression with x^{T} gives $2\left[x, x^{T}\right]\left[x, x^{T}\right]\left[x^{T}, x\right]=0$. Since R is prime and all commutators in the product are in $Z,\left[x, x^{T}\right]=0$. Hence T is commuting on U.

From now on assume that T is an automorphism centralizing on the Lie ideal U. By Lemma 1, this means $\left[x, x^{T}\right]=0$ for all x in U.

Lemma 2. $\quad\left(x-x^{T}\right)\left[x^{T},[x, r]\right]=0$ for all x in U and r in R.
Proof. Linearizing $\left[x, x^{T}\right]=0$ gives $\left[x, y^{T}\right]+\left[y, x^{T}\right]=0$ for all x and y in U. As in the derivation of equation (1) replace y by $[x, r]$ to obtain

$$
\begin{equation*}
\left[x,\left[x^{T}, r-r^{T}\right]\right]=0 \text { for all } x \text { in } U \text { and } r \in R \tag{2}
\end{equation*}
$$

Replacing r by $x r$ in (2), $\left[x,\left[x^{T}, x r-x^{T} r^{T}\right]\right]=\left[x, x\left[x^{T}, r\right]-x^{T}\left[x^{T}, r^{T}\right]\right]=x\left[x,\left[x^{T}, r\right]\right]-$ $x^{T}\left[x,\left[x^{T}, r^{T}\right]\right]=0$ for all x in U and r in R. Multiplying (2) by x^{T} on the left and subtracting from this last equation gives $\left(x-x^{T}\right)\left[x,\left[x^{T}, r\right]\right]=0$. By the Jacobi identity $\left(x-x^{T}\right)\left[x^{T},[x, r]\right]=0$. A similar argument shows that $\left[x^{T},[x, r]\right]\left(x-x^{T}\right)=0$.

Lemma 3. $\quad\left(x-x^{T}\right)[x, r]\left(x-x^{T}\right)=0$ and $\left(x-x^{T}\right)\left[x^{T}, r\right]\left(x-x^{T}\right)=0$ for all x in U and r in R.

Proof. By Lemma 2, $\left(x-x^{T}\right)\left[x^{T},[x, r]\right]=0$. Replacing r by $r s$ gives

$$
\begin{aligned}
\left(x-x^{T}\right)\left[x^{T},[x, r s]\right] & =\left(x-x^{T}\right)\left[x^{T}, r[x, s]+[x, r] s\right] \\
& =\left(x-x^{T}\right)\left\{r\left[x^{T},[x, s]\right]+\left[x^{T}, r\right][x, s]+\left[x^{T},[x, r]\right] s+[x, r]\left[x^{T}, s\right]\right\} \\
& =0 .
\end{aligned}
$$

Hence by Lemma 2,
(3) $\left(x-x^{T}\right)\left\{r\left[x^{T},[x, s]\right]+\left[x^{T}, r\right][x, s]+[x, r]\left[x^{T}, s\right]\right\}=0$ for all x in U, r and s in R.

Replacing s by $\left(x-x^{T}\right) s$ in (3) gives $0+\left(x-x^{T}\right)\left[x^{T}, r\right]\left(x-x^{T}\right)[x, s]+\left(x-x^{T}\right)[x, r]$ $\left(x-x^{T}\right)\left[x^{T}, s\right]=0$. If s is replaced by $[x, s]$, then again by Lemma 2,

$$
\begin{equation*}
\left(x-x^{T}\right)\left[x^{T}, r\right]\left(x-x^{T}\right)[x,[x, s]]=0 \text { for all } x \text { in } U \text { and } r \text { and } s \text { in } R . \tag{4}
\end{equation*}
$$

Let r be replaced by $r t$, then $\left(x-x^{T}\right) r\left[x^{T}, t\right]\left(x-x^{T}\right)[x,[x, s]]+\left(x-x^{T}\right)\left[x^{T}, r\right] t$ $\left(x-x^{T}\right)[x,[x, s]]=0$. Let r be replaced by $r\left(x-x^{T}\right)$. Then $\left(x-x^{T}\right) r\left(x-x^{T}\right)\left[x^{T}, t\right]$ $\left(x-x^{T}\right)[x,[x, s]]+\left(x-x^{T}\right)\left[x^{T}, r\right]\left(x-x^{T}\right) t\left(x-x^{T}\right)[x,[x, s]]=0$. But by (4) the first term is zero and so $\left(x-x^{T}\right)\left[x^{T}, r\right]\left(x-x^{T}\right) t\left(x-x^{T}\right)[x,[x, s]]=0$ for all x in U and all r, s and t in R. Since R is prime either $\left(x-x^{T}\right)\left[x^{T}, r\right]\left(x-x^{T}\right)=0$ or $\left(x-x^{T}\right)[x,[x, s]]=0$. Now equation (3) with r replaced by $r\left(x-x^{T}\right)$ results in $\left(x-x^{T}\right)\left[x^{T}, r\right]\left(x-x^{T}\right)[x, s]+\left(x-x^{T}\right)[x, r]$ $\left(x-x^{T}\right)\left[x^{T}, s\right]=0$, so $\left(x-x^{T}\right)\left[x^{T}, r\right]\left(x-x^{T}\right)=0$ if and only if $\left(x-x^{T}\right)[x, r]\left(x-x^{T}\right)=0$. Thus, if $\left(x-x^{T}\right)\left[x^{T}, r\right]\left(x-x^{T}\right)=0$, the Lemma is proved. If $\left(x-x^{T}\right)[x,[x, s]]=0$, then by replacing s by $r s,\left(x-x^{T}\right)[x,[x, r s]]=\left(x-x^{T}\right)[x, r[x, s]+[x, r] s]=\left(x-x^{T}\right)$ $\{r[x,[x, s]]+2[x, r][x, s]\}=0$. If r is replaced by $r\left(x-x^{T}\right)$, then $\left(x-x^{T}\right)[x, r]$ $\left(x-x^{T}\right)[x, s]=0$ which implies $\left(x-x^{T}\right)[x, r]\left(x-x^{T}\right)=0$ and the Lemma is true in this case also.

Lemma 4. If x is in U and $\left(x-x^{T}\right)^{2} \neq 0$, then x is in Z.

Proof. By Lemma 3, $\left(x-x^{T}\right)[x, r]\left(x-x^{T}\right)=0$. Letting r be $r s$ gives $\left(x-x^{T}\right)$ $(r[x, s]+[x, r] s)\left(x-x^{T}\right)=0$. Replacing r by $\left[x^{T}, r\right]$ and using Lemma 2 results in

$$
\begin{equation*}
\left(x-x^{T}\right)\left[x^{T}, r\right][x, s]\left(x-x^{T}\right)=0 \text { for } x \text { in } U \text { and all } r, s \text { in } R . \tag{5}
\end{equation*}
$$

Replacing s by $\left[x^{T}, s\right]$ would have given

$$
\left(x-x^{T}\right)[x, r]\left[x^{T}, s\right]\left(x-x^{T}\right)=0 \text { for } x \text { in } U \text { and all } r, s \text { in } R .
$$

Now replacing r by $r t$ in (5) to obtain $\left(x-x^{T}\right)\left(r\left[x^{T}, t\right][x, s]+\left[x^{T}, r\right] t[x, s]\right)\left(x-x^{T}\right)=0$ and then replacing r by $[x, r]$ gives

$$
\begin{equation*}
\left(x-x^{T}\right)[x, r]\left[x^{T}, t\right][x, s]\left(x-x^{T}\right)=0 \text { for } x \text { in } U \text { and all } r, s, t \text { in } R . \tag{6}
\end{equation*}
$$

Now $\left(x-x^{T}\right)[x, r]\left[x-x^{T}, t\right][x, s]\left(x-x^{T}\right)=0$ since $\left(x-x^{T}\right)[x, r]\left(x-x^{T}\right)=0$ and adding this to (6) results in

$$
\begin{equation*}
\left(x-x^{T}\right)[x, r][x, t][x, s]\left(x-x^{T}\right)=0 \text { for } x \text { in } U \text { and all } r, s, t \text { in } R . \tag{7}
\end{equation*}
$$

Now in (5) if s is replaced by $t s$ and then s by $\left[x^{T}, s\right],\left(x-x^{T}\right)\left[x^{T}, r\right][x, t]\left[x^{T}, s\right]\left(x-x^{T}\right)=0$. Subtracting this from (7) gives $\left(x-x^{T}\right)\left[x-x^{T}, r\right][x, t]\left[x-x^{T}, s\right]\left(x-x^{T}\right)=0$. Thus $\left\{\left(x-x^{T}\right)^{2} r-\left(x-x^{T}\right) r\left(x-x^{T}\right)\right\}[x, t]\left\{\left(x-x^{T}\right) s\left(x-x^{T}\right)-s\left(x-x^{T}\right)^{2}\right\}=0$. Replacing r by $\left[x^{T}, r\right]$ reduces this to $\left(x-x^{T}\right)^{2}\left[x^{T}, r\right][x, t] s\left(x-x^{T}\right)^{2}=0$ by (5) and Lemma 3. So if
$\left(x-x^{T}\right)^{2} \neq 0,\left(x-x^{T}\right)^{2}\left[x^{T}, r\right][x, t]=0$ and thus x is in Z or x^{T} is in Z which implies x is in Z.

Lemma 5. If x is in U and $x-x^{T} \neq 0$, then x is in Z.

Proof. If $\left(x-x^{T}\right)^{2} \neq 0$, then by Lemma 4, x is in Z, so assume that $\left(x-x^{T}\right)^{2}=0$. By the Jacobi identity, (2) is equivalent to $\left[x^{T},\left[x, r-r^{T}\right]\right]=0$ and linearizing this gives $\left[x^{T},\left[y, r-r^{T}\right]\right]+\left[y^{T},\left[x, r-r^{T}\right]\right]=0$. Letting r be x in this results in $\left[x^{T},\left[y, x-x^{T}\right]\right]+0=$ $\left[x^{T}, y\left(x-x^{T}\right)-\left(x-x^{T}\right) y\right]=0$ or

$$
\begin{equation*}
\left(x-x^{T}\right)\left[x^{T}, y\right]=\left[x^{T}, y\right]\left(x-x^{T}\right) \text { for all } x \text { and } y \text { in } U . \tag{8}
\end{equation*}
$$

Now by Lemma 3 and using (8), $0=\left(x-x^{T}\right)\left[x^{T}, y z\right]\left(x-x^{T}\right)=\left(x-x^{T}\right)\left[x^{T}, y\right] z\left(x-x^{T}\right)+$ $\left(x-x^{T}\right) y\left[x^{T}, z\right]\left(x-x^{T}\right)=\left[x^{T}, y\right]\left(x-x^{T}\right) z\left(x-x^{T}\right)+\left(x-x^{T}\right) y\left(x-x^{T}\right)\left[x^{T}, z\right]$ for y and z in U. Letting y be $[y, r]$ gives
$\left[x^{T},[y, r]\right]\left(x-x^{T}\right) z\left(x-x^{T}\right)+\left(x-x^{T}\right)[y, r]\left(x-x^{T}\right)\left[x^{T}, z\right]=0$ for all r in R and y, z in U.
Now by expanding and using $\left[x^{T},\left[y, x-x^{T}\right]\right]=0$,

$$
\begin{equation*}
\left[x^{T},\left[y, r\left(x-x^{T}\right)\right]\right]=\left[x^{T}, r\right]\left[y, x-x^{T}\right]+\left[x^{T},[y, r]\right]\left(x-x^{T}\right) \tag{10}
\end{equation*}
$$

So letting r be $r\left(x-x^{T}\right)$ in (9) and using $\left(x-x^{T}\right)^{2}=0$ and (10) implies $\left[x^{T}, r\right]$ $\left[y, x-x^{T}\right]\left(x-x^{T}\right) z\left(x-x^{T}\right)+\left(x-x^{T}\right) r\left[y, x-x^{T}\right]\left(x-x^{T}\right)\left[x^{T}, z\right]=0$ or $\left[x^{T}, r\right]$ $\left(x-x^{T}\right) y\left(x-x^{T}\right) z\left(x-x^{T}\right)+\left(x-x^{T}\right) r\left(x-x^{T}\right) y\left(x-x^{T}\right)\left[x^{T}, z\right]=0$. Let r be $[y, r]$ which is of course in U since y is in U, then using (8) on the first term,

$$
\begin{equation*}
\left(x-x^{T}\right)\left[x^{T},[y, r]\right] y\left(x-x^{T}\right) z\left(x-x^{T}\right)+\left(x-x^{T}\right)[y, r]\left(x-x^{T}\right) y\left(x-x^{T}\right)\left[x^{T}, z\right]=0 . \tag{11}
\end{equation*}
$$

Now again by Lemma 3, $\left(x-x^{T}\right)\left[x^{T},[y, r] y\right]\left(x-x^{T}\right)=0$ and so $\left(x-x^{T}\right)[y, r]\left[x^{T}, y\right]$ $\left(x-x^{T}\right)+\left(x-x^{T}\right)\left[x^{T},[y, r]\right] y\left(x-x^{T}\right)=0$. Thus using this in the first term of (11) results in $-\left(x-x^{T}\right)[y, r]\left[x^{T}, y\right]\left(x-x^{T}\right) z\left(x-x^{T}\right)+\left(x-x^{T}\right)[y, r]\left(x-x^{T}\right) y\left(x-x^{T}\right)\left[x^{T}, z\right]=0$ and by (8) $\left(x-x^{T}\right)[y, r]\left(x-x^{T}\right)\left(\left[x^{T}, y\right] z-y\left[x^{T}, z\right]\right)\left(x-x^{T}\right)=0$. But this implies that $\left(x-x^{T}\right)[y, r]\left(x-x^{T}\right) y\left[x^{T}, z\right]\left(x-x^{T}\right)=0$. Linearizing by replacing y by $y+w$ results in $\left(x-x^{T}\right)[w, r]\left(x-x^{T}\right) y\left[x^{T}, z\right]\left(x-x^{T}\right)+\left(x-x^{T}\right)[y, r]\left(x-x^{T}\right) w\left[x^{T}, z\right]\left(x-x^{T}\right)=0$ and now replacing w by $[x, s]$ so that the second term is 0 by (5^{\prime}),

$$
\begin{equation*}
\left(x-x^{T}\right)[[x, s], r]\left(x-x^{T}\right) y\left[x^{T}, z\right]\left(x-x^{T}\right)=0 \text { for } y, z \text { in } U \text { and } r, s \text { in } R . \tag{12}
\end{equation*}
$$

Now Bergen, Herstein and Kerr [3, Lemma 4] have shown that if a nonzero Lie ideal U is not in the center of a prime ring of characteristic not equal to two, then $a U b=0$ implies $a=0$ or $b=0$. So if U is in the center, then so is x and the Lemma is proved. If U is not in the center, then since (12) is true for all y, either

$$
\begin{equation*}
\left(x-x^{T}\right)[[x, s] r]\left(x-x^{T}\right)=0 \text { for all } r \text { and } s \text { in } R \tag{13}
\end{equation*}
$$

or

$$
\begin{equation*}
\left[x^{T}, z\right]\left(x-x^{T}\right)=0 \text { for all } z \text { in } U \tag{14}
\end{equation*}
$$

If (14) holds, then replacing z in it by $\left[y, r\left(x-x^{T}\right)\right]$ and using (10) results in $\left[x^{T}, r\right]$ $\left[y, x-x^{T}\right]\left(x-x^{T}\right)=-\left[x^{T}, r\right]\left(x-x^{T}\right) y\left(x-x^{T}\right)=0$. So x is in Z or $\left(x-x^{T}\right) y\left(x-x^{T}\right)=0$ which by Lemma 4 of [3] then forces $x-x^{T}=0$ if x is not in Z. So the Lemma is true in this case. If (13) holds, replacing s by st gives $\left(x-x^{T}\right)[[x, s t], r]\left(x-x^{T}\right)=\left(x-x^{T}\right)$ $[s[x, t]+[x, s] t, r]\left(x-x^{T}\right)=\left(x-x^{T}\right)\{[s, r][x, t]+s[[x, t] r]+[x, s][t, r]+[[x, s], r] t\}$ $\left(x-x^{T}\right)=0$. Replacing s by $s\left(x-x^{T}\right)$ and using (13) and Lemma 3 implies $\left(x-x^{T}\right)$ $\left\{\left[s\left(x-x^{T}\right), r\right][x, t]+\left[\left[x, s\left(x-x^{T}\right)\right], r\right] t\right\}\left(x-x^{T}\right)=\left(x-x^{T}\right)\left\{s\left[x-x^{T}, r\right][x, t]+[x, s]\right.$ $\left.\left[x-x^{T}, r\right] t\right\}\left(x-x^{T}\right)=0$ or $\left(x-x^{T}\right)\left\{s\left(x-x^{T}\right) r[x, t]-[x, s] r\left(x-x^{T}\right) t\right\}\left(x-x^{T}\right)=0$. But $\left(x-x^{T}\right)[x, \operatorname{sr}]\left(x-x^{T}\right)=0$ implies that $\left(x-x^{T}\right)\left\{s\left(x-x^{T}\right) r[x, t]+s[x, r]\left(x-x^{T}\right) t\right\}\left(x-x^{T}\right)=$ $\left(x-x^{T}\right) s\left\{\left(x-x^{T}\right) r[x, t]+[x, r]\left(x-x^{T}\right) t\right\}\left(x-x^{T}\right)=0$. So if $x \neq x^{T},\left(x-x^{T}\right) r[x, t]$ $\left(x-x^{T}\right)+[x, r]\left(x-x^{T}\right) t\left(x-x^{T}\right)=0$. Since $\left(x-x^{T}\right)[x, r t]\left(x-x^{T}\right)=0$, this becomes $-\left(x-x^{T}\right)[x, r] t\left(x-x^{T}\right)+[x, r]\left(x-x^{T}\right) t\left(x-x^{T}\right)=\left\{-\left(x-x^{T}\right)[x, r]+[x, r]\left(x-x^{T}\right)\right\} t\left(x-x^{T}\right)=$ 0 . So if $\left(x-x^{T}\right) \neq 0$,

$$
\begin{equation*}
\left(x-x^{T}\right)[x, r]=[x, r]\left(x-x^{T}\right) \text { for all } r \text { in } R . \tag{15}
\end{equation*}
$$

Letting r be $r s$ gives $\left(x-x^{T}\right)(r[x, s]+[x, r] s)=(r[x, s]+[x, r] s)\left(x-x^{T}\right)$ and then replacing r by $r\left(x-x^{T}\right)$ implies $\left(x-x^{T}\right) r\left(x-x^{T}\right)[x, s]=[x, r]\left(x-x^{T}\right) s\left(x-x^{T}\right)$. But using (15), this implies $\left(x-x^{T}\right)\{r[x, s]-[x, r] s\}\left(x-x^{T}\right)=2\left(x-x^{T}\right) r[x, s]\left(x-x^{T}\right)=0$. Hence x is in Z.

Proof of the Theorem. Since T is nontrivial on U, there must be an x in U such that $x \neq x^{T}$. By Lemma 5, x is in Z. Let y be in U and y not be in Z. Then by Lemma 5, $y=y^{T}$. But then $(x+y)^{T}=x^{T}+y^{T}=x^{T}+y \neq x+y$. Hence $x+y$ is in Z but this is impossible since y was assumed not to be in Z. Hence for all y in U, y must be in Z and so U is contained in Z.

References

1. R. Awtar, Lie and Jordan structures in prime rings with derivations, Proc. Amer. Math. Soc. 41(1973), 67-74.
2. H. E. Bell and W. S. Martindale, III, Centralizing mappings of semiprime rings, Canad. Math. Bull. 30(1987), 92-101.
3. J. Bergen, I. N. Herstein and J. W. Kerr, Lie ideals and derivations of prime rings, J. Algebra 71(1981), 259-267.
4. P. H. Lee and T. K. Lee, Lie ideals of prime rings with derivations, Bull. Inst. Math. Acad. Sinica. 11(1983), 75-80.
5. J. Mayne, Centralizing automorphisms of prime rings, Canad. Math. Bull. 19(1976), 113-115.
6. \qquad Centralizing mappings of prime rings, Canad. Math. Bull. 27(1984), 122-126.
7. E. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8(1957), 1093-1100.
8. M. F. Smiley, Remarks on the commutativity of rings, Proc. Amer. Math. Soc. 10(1959), 466-470.

Department of Mathematical Sciences

Loyola University of Chicago
Chicago, Illinois 60626
U.S.A.

[^0]: Received by the editors January 30, 1991 .
 AMS subject classification: 16A68, 16A70, 16A72.
 (c) Canadian Mathematical Society 1992.

